
Extending RISC-V Keystone to Include Efficient Secure Memory
Zach Moolman

zach.moolman@colorado.edu

University Of Colorado Boulder

Boulder, Colorado, USA

Tamara Silbergleit Lehman

tamara.lehman@colorado.edu

University Of Colorado Boulder

Boulder, Colorado, USA

Abstract
Given that mobile and embedded devices are at the center of day

to day activities, they are often the target of cyber attacks. Despite

their heightened security criticality, these devices do not often pro-

tect their data in memory. The reason for this lack of protections is

resource limitations. In this work we propose an efficient mecha-

nism to extend the Trusted Execution Environment (TEE) in RISC-V,

Keystone, to include Secure Memory features to protect data in

memory from physical and remote memory attacks.

1 Introduction
Embedded and mobile devices have infiltrated most day-to-day

operations. As a result, they are responsible for handling sensitive

information, such as passwords, social security numbers, credit

cards, among many others. Since embedded and mobile devices are

typically not housed within robust physical protections, they are

vulnerable to memory attacks. Memory attacks refer to physical

or remote attacks that leverage the vulnerable nature of memory

devices to extract sensitive information or change values in memory

to gain unauthorized access to the system.

Typical embedded and mobile devices are not equipped to pro-

vide protection for memory attacks, given they have limited re

sources. Typical protection mechanisms for data in memory in-

volve both encrypting and integrity protecting the data. To encrypt

the data before going to memory, the system needs to include a

hard ware encryption engine. This additional circuit is typically

found in SOC but usually used for protecting data in storage only,

not memory. One reason for this design decision is likely due to

resource and latency limitations, as memory accesses already take a

long time to retrieve data, and this latency is on the critical path of

computation. For integrity verification, secure systems use crypto-

graphic hashes stored in memory alongside the data. This approach

to integrity verification requires too much memory overhead and

additional hashing latency on the critical path to retrieve data from

memory.

In this work, we explore existing optimization mechanisms to

alleviate the overheads of secure memory and extend the proposed

RISC-V Keystone features to aid in secure memory operations. Our

goal is to produce an efficient implementation of a trusted execution

environment (TEE) with Secure Memory suitable for embedded

and mobile devices.

In this work, we are looking to address the performance and

resource limitations of secure memory systems by investigating the

potential for the RISC-V TEE, Keystone, to enable secure memory

features efficiently. As part of our research, we are considering

extending the Physical Memory Protections (PMP) table to include

some of the secure memory metadata. This extension is a signifi-

cant step in alleviating the overhead. Furthermore, we are actively

working on implementing a prototype on an FPGA, a crucial step

in exploring the feasibility of the design in a real-world context.

Threat Model.
The proposed security mechanism is based on the threat model

that assumes an adversary has remote (or physical) access to the

machine and can probe the hardware to infer information about the

victim program. The adversary can run any program they desire on

the target machine to subvert the processor to leak secrets through

various vulnerabilities (including privilege escalation and physical

attacks). These vulnerabilities are well-understood and part of the

threat model, which has been thoroughly studied [1, 8–13, 16–18].

The traditional solution to protect against these types of attacks

involves secure memory and TEE.

2 Background
Trusted Execution Environment (TEE), such as Intel Software Guard

eXtensions (SGX) and ARM Trustzone commonly found in modern

processors, can boost the security of end-user devices by isolating

the execution of well-defined programs [1, 2, 5]. The idea behind a

TEE is that anything coming from outside the chip boundary is un-

trusted, including the kernel data and code, as a kernel can be taken

over by a malicious party and modified to steal sensitive data. TEEs

offer protection at the hardware level to prevent rogue access or

compromise. TEE’s main goal is to secure a system without trusting

the privileged software (such as the operating system). Applications

developed for the TEE, need to have a restricted interface with the

insecure world. It’s important to remember that strict software

practices are not just recommended, but crucial for passing data in

and out of the trusted boundary. This responsibility lies with the

developers and users of TEEs, reinforcing the importance of these

practices in maintaining the security of the system.

TEEs also often have the benefit of remote attestation [1, 4].

When using the TEE technology, a program running in a remote

device can attest to the security of the processor in which it is

running, as well as the security of the binary before it runs. Remote

attestation uses a hardware-embedded cryptographic key, machine-

only readable, to derive keys that can prove that a machine has the

necessary features to run a program securely. For example, Intel

processors with SGX enabled have an embedded key inside each

processor that can prove its identity as a verified Intel processor.

This remote attestation can be leveraged to verify the integrity of

the software by signing it with a private key to verify its origin.

The integrity verification of the binary is done by comparing a

signature previously recorded by the developer with the recently

computed signature when the binary is loaded [10, 15].

TEEs alone cannot protect data in memory. The TEE is capable

of protecting the execution environment but it does nothing to

protect the data once it is at rest in memory. Physical and remote

attacks have been shown to be effective in extracting data even in



Zach Moolman and Tamara Silbergleit Lehman

the presence of TEEs [6]. As a result, we want to investigate secure

memory features to protect the data in memory.

Secure Memory. Data in memory should retain its confidential-

ity property to detect and prevent memory attacks by an attacker.

An attacker should not be able to read the values that cross the

communication bus between the processor and the memory. Confi-

dentiality prevents sensitive data from being disclosed. However,

confidentiality alone does not prevent an active attack, in which the

attacker modifies the values in memory to control the program’s be-

haviour. To protect against active memory attacks, secure memory

systems should also guarantee data integrity, which is the property

that ensures that no data is modified in an unauthorized way.

Systems with secure memory often include a hardware encryp-

tion engine that enables the encryption of the data before it is

stored in the main memory. When the data is fetched from the

main memory, in its encrypted form, it is first decrypted and only

then forwarded upstream to the cache hierarchy and the processor

for execution. When the data is updated and sent to the main mem-

ory, the value is re-encrypted, and its ciphertext is placed in the

main memory. Encrypting data in memory avoids unauthorized

access to the secure memory region, as accessing it without the

proper channels would simply return the ciphertext. The crypto-

graphic keys used throughout the secure hardware are guarded

within the trusted execution environment and tied to a particular

thread.

Typical secure memory systems use counter-mode encryption

due to its ability to parallelize the data fetch with the encryption

itself. Counter mode works well for secure memory because it is

able to hide the slow part of the encryption process while the mem-

ory controller fetches the data from memory. While the memory

controller sends the request to fetch the data from memory, the

AES hardware engine computes a one-time-pad (OTP) for the par-

ticular block to then XOR it with the ciphertext to decrypt the data

or the plaintext to encrypt it. To ensure each block of data has a

temporal and spatial unique OTP, counters are assigned to each

block and incremented on an update to the corresponding block.

Given that counters are larger than what can be held on chip, they

are normally placed in memory in a specific address, that can be

calculated based on the physical address of the block the counter

protects.

To enable integrity verification, cryptographic hashes (HMAC)

are used as a signature for what the data should be. When the

processor writes to memory, the memory controller computes the

corresponding HMAC and stores it in memory alongside the data.

Efficient implementations of secure memory use the Error Correct-

ing Code (ECC) chip of the memory device to store the HMAC in

order to save the additional memory access to fetch it [14]. When

fetching data from memory, the memory controller recomputes the

hash of the data and compares it to the previously stored hash. If

the hashes are the same, the integrity of the data is verified and it

is forwarded to the processor to continue execution.

HMACS alone cannot protect the system against replay attacks,

where the attacker records both the HMAC and the data and then

replays them both simultaneously at a later point in time. To provide

detection and protection against replay attacks, secure memory

systems usually use Bonsai Merkle trees (BMT), a hash tree built

over the encryption counters [11]. The BMT establishes the root of

Figure 1: RISC-V Keystone

trust by storing the root of the tree always on chip. When a piece

of data is fetched from memory, the tree is traversed from leaves to

the root, comparing hashes along the way, to verify the integrity

of the data.

All of these features of secure memory can be leveraged to im-

prove the security of an embedded or mobile device running un-

trusted programs. The confidentiality and integrity of TEEs can

prevent the device from allowing rogue applications from accessing

sensitive information. Furthermore, the integrity of the binary in

the TEE can prevent adversaries from modifying the functionality

of trusted programs. The remote attestation feature allows trusted

devices to verify that they have a secure environment to prevent

man-in-the-middle attacks.

RISC-V TEE The RISC-V community proposed a new style of

TEE, Keystone, which allows for hardware developers to customize

the interface of the TEE with the rest of the system [7]. RISC-V

Keystone achieves this flexibility by introducing the idea of the ma-

chine mode. This mode is an elevated privilege execution mode that

can manage the memory partitions (including ranges and access

permissions) for the whole system. The different memory partitions

are tracked in a structure called the physical memory protections

(PMP) table.

The RISC-V Keystone TEE isolates memory by using the PMP

table, which establishes permissions and priority of access for the

different computing modes (user, supervisor and machine mode).

Software running in machine mode, called the security monitor, is

responsible for managing the context switches, memory accesses,

and establishing access control primitives. Each core has its own

PMP table, which describes the access privileges for each memory

range. The PMP table is checked any time there is a memory ac-

cess in the user or supervisor mode. Given that the PMP table is

implemented as fast access registers, they do not add significant

overhead to the memory accesses, even when accessing the first

level cache. The system design of RISC-V Keystone is shown in

Figure 1.



Extending RISC-V Keystone to Include Efficient Secure Memory

3 System Design
Our main contribution is to extend the physical memory protection

(PMP) table described in the RISC-V privilege specification to in-

clude secure memory. To accomplish the necessary modifications,

we propose a new structure in the memory controller, which con-

tains a copy of some of the information in the per core PMP tables,

aggregated to create a system-wide view called the extended PMP

(ePMP). In addition, we proposed to include a memory encryption

engine that extends the memory controller with the logic necessary

to encrypt and decrypt, compute secure hashes, and decide when

the security features need to be applied.

The MEE constructs an integrity tree per memory region to en-

able the dynamic allocation of the secure memory region described

in the PMP tables. The MEE then tracks the root of each tree in its

own table (the aggregated ePMP table), indexed by the PMP entry

table index and the core ID that made the memory request.

A key feature of the proposed design is that we can use PMP

entries without relying on a specific TEE implementation. Secure

memory is orthogonal to TEE, allowing for much more flexible

implementations. On the other hand, it can seamlessly be inte-

grated with Keystone without any changes to the Keystone TEE

implementation.

3.1 The Aggregated Extended PMP Table
The proposed aggregated extended PMP (ePMP) table residing in the

memory controller incorporates metadata for enabling an efficient

and dynamic implementation of secure memory (shown in Figure 2).

The circled numbers on the figure is to match the components

within the FPGA design to the security metadata stored in memory

shown on the right side of the figure.

The ePMP status registers enable the dynamic allocation of se-

cure memory regions. To accomplish this dynamicity, the memory

controller needs to be aware of any new ranges defined by the core.

We propose creating the aggregated ePMP table at the memory

controller to enable this feature. The MEE will monitor all data

requests as they pass through the MEE and update the meta entries

in the ePMP according to their respective entries in the PMP of

each core.

To be able to discretize the differing memory regions, the Bonsai

Merkle tree needs to be built separately and independently for each

region. In order to implement multiple independent Bonsai Merkle

trees, the aggregated PMP table in the memory controller needs

to also include the corresponding tree root, which needs to reside

on-chip at all times. The tree root can be a small 8B HMAC that

encompasses all the values in the memory region it protects.

In addition to the tree root, given that Bonsai Merkle trees have

fixed mappings from data to metadata based on the physical address

and size of the secure memory region, the aggregated PMP table

needs to also track the size of the memory region. To track this

information in a concise format, we synthesize this information

into the field which we call the tree mode. The tree mode is used to

find the corresponding mapping from data to metadata. The tree

mode is simply the number of levels in the integrity tree based on

the size of the memory range. When we know how many levels

in the tree we have, then we can derive the mapping of data to

metadata by simply using the data physical address. The size of

each memory range can be easily derived by the core at the time

of the memory range entry creation. The core communicates the

memory range size to the memory controller when the security

monitor creates the new range in the M mode.

3.2 The Memory Encryption Engine
The memory encryption engine (MEE) extends the original mem-

ory controller with an encryption engine, capable of performing

cryptographic operations, the logic necessary to decide when a

memory request needs the security features and the aggregated

ePMP table. The MEE monitors all data requests that come into the

memory controller. Requests that fall in a memory address range

that belongs to a secure environment will necessitate to go through

the security features of secure memory: decryption for reading

from memory, encryption for writing to memory and integrity ver-

ification for both. To allow the MEE to make this decision without

completely replicating the information on the core’s PMP table, we

expand the communication protocol (TileLink) to indicate when an

address falls within a secure memory region by simply adding a

secure bit to the request. Given that the MEE needs to be aware of

any changes to each of the cores PMP tables, the communication

protocol is also expanded to include two new commands.

In order to synchronize the information in the cores’ PMP tables

and the information at the MEE, the communication protocol is

extended to include two new types of commands: create new entry

and delete entry. The create new entry command is initiated at the

core whenever the security monitor creates a new secure memory

range in the PMP table. This command needs to communicate to the

MEE which entry in its own version of the ePMP table needs to be

updated. To communicate which entry, we concatenate the core’s

PMP entry index with the core identifier. The MEE, once it receives

this command, updates the corresponding entry by resetting the

root of the integrity tree and the tree mode size to the corresponding

mode according to the new range size. The range size information

is embedded into the command’s payload.

The second command, the delete entry, is initiated by the core

when the security monitor in the machine mode removes one of

the ePMP entries. Once the MEE receives this type of command, it

resets the integrity tree root and mode to zero to indicate that the

corresponding entry is invalid.

The memory encryption engine needs to include 𝑁𝑥𝑃 entries

on a chip, where N is the number of cores in the system, and P is

the number of PMP entries in each core. Typical designs include

up to 16 entries for the per-core PMP entries. For a system with

eight cores, the MEE will require a total of 128 entries in its table.

Each entry contains the root of the BMT for the region (up to 8B of

data) and the tree mode (a 1B value, which allows for 256 different

modes). With these values, the total amount of additional on-chip

storage is a little over 1KB (9B * 128 = 1152 B), a minimal overhead

to incur for the sake of securing the data in memory.

3.3 Modifications to the Security Monitor
In addition to the extension of the PMP table, the security monitor

needs to be modified to be able to allocate a memory range that

includes the additional space required to store the security metadata

in contiguous memory. When the security monitor requests a range



Zach Moolman and Tamara Silbergleit Lehman

Figure 2: High Level Design

of memory from the Operating System(OS), it normally requests the

same amount that was requested by the user creating the new secure

environment. The security monitor can be extended to request

of the untrusted OS the original size with additional space (in

traditional systems this additional space required is about 20%)

to accommodate the metadata [11]. The 20% comes from needing a

total of 1.5% for the encryption counters, 12.5% for the data hash,

and 6% for the integrity tree.The additional space should not be

readable or writable by any mode, as no application (not even ones

running on the secure environment) should be able to address these

locations explicitly. The only component able to operated on these

values is the memory controller which does not go through the

PMP checker.

By creating an independent integrity tree per memory region, the

system can alleviate the overhead by only reserving the necessary

space for the metadata. For example, the operating system region,

which is assumed to be all of memory at system boot, requires no

secure memory metadata, as it is assumed that the OS is not trusted.

Therefore, when no secure environment exists, there will be no

region in memory reserved for metadata, as this will not be needed

by any of the regions.

4 Prototype and Future Experimentation
To build our secure System-on-Chip (SoC) we are expanding Rock-

etChip, an open-source System-on-Chip generator alongwith Berke-

ley Out-of-Order Machine (BOOM) core, a synthesizable and pa-

rameterizable open-source RV64GC RISC-V core [3, 19]. These tools

leverage Chisel, a high-level hardware construction language de-

rived from the Scala language that emits synthesizable RTL. We

leverage RocketChip to generate themodified SonicBoom (BOOMv3)

cores, caches, and memory encryption engine (MEE) and intercon-

nects to design an integrated SoC.

Figure 3 shows the changes we make to the RochetChip to im-

plement the proposed design. We extend the BOOM core Control

Status Record(CSR) to indicate whether a memory region should be

encrypted or not. The pmpchecker validates each memory access

requested by the TLB. We have updated the pmpchecker to obtain

Figure 3: SoC incorporates our Memory Encryption Engine
(MEE). The colored portion indicates addition and changes
made to the original design.

the encryption-enabled signal that will be sent with any memory

request. RocketChip uses the TileLink protocol as its primary inter-

connect. We update the protocol to include the encryption-enabled

signal. We also extend the memory controller with a Memory En-

cryption Engine. The memory encryption Engine examines each

request. If the request does not require data encryption, the request

bypasses the Encryption Engine(EE). This is true for reading or

writing requests. If an encryption-enabled signal is asserted on

write request, data is encrypted before it leaves the memory en-

cryption engine. On the other hand, read requests are forwarded to



Extending RISC-V Keystone to Include Efficient Secure Memory

the external memory controller. Once the read request is available,

the Encryption Engine decrypts the data using the metadata stored

in the ePMP table.

5 Conclusions and Future Work
Given the fact that embedded and mobile devices are entrenched

in our day to day activities, they are bound to operate on sensitive

data. As a result, these devices need to offer adequate protection

mechanisms to protect the system against memory attacks and

rogue operating systems. Existing approaches to provide defenses

against this threat model require too many resources or incur signif-

icant performance overheads, making them an inadequate option

for these smaller devices. The proposed design has the promise

of enabling a robust and efficient secure system which could en-

able sensitive computations on mobile and embedded devices. The

opportunities that RISC-V introduces can be further leveraged by

the proposed design to alleviate the memory spatial overhead re-

quirements of BMTs and improving the performance of existing

approaches of secure memory. The proposed design is ongoing

work and we will publish the performance results once we get a

fully working prototype.

References
[1] Anati, I., Mckeen, F., Gueron, S., Haitao, H., Johnson, S., Leslie-Hurd, R.,

Patil, H., Rozas, C., and Shafi, H. Intel software guard extensions (Intel SGX).

In Tutorial at International Symposium on Computer Architecture (ISCA) (2015).
[2] ARM. Arm architecture reference manual.

[3] Asanovic, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio,

C., Cook, H., Dabbelt, D., Hauser, J., Izraelevitz, A., et al. The rocket

chip generator. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2016-17 4 (2016), 6–2.

[4] Costan, V., and Devadas, S. Intel SGX explained. Tech. rep., Cryptology ePrint

Archive, Report 086, 2016.

[5] Holdings, A. Arm security technology: Building a secure system using trustzone

technology, 2009.

[6] Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D.,Wilkerson, C., Lai, K., and

Mutlu, O. Flipping bits in memory without accessing them: An experimental

study of dram disturbance errors. SIGARCH Computer Architecture News (2014).
[7] Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., and Song, D. Keystone: An

open framework for architecting trusted execution environments. In Proceedings
of the Fifteenth European Conference on Computer Systems (2020), pp. 1–16.

[8] Lehman, T. S., Hilton, A. D., and Lee, B. C. PoisonIvy: Safe speculation for

secure memory. In International Symposium on Microarchitecture (MICRO) (2016).
[9] Lehman, T. S., Hilton, A. D., and Lee, B. C. MAPS: Understanding metadata

access patterns in secure memory. In International Symposium on Performance
Analysis of Systems and Software (ISPASS) (2018).

[10] Lie, D., Chandramohan, T., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J.,

and Horowitz, M. Architectural support for copy and tamper resistant software.

SIGPLAN Notices (2000).
[11] Rogers, B., Chhabra, S., Prvulovic, M., and Solihin, Y. Using address inde-

pendent seed encryption and Bonsai Merkle trees to make secure processors

OS- and performance-friendly. In International Symposium on Microarchitecture
(MICRO) (2007).

[12] Rogers, B., Prvulovic, M., and Solihin, Y. Efficient data protection for dis-

tributed shared memory multiprocessors. In International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2006).

[13] Rogers, B., Yan, C., Chhabra, S., Prvulovic, M., and Solihin, Y. Single-

level integrity and confidentiality protection for distributed shared memory

multiprocessors. In International Symposium on High Performance Computer
Architecture (HPCA) (2008).

[14] Saileshwar, G., Nair, P. J., Ramrakhyani, P., Elsasser, W., andQureshi, M. K.

Synergy: Rethinking secure-memory design for error-correcting memories. In

International Symposium on High Performance Computer Architecture (HPCA)
(2018).

[15] Shi, W., Lee, H.-H. S., Ghosh, M., and Lu, C. Architecture support for high speed

protection of memory integrity and confidentiality in multiprocessor systems.

In International Conference on Parallel Architectures and Compilation Techniques
(PACT) (2004).

[16] Suh, G. E., Clarke, D., Gassend, B., Van Dijk, M., and Devadas, S. AEGIS:

Architecture for tamper-evident and tamper-resistant processing. In International
Conference on Supercomputing (ICS) (2003).

[17] Thomas, S., Workneh, K., Ishimwe, A.-T., McKevitt, Z., Curlin, P., Bahar,

R. I., Izraelevitz, J., and Lehman, T. Baobab merkle tree for efficient secure

memory. IEEE Computer Architecture Letters (2024).
[18] Thomas, S., Workneh, K., McCarty, J., Izraelevitz, J., Lehman, T., and Bahar,

R. I. A midsummer night’s tree: Efficient and high performance secure scm. In

International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2024), pp. 22–37.

[19] Zhao, J., Korpan, B., Gonzalez, A., and Asanovic, K. Sonicboom: The 3rd

generation berkeley out-of-order machine.


	Abstract
	1 Introduction
	2 Background
	3 System Design
	3.1 The Aggregated Extended PMP Table
	3.2 The Memory Encryption Engine
	3.3 Modifications to the Security Monitor

	4 Prototype and Future Experimentation
	5 Conclusions and Future Work
	References

