
Virgo: Cluster-level Matrix Unit Integration in GPUs
for Scalability and Energy Efficiency

Hansung Kim∗, Ruohan Yan∗, Joshua You, Tieliang Vamber Yang, Yakun Sophia Shao
University of California, Berkeley

{hansung_kim,yrh,jyou12,vamber,ysshao}@berkeley.edu

Abstract
Modern GPUs incorporate specialized matrix units such as
Tensor Cores to accelerate GEMM operations central to deep
learning workloads. However, existing matrix unit designs
are tightly coupled to the SIMT core, limiting the size and
energy efficiency of the operation due to capacity and band-
width constraints from the register file. Such a limitation
in scalability makes it difficult to simultaneously enhance
compute throughput and improve energy efficiency in GPUs.
To address this challenge, we propose Virgo, a new GPU

microarchitecture that integrates matrix units at the SIMT
core cluster level. By physically disaggregating the matrix
unit from the core, Virgo eliminates scalability constraints
imposed by the core microarchitecture. Consequently, Virgo
enlarges the granularity of operation which not only im-
proves data reuse, but also reduces the number of instruc-
tions processed in the core. This decreases energy consump-
tion within the core pipeline, thereby improving the system-
level energy efficiency. Our evaluations with synthesized
RTL demonstrate that Virgo achieves up to 66.3% reduction
in active power and 77.2% reduction in on-chip energy con-
sumption compared to the baseline core-coupled design.

1 Introduction
In recent years, the computational capability of GPUs has
surged at an unprecedented rate, driven by the demand of
large-scale deep learning applications such as large language
models [7, 15, 30]. To meet the demands, modern GPUs have
incorporated specialized hardware units such as NVIDIA
Tensor Cores [9] and AMD Matrix Cores [1] to significantly
accelerate matrix operations prevalent in the applications.

As the demand for compute capabilities continue to grow,
so has the scale of integration of matrix units: the FLOPS
achieved by Tensor Cores has increased eight-fold from
Volta to Hopper in five years [9, 12]. Beyond FLOPS, power
and energy have become increasingly important for mod-
ern GPU workloads. Deep learning applications on GPUs
are known to be not only energy-intensive [19], but also
power-constrained, especially in datacenters [6, 24–26, 38].

However, it is increasingly challenging to simultaneously
meet the demand for both higher FLOPS and energy effi-
ciency, due to the tight coupling between the matrix unit and
the GPU SIMT core. Matrix units are typically integrated into

∗ These authors contributed equally to this work.

Tensor Core

Register File

FPU

L1 $ Warps

FPU ALU

ALU

SIMT Core

Cluster

RegF

SIMT Core

RegF

SIMT Core

RegF

SIMT Core

Shared
Memory MatrixMatrixMatrix

TC

TC

TC

Virgo Cluster

RegFile

SIMT Core

SIMT Core

SIMT Core

SIMT Core

Shared
Memory

Matrix

Matrix

Matrix Data

Matrix Unit

PE
Array

Accumulator Memory

(a) GPU Cluster with
 Tensor Cores

(b) GPU Cluster with
 Disaggregated Matrix Unit

RegFile

RegFile

RegFile

Shared LLC Shared LLC

Figure 1. Overview of (a) today’s GPU architecture with
tightly coupled integration of Tensor Cores (TC), compared
to (b) Virgo’s cluster-level integration of matrix units.
the core pipeline as specialized functional units, receiving
data through the register file via the standard instruction
datapath. This tightly-coupled integration limits the oper-
ation size due to the capacity and bandwidth constraints
of the register file, with tile sizes such as 16×8×16 [29, 32].
Such a small granularity of operation requires processing a
large number of instructions in the core pipeline, consuming
substantial energy and power in instruction decoding and
scheduling, rather than in actual computation.
To address these challenges, we propose Virgo, a novel

GPU architecture that integrates dedicated matrix units at
the cluster level (Figure 1). The cornerstone of Virgo is the
physical disaggregation of the matrix unit from the core mi-
croarchitecture, thereby eliminating scalability constraints.
As a result, Virgo enables not only to flexibly increase the op-
eration granularity at the hardware level, but also to reduce
the number of instructions processed by the core, lowering
the overall system-level energy. Our key contributions are:

• We propose a novel cluster-level matrix unit integra-
tion for GPUs that enhances scalability and energy
efficiency by disaggregating the accelerator from core.

• We fully implement GPU designs featuring both the
proposed cluster-level and the baseline core-coupled
integration in synthesizable RTL, as well as the soft-
ware programming interface. The entire Virgo design
will be made available as open source.

• We demonstrate that Virgo, synthesized using a com-
mercial 16nm process, improves active on-chip power
consumption by 66.3% and energy by 77.2%, compared
to the core-coupled baseline.

1

GPU V100 A100 H100

Architecture Volta Ampere Hopper
Tensor FP16 TFLOPS 1x 2.5x 7.9x
CUDA FP32 TFLOPS 1x 1.2x 4.3x
of Tensor Cores 1x 0.7x 0.8x

MACs in 1 Tensor Core 64 256 473

Registers per thread (max. 255) 224 221 168
Warp occupancy 12.5% 10.0% 14.1%

Table 1. Scaling trends of the compute capabilities of
NVIDIA datacenter GPUs across generations, and their oc-
cupancy characterization of CUTLASS GEMM kernels.

2 Background and Motivation
This section provides an overview of the GPU and Tensor
Core microarchitectures, highlighting the scalability and
efficiency limitations of the current Tensor Core integration.

2.1 GPU Cluster Microarchitecture
Figure 1(a) shows the GPU microarchitecture featuring clus-
ters of SIMT cores connected to a shared last-level cache. A
cluster houses multiple SIMT cores interconnected to the
shared memory, a software-managed scratchpad.

The clustered organization of GPU cores offer a key benefit
of increased data sharing across threads. With more cores in-
terconnected to the shared memory via the cluster, a greater
number of threads can share data through the memory. This
is especially important for DNNworkloads with large GEMM
operations, which make extensive use of the shared mem-
ory for tiling and data re-use. Cluster-based architecture is
widely adopted in the industry, known as Streaming Multi-
processors in NVIDIA [12], Compute Units in AMD CDNA [1]
and 𝑋 𝑒 -cores in Intel 𝑋 𝑒 -HPG architecture [20].

2.2 State-of-the-art Tensor Core Integration
To meet the rapidly increasing compute demand of deep
learning applications, NVIDIA introduced dedicated matrix
units known as Tensor Cores in the Volta architecture [9].
Tensor Core consists of multiple SIMD-parallel dot prod-
uct units designed for high-throughput multiply-add oper-
ations [27]. As shown in Figure 1(a), Tensor Core receives
matrix operands directly through the register file, essentially
being a specialized execution unit tightly coupled into the
pipeline of the SIMT core. Notably, as Table 1 shows, Tensor
Core has been rapidly growing in its compute capability, not
as in the total number of instances, but rather as in the size of
each individual instance [9, 10, 12]. This trend underscores
the need to ensure scalability of integrating larger-scale ma-
trix units for future generations of GPUs.

2.3 Limitations of the Core-Coupled Approach
However, the tightly core-coupled nature of the Tensor Core
design poses significant challenges in scalability. First, mod-
ern GEMM kernels generate high register pressure as they

require extensive use of register file space to store multiple
input and accumulator matrix tiles [21]. As a result, this leads
to decreased kernel occupancy and frequent register spills in
Tensor Core-accelerated GEMM kernels [5, 33, 35–37]. Our
characterization of CUTLASS confirms this, where the regis-
ter usage per thread is very high, leading to low occupancy
(Table 1). While occupancy does not always impact perfor-
mance, it underlines the challenge in further scaling up the
size of matrix units given the current capacity constraints.
INTERPRET [23] and Duplo [22] attempt to alleviate this
constraint by reducing duplicated data in the register file.

Furthermore, tight coupling to the register file imposes not
only capacity, but also bandwidth constraints. The available
register file bandwidth is exhausted during Tensor Core op-
erations in Volta [27]. To scale up operation size, an increase
in register file bandwidth is necessary to accommodate the
larger operand data, posing significant design challenges.

Due to such constraints, core-coupledmatrix units support
fine-grained operations. For example, NVIDIA Tensor Cores
support tile sizes of 16×8×16 [13]; AMD CDNA2 Matrix
Cores support 16×16×16 and 32×32×8 [29]. Such small tile
sizes require processing a large number of instructions to
complete the entire GEMM. This results in significant energy
expenditure in hardware beyond the matrix unit itself, such
as the register file, instruction issue, and warp scheduling.

2.4 Recent Advances and Remaining Challenges
The Hopper Tensor Core addresses register pressure by in-
troducing the new wgmma instruction, which can read matrix
operands directly from shared memory, reducing reliance
on the register file [12, 25]. This new method of operand
delivery obviates the need to store the input matrix in the
register file, alleviating the scalability limitation.

However, the Hopper Tensor Core does not fully solve the
register pressure issue, and energy efficiency remains a con-
cern. The wgmma instruction still requires storing the result
matrix back to the register file [13]; register pressure remains
significant (Table 1). Additionally, the Tensor Core is still
tightly bound to the core [12, 25], preventing data sharing
between units. This limitation restricts data reuse compared
to a large unified design, reducing energy efficiency.

Virgo addresses the scalability and energy efficiency chal-
lenges by completely disaggregating the matrix unit from
the cores, establishing it as a separate instance at the clus-
ter level. To the best of our knowledge, Virgo is the first to
integrate a matrix engine at this level. Virgo’s matrix unit,
drawing operand directly from shared memory and storing
results in its own accumulator memory, bypasses the regis-
ter file completely, eliminating the capacity and bandwidth
constraints. Moreover, because the hardware can operate
on larger matrix operands, the granularity of operation in-
creases, reducing the number of instructions in the core and
thereby cutting down power and energy consumption.

2

Vortex SIMT Core

Tensor
Core

In Flight

In Flight

Coalescer
ALU FPU

ALU FPU

Register
File

DPU

DPU

DPU

Load/Store
Unit

Fetch &
Scheduler

L1 Inst.
Cache

L1 Data
Cache

L0 L1 L2 L3

Vortex SIMT Core GemminiShared
Memory

Tensor
Core

RF

Lane

Lane

Lane

Lane

DPU

DPU

DPU

Load/
Store
Unit

Fetch &
Sched.

Coalescer

L1
I-Cache

L1
D-Cache

DRAM

L2
Cache

Bank 0

Bank 1

Bank 2

Bank 3

DMA

Accumulator
Memory

Coarse-
Grain FSM

Scratchpad
Systolic
Array

Virgo
Cluster

Main Memory Traffic

Shared Memory Traffic

DMA Traffic

Figure 2.Microarchitecture of a Virgo cluster. The Gemmini-
based matrix unit is disaggregated from the SIMT cores into a
separate unit, being supplied its operand through the shared
memory. Dashed lines indicate optionally instantiated mod-
ules for evaluation, such as the core-coupled Tensor Core.

3 Virgo Microarchitecture
Virgo aims to improve scalability and energy efficiency by
disaggregating the matrix unit from the core. We discuss
the key components for realizing this design: (1) a command
interface through which the core and the matrix unit can
communicate, (2) a shared memory interconnect that effi-
ciently handles concurrent accesses from the core and the
matrix unit, (3) efficient matrix data movement via a dedi-
cated DMA engine, and (4) a synchronization mechanism.

We first mention key open-source hardware we leverage
to realize our design at the RTL. First, we use Vortex [34], an
open-source GPGPU implementation that enables full stack
development of GPU hardware and software in the RISC-V
ISA. Second, we use Gemmini [17], a Chisel-based systolic
array generator, to generate the matrix unit for Virgo1.

3.1 Command Interface to the Matrix Unit
We facilitate the cluster-local memory interconnect to estab-
lish an efficient MMIO-based command interface between
the core and the matrix unit, without the need to modify
the Vortex RISC-V ISA. Specifically, we replace the RoCC
interface [3] of Gemmini with a new MMIO interface. To
perform a matmul operation, the core writes to a control
register mapped to the shared memory address space, which
triggers the Gemmini unit to retrieve matrix operands from
the shared memory, iterate through the 𝑖/ 𝑗/𝑘 dimensions,
and compute a single 64×64×64 GEMM tile via the systolic
array. To synchronize upon completion, a control register
exposes the busy signal of the matrix unit which the core
polls in a loop at the cluster-wide barrier.
1Using Vortex and Gemmini to realize cluster-level integration motivates
the name Virgo.

3.2 Memory System
Key challenges of Virgo’s memory system includes handling
concurrent, heterogeneous accesses to the shared memory
from both the core and the matrix unit, and achieving high
throughput in matrix data delivery from the global memory.

3.2.1 Sharedmemory interconnect. The SIMT lanes of a
Vortex core issues 32-bit word-sized memory accesses, while
the Gemmini-based matrix unit makes much wider accesses
to supply the n×n systolic array. Moreover, the core and
the matrix unit frequently perform opposite read and write
operations in a producer-consumer relationship as discussed
in Section 4.3.2. To tackle these challenges, we choose to:

• Support for both wide/narrow requests.Gemmini’s wide
memory requests are split intoword-sized sub-requests
distributed across the SRAM banks. This allows the
SRAM banks to be able to serve both narrow requests
from the SIMT lanes and wide requests from the ma-
trix unit with minimal bank conflicts.

• Two-dimensional banking. The shared memory SRAM
is banked not only horizontally in word sizes, but also
vertically in line sizes to allow bank-level parallelism
for both SIMT core requests and Gemmini requests.

• Separate read and write channels. To efficiently support
concurrent read/write accesses from the core and the
matrix unit, we use separate memory channels for
read and write requests.

Wemake extensive use of TileLink [8] and Diplomacy [31],
enabling a highly parameterized design for different number
of cores, matrix units, and memory widths in the cluster.

3.2.2 Efficient DataMovement with DMA. We find that
using regular loads and stores in the SIMT core for moving
matrix data from global to sharedmemory significantly limits
the matrix unit utilization (Table 2), due to both address
computation overhead and low instruction throughput of
the Vortex core. We therefore incorporate a programmable
DMA engine to facilitate efficient data move of the matrix tile
between the global memory and shared memory, as depicted
in Figure 2. Note that the DMA can also be incorporated to
the baseline core-coupled design, which we also evaluate in
order to model an Ampere-like design that features both the
Tensor Core and an asynchronous data copy engine [11].

3.3 Cluster-wide Synchronization
As will be discussed in Section 4.2, the SIMT cores in a clus-
ter collaborate together to move matrix data, or do post-
processing computation on the result from the unit. This
requires an efficient synchronization mechanism across cores
in the same cluster. To this end, we design a synchronizer
module that interfaces with the warp scheduler of the cores
to synchronize the progress of warps cluster-wide. We reuse
Vortex’s vx_bar instruction to allow the programmer to spec-
ify which warps participate in the cluster-wide barriers.

3

GEMM + Accumulate (k)

Activate
previous (m,n) Tile Activate

Store GEMM Result

Store Activated Result

L2→SMEM(k+1)

repeat K times

DMA

Matrix Unit

SIMT Cores all warps in thread block

Virgo: SIMT+Cluster Matrix Unit

Store ResultL2→SMEM(0)

L2→SMEM(0)

SMEM→RF Elem-wiseGEMM

L2→SMEM(k+1)

repeat K times

DMA

SIMT Cores,
with Tensor Cores

fence +
barrier

fence +
barrier

SIMT+Tensor Cores

warp 0

warp 1

warp 3
warp 2

Figure 3. Asynchronous execution scheme of the matrix
unit and SIMT cores in Virgo during a GEMM operation,
compared to the Tensor Core-based design.

4 Virgo Programming Model
As a result of increased scalability, Virgo’s cluster-level ma-
trix unit operates on larger tile sizes, which results in a
longer operation latency. While SIMT cores employ warp
multithreading to hide the latency of common instruction op-
erations, multithreading alone is not sufficient to completely
hide the latency of matrix operations. Therefore, Virgo pro-
vides an asynchronous programming interface to allow the
programmer to maximally utilize compute resources in both
the core and the matrix unit.

4.1 Asynchronous Programming of Matrix Unit
As discussed in Section 3.1, the Gemmini-based matrix unit
exposes a memory-mapped IO interface to the core. The
MMIO accesses are designed to be non-blocking, which al-
lows the core to start matrix unit execution asynchronously
and then proceed to the next instruction. For instance, after
initiating compute of a tile, the core can then proceed to data
movement of the next tile. This will be detailed in Section 4.3.

Virgo also allows for instantiatingmultiple Gemmini units
at each cluster, in which case Virgo establishes a separate
multipleMMIO interface at a non-overlapping address region
for each unit, along with a unique ID. The programmer can
then fully manage partitioning work onto multiple matrix
units by using the ID as a handle in the kernel.

4.2 Collaborative Execution of Warps
Before or after the matrix unit executes an operation, the
matrix elements are re-mapped to the SIMT threads in the
core for pre- or post-processing, such as data movement
to off-chip memory or element-wise activations in a DNN.
Because Virgo’s matrix unit operates on a larger tile size
than the core-coupled designs, multiple warps collaborate to
participate in a single matrix operation, depicted in Figure 3.
This collaborative execution scheme necessitates the cluster-
wide synchronization mechanism described in Section 3.3.

4.3 Mapping to the GEMM Kernel
We now describe how the the aforementioned mechanisms
can be utilized to implement an optimized GEMM kernel.

4.3.1 Thread block tiling. Virgo builds upon the well-
established multi-level tiling scheme of GEMM kernels on
GPUs [21]. A key difference is that while Tensor Cores com-
pute warp tiles, Virgo accelerates the entire thread block tile
in hardware. Each thread block, spatially partitioned across
the (M,N) output space, iterates over the inner (K) dimen-
sion in a temporal loop, as in Figure 3. As the loop iterates,
the Gemmini unit accumulates partial sum data onto its pri-
vate accumulator memory. Multiple thread blocks compute
multiple (M,N) output tiles in parallel.

4.3.2 Software pipelining and double buffering. Im-
portantly, the Virgo-optimized GEMM kernel employs soft-
ware pipelining which is enabled by the asynchronous pro-
gramming interface of the matrix unit. As shown in Figure 3,
while the matrix unit is computing a tile along the K dimen-
sion consisting a consumer pipeline, either the DMA unit or
a group of SIMT core warps collaboratively fetch the next
input tile along the K dimension from the global memory
to the shared memory, consisting the producer pipeline. An-
other set of SIMT core warps can collaborate to form an
additional consumer pipe that computes the activation func-
tion on a previous result tile. Because both the producer
and consumer pipes run in parallel, the tile data are double-
buffered in the shared memory. This mechanism allows all of
the SIMT core, the matrix unit and the DMA to be maximally
utilized throughout the kernel.

5 Methodology
5.1 Implementation
We use the Chipyard SoC generator framework [2] to inte-
grate all hardware components into a system-on-chip.
Vortex SIMT Cores. We derive the SIMT core and L1

cache from Vortex and integrate them into the Chipyard
SoC. We make several improvements to the RTL including
a memory coalescer, memory store fences, and optimizing
the warp scheduler. We find these changes are necessary to
allow us to focus on bottlenecks that pertain to the different
integration methods of the matrix unit.

Gemmini.We make extensive modifications to Gemmini,
detailed in Sections 3.1 and 3.2.1.

Tensor Cores. To faithfully model the baseline GPU with
core-coupled matrix units, we closely implement in RTL the
microarchitecture of Volta Tensor Core proposed in [27],
whose timing behavior is correlated to the NVIDIA GPU. To
account for the fewer SIMT lanes in our Vortex configuration
(8) than in Volta (32), we instantiate a single octet instead of
four [27]. In addition, since the Vortex core lacks support for
FP16, we halve the K dimension to fit the FP32 operand tile in
the available register file bandwidth of 1.5kbits/s. As a result,

4

256×256×256 128×512×512 512×512×512
Cycle %Util Cycle %Util Cycle %Util

TC 726k 36.1 1450k 36.2 5.79M 36.2
TC + DMA 458k 57.2 832k 63.0 3.34M 62.7

Virgo 540k 48.5 941k 55.7 3.71M 56.5
Virgo + DMA 310k 84.5 583k 90.0 2.30M 91.0

Table 2. Execution time and % utilization of theMAC units in
Virgo and baseline core-coupled Tensor Core designs (“TC”)
for GEMM kernels of three different dimensions.

the operation size of a wmma instruction is (m,n,k)=(8,8,8),
scaled down from (16,16,16) in Volta. We use 0x7B opcode
reserved in the ISA for wmma instruction.
Through microbenchmarks, we verify that our Tensor

Core implementation achieves identical timing behavior of
2 cycles per operation as in Volta, with identical compute
throughput of 512bits (= 4×4×2 FP16 = 4×2×2 FP32) per octet
per cycle. Both Tensor Core and Gemmini use HardFloat [18]
floating point units for fair area/power comparison.

5.2 Experiments
Configuration. Both Virgo and core-coupled baseline de-
signs are configured to 1 cluster with 4 cores, each with 8
threads/8 warps. Shared memory is 64KB. Gemmini is config-
ured to 8×8 systolic array with 16KB accumulator memory.
The Gemmini unit has the same number of MACs (64) as the
4 Tensor Cores in the baseline design for fair comparison.

Measurement.We synthesize the design using a commer-
cial 16nm process, and use Cadence Joules to measure power
from RTL simulation. The Virgo design consumes 3.6% larger
SoC area than the core-coupled design at 400MHz.
For all measurements, we discuss active power, obtained

by subtracting the power of a fully idle design. We find this is
necessary for meaningful discussion, as otherwise the SIMT
core power is unrealistically high even at idle, possibly due to
absence of clock gating. By discussing active power, we are
able to distinguish the power implications that arise from our
design choices from those that depend on implementation.

6 Evaluation
6.1 GEMM Kernels
We first evaluate GEMM kernels, a fundamental workload
that underlies modern deep learning applications on the
GPU. The kernels are written separately for the Virgo and
core-coupled design with bespoke optimizations, including
double-buffering, warp specialization and persistent threads [21].

6.1.1 Performance&Utilization. Table 2 lists cycle count
and MAC hardware utilization across three GEMM dimen-
sions. Virgo shows higher hardware utilizations compared to
the core-coupled Tensor Cores across all GEMM dimensions,
both with or without DMA. The higher utilization of Virgo is
mainly attributed to a coarser unit of operation of the matrix
unit, compared to the much finer-grained instructions for

0

100

200

So
C

Ac
tiv

e
Po

we
r (

m
W

)

Tensor Core
Tensor Core + DMA

Virgo
Virgo + DMA

0

1000

2000

So
C

Ac
tiv

e
En

er
gy

 (u
J)

GEMM 512x512x512

Figure 4. Active power and energy comparison between
Virgo and the baseline Tensor Core design, with and without
incorporation of DMA.

0 50 100 150 200 250
SoC Active Power Breakdown (mW)

Virgo

Tensor Core
+ DMA

Tensor Core
L2 Cache
L1 Cache
SharedMem
Vortex Core: Issue
Vortex Core: ALU
Vortex Core: LSU
Vortex Core: Other
Matrix Unit
DMA & Other

Figure 5. Active power breakdown by SoC components.
The core active power is reduced significantly as a result of
reduced instruction processing in Virgo. Matrix unit power
is higher in Virgo due to higher MAC utilization.

the Tensor Core. As a result, the Tensor Core utilization is
constrained by the instruction throughput available from
the SIMT core. We note that the utilization numbers for the
core-coupled design, although lower than Virgo, remains
within range of what is reported in other works [15, 36].

For both Virgo and core-coupled designs, DMA appears
to be critical for high utilization. Without DMA, the kernel
relies on load/store instructions for data delivery with insuf-
ficient throughput limited by instruction issue rate, resulting
in matrix units being starved for operand data.

6.1.2 GEMMPower&Energy. In Figure 4we show a side-
by-side comparison between the active power usage of Virgo
and core-coupled Tensor Core based designs. Comparing
both designs with DMA, Virgo reduces active power by 57.4%.
Combined with higher utilization of the matrix unit, energy
reduction is even higher, at 70.7%.
Larger operation granularity saves core power. We

give detailed power breakdowns at the SoC (Figure 5) and
the matrix unit (Figure 6). Importantly, the most reduction
in power happens in the core rather than in the matrix unit.
Since the core-coupled Tensor Core has a much finer gran-
ularity of operation, it requires the core to process a larger
volume of instructions, consuming significant power in the
issue pipeline stage and increasing system power. On the

5

Tensor Core

Dot-product Unit
Operands Buffer
Result Buffer
Control

0 100 200 300 400 500
Matrix Unit Active Energy Breakdown (uJ)

Virgo

Systolic FPUs
Systolic Regs
Accum. Mem
Smem interface
Control

Figure 6. Active energy breakdown of the matrix unit for
the 512×512×512 GEMM kernel.

contrary, Virgo achieves a much lower system power con-
sumption by coarsening the granularity of operation and
minimizing the incidental power consumed outside of the
matrix unit. The core pipeline activity measurement sup-
ports this argument: The number of retired instructions in
Virgo is 8.2% of that of the Tensor Core design.

Matrix unit energy. Figure 6 shows a detailed breakdown
of energy consumption inside the matrix units. Although
the two designs consume similar amounts of energy in the
floating-point units, Virgo uses less energy in its registers.
Tensor Core requires FIFO queues with sufficient depth to
buffer operand and result data and absorb backpressure from
the core pipeline to perform well. Combined with the control
logic to manage the buffers and PE stalls, the in-unit energy
is higher. Moreover, Virgo’s matrix unit is a systolic array
design unified at the cluster level, unlike Tensor Cores, which
are dot-product units distributed across SIMT cores. This
enables Virgo to facilitate better data reuse and use less
energy from register accesses. However, Virgomakes use of a
sophisticated sharedmem interface and private accumulator
memory, offsetting some of the energy savings.

We note that the energy reduction in the SIMT cores that
we discussed earlier is a greater factor than that in the matrix
units. The choice of systolic array for the matrix unit is not
crucial to achieving Virgo’s energy efficiency.

6.2 Fused GEMM and Activation Kernel
Modern deep learning workloads incorporate kernel fusion
to minimize off-chip memory accesses [14, 16]. Virgo enables
efficient mapping of fused kernels with concurrent execution
of the matrix unit and the SIMT core. We implement a fused
kernel where the matrix unit and SIMT floating-point units
are software-pipelined to execute GEMM and element-wise
Swish activations [28] respectively, through asynchronous
programming for Virgo, and warp-specialization for Tensor
Core [4]. Figure 7 shows the loss in MAC utilization is much
smaller for Virgo than the core-coupled design, compared
to executing GEMM only. In Virgo, matrix unit execution is
asynchronous, leaving the warps in the core to participate
in non-matrix work without stalls. However, Tensor Core

Tensor Core
+ DMA

Virgo
+ DMA

0

25

50

75

100

M
AC

 U
tili

za
tio

n
(%

)

GEMM only
GEMM + Swish

0

100

200

So
C

Ac
tiv

e
Po

we
r (

m
W

)

Tensor Core + DMA
Virgo + DMA

0

2000

4000

So
C

Ac
tiv

e
En

er
gy

 (u
J)

GEMM + Swish

Figure 7. Left: MAC utilization of the fused GEMM 512×512
and activation kernel, compared to GEMM-only. Right: Ac-
tive power and energy of the fused kernel.

instructions are synchronous, necessitating warp special-
ization to overlap matrix and non-matrix operations. This
results in fewer warps participating in each operation, and
thus overall lower hardware utilization.

6.3 Multiple Heterogeneous Matrix Units
The architectural disaggregation of the matrix unit at the
cluster level enables a new design space in Virgo, where
multiple matrix units with heterogeneous configurations are
integrated to the cluster. We demonstrate this by instanti-
ating two matrix units with different systolic dimensions:
8×8 and 4×4, and executing two different sized GEMMs on
the units in the kernel: 256×256×256 and 128×128×256. We
verify that compared to the case where both GEMMs run
serially on a single 8×8 unit, the hardware utilization of the
two matrix units (59.5%) is consistent with the utilization
of the single matrix unit (59.7%). This indicates that Virgo
cluster’s memory architecture scales well to more matrix
units, demonstrating the scalability of the design.

7 Conclusion
We present Virgo, a novel GPU architecture that integrates
matrix units at the cluster level. Virgo solves the scalability
and energy efficiency challenges faced by the core-coupled
designs in current GPUs, by physically disaggregating the
matrix unit from the core into a separate unit at the cluster.
This disaggregation obviates the need to deliver operand
data solely from the register file, eliminating capacity and
bandwidth constraints. As a result, Virgo enables larger-scale
matrix operations at hardware, which not only improves data
reuse, but also reduces the number of instructions processed
in the core, improving overall system-level energy efficiency.
We implement our design in RTL by leveraging open-

source RISC-V infrastructures such as Vortex and Gemmini,
and demonstrate significant improvement in power and en-
ergy efficiency. We also show new ways to map applications
with Virgo, enabling concurrent and collaborative execution
between the matrix unit and the SIMT core, or integrating
multiple matrix units with different configurations.

6

References
[1] AMD. Amd cdna 2 architecture. https://www.amd.com/content/

dam/amd/en/documents/instinct-business-docs/white-papers/amd-
cdna2-white-paper.pdf, 2021.

[2] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, et al. Chipyard: Integrated design, simulation, and
implementation framework for custom socs. IEEE Micro, 40(4):10–21,
2020.

[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt,
John Hauser, Adam Izraelevitz, et al. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17, 4:6–2, 2016.

[4] Michael Bauer, Henry Cook, and Brucek Khailany. Cudadma: optimiz-
ing gpu memory bandwidth via warp specialization. In Proceedings
of 2011 international conference for high performance computing, net-
working, storage and analysis, pages 1–11, 2011.

[5] Ganesh Bikshandi and Jay Shah. A case study in cuda kernel fusion:
Implementing flashattention-2 on nvidia hopper architecture using
the cutlass library. arXiv preprint arXiv:2312.11918, 2023.

[6] Robert A Bridges, Neena Imam, and Tiffany M Mintz. Understanding
gpu power: A survey of profiling, modeling, and simulation methods.
ACM Computing Surveys (CSUR), 49(3):1–27, 2016.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Henry Cook. Productive Design of Extensible On-Chip Memory Hi-
erarchies. PhD thesis, EECS Department, University of California,
Berkeley, May 2016.

[9] NVIDIA Corporation. Nvidia tesla v100 gpu architecture.
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf, 2017.

[10] NVIDIA Corporation. Nvidia a100 tensor core gpu datasheet.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-
web.pdf, 2022.

[11] NVIDIA Corporation. Nvidia ampere gpu architecture tuning guide.
https://docs.nvidia.com/cuda/pdf/Ampere_Tuning_Guide.pdf, 2024.

[12] NVIDIA Corporation. Nvidia h100 tensor core gpu datasheet.
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-
gpu-datasheet, 2024.

[13] NVIDIA Corporation. Parallel thread execution isa version 8.5. https:
//docs.nvidia.com/cuda/parallel-thread-execution/index.html, 2024.

[14] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. Flashattention: Fast and memory-efficient exact attention with
io-awareness, 2022.

[15] Michael Davies, Ian McDougall, Selvaraj Anandaraj, Deep Machchhar,
Rithik Jain, and Karthikeyan Sankaralingam. A journey of a 1,000
kernels begins with a single step: A retrospective of deep learning
on gpus. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, pages 20–36, 2024.

[16] Roman Dubtsov, Evarist Fomenko, and Babak Hejazi. New cublas
12.0 features and matrix multiplication performance on nvidia hopper
gpus, 2023. NVIDIA Technical Blog.

[17] Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao,
JohnWright, Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister, et al.
Gemmini: An agile systolic array generator enabling systematic evalu-
ations of deep-learning architectures. arXiv preprint arXiv:1911.09925,
3:25, 2019.

[18] John Hauser. Berkeley hardfloat. http://www.jhauser.us/arithmetic/
HardFloat.html, 2019.

[19] Miro Hodak, Masha Gorkovenko, and Ajay Dholakia. Towards power
efficiency in deep learning on data center hardware. In 2019 IEEE
International Conference on Big Data (Big Data), pages 1814–1820.
IEEE, 2019.

[20] Intel. Introduction to the xe-hpg architecture. https://www.intel.com/
content/www/us/en/developer/articles/technical/introduction-to-
the-xe-hpg-architecture.html, 2022.

[21] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. Cutlass:
Fast linear algebra in cuda c++. NVIDIA Developer Blog, 2017.

[22] Hyeonjin Kim, Sungwoo Ahn, Yunho Oh, Bogil Kim,WonWoo Ro, and
William J Song. Duplo: Lifting redundant memory accesses of deep
neural networks for gpu tensor cores. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 725–737.
IEEE, 2020.

[23] Jae Seok Kwak, Myung Kuk Yoon, Ipoom Jeong, Seunghyun Jin, and
Won Woo Ro. Interpret: Inter-warp register reuse for gpu tensor core.
In 2023 32nd International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 309–319. IEEE, 2023.

[24] Baolin Li, Rohin Arora, Siddharth Samsi, Tirthak Patel, William Ar-
cand, David Bestor, Chansup Byun, Rohan Basu Roy, Bill Bergeron,
John Holodnak, et al. Ai-enabling workloads on large-scale gpu-
accelerated system: Characterization, opportunities, and implications.
In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 1224–1237. IEEE, 2022.

[25] Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xiaowen
Chu. Benchmarking and dissecting the nvidia hopper gpu architecture.
arXiv preprint arXiv:2402.13499, 2024.

[26] Pratyush Patel, Zibo Gong, Syeda Rizvi, Esha Choukse, Pulkit Misra,
Thomas Anderson, and Akshitha Sriraman. Towards improved power
management in cloud gpus. IEEE Computer Architecture Letters,
22(2):141–144, 2023.

[27] Md Aamir Raihan, Negar Goli, and Tor M Aamodt. Modeling deep
learning accelerator enabled gpus. In 2019 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pages
79–92. IEEE, 2019.

[28] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for
activation functions. arXiv preprint arXiv:1710.05941, 2017.

[29] G Schieffer, D Medeiros, J Faj, A Marathe, and I Peng. Characterizing
the performance, power efficiency, and programmability of amdmatrix
cores. Technical report, Lawrence Livermore National Laboratory
(LLNL), Livermore, CA (United States), 2024.

[30] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius
Hobbhahn, and Pablo Villalobos. Compute trends across three eras
of machine learning. In 2022 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2022.

[31] Henry Cook SiFive. Diplomatic design patterns : A tilelink case study.
2017.

[32] Wei Sun, Ang Li, Tong Geng, Sander Stuijk, and Henk Corporaal.
Dissecting tensor cores via microbenchmarks: Latency, throughput
and numeric behaviors. IEEE Transactions on Parallel and Distributed
Systems, 34(1):246–261, 2022.

[33] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang
Bao, and Ninghui Sun. Fast implementation of dgemm on fermi gpu.
In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–11, 2011.

[34] Blaise Tine, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim
Hyesoon. Vortex: Extending the risc-v isa for gpgpu and 3d-graphics.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 754–766, 2021.

[35] Jiajun Wang, Ahmed Khawaja, George Biros, Andreas Gerstlauer, and
Lizy K John. Optimizing gpgpu kernel summation for performance
and energy efficiency. In 2016 45th International Conference on Parallel
Processing Workshops (ICPPW), pages 123–132. IEEE, 2016.

7

https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://docs.nvidia.com/cuda/pdf/Ampere_Tuning_Guide.pdf
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://www.jhauser.us/arithmetic/HardFloat.html
http://www.jhauser.us/arithmetic/HardFloat.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-xe-hpg-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-xe-hpg-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-the-xe-hpg-architecture.html

[36] Da Yan, Wei Wang, and Xiaowen Chu. Demystifying tensor cores to
optimize half-precision matrix multiply. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 634–643.
IEEE, 2020.

[37] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,
and Mingyu Chen. Understanding the gpu microarchitecture to
achieve bare-metal performance tuning. In Proceedings of the 22nd

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 31–43, 2017.

[38] Dan Zhao, Siddharth Samsi, Joseph McDonald, Baolin Li, David Bestor,
Michael Jones, Devesh Tiwari, and Vijay Gadepally. Sustainable super-
computing for ai: Gpu power capping at hpc scale. In Proceedings of
the 2023 ACM Symposium on Cloud Computing, pages 588–596, 2023.

8

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 GPU Cluster Microarchitecture
	2.2 State-of-the-art Tensor Core Integration
	2.3 Limitations of the Core-Coupled Approach
	2.4 Recent Advances and Remaining Challenges

	3 Virgo Microarchitecture
	3.1 Command Interface to the Matrix Unit
	3.2 Memory System
	3.3 Cluster-wide Synchronization

	4 Virgo Programming Model
	4.1 Asynchronous Programming of Matrix Unit
	4.2 Collaborative Execution of Warps
	4.3 Mapping to the GEMM Kernel

	5 Methodology
	5.1 Implementation
	5.2 Experiments

	6 Evaluation
	6.1 GEMM Kernels
	6.2 Fused GEMM and Activation Kernel
	6.3 Multiple Heterogeneous Matrix Units

	7 Conclusion
	References

