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Abstract
The increasing complexity of modern computer architectures de-

mands more effective analysis and visualization techniques to opti-

mize performance and microarchitecture. One such key approach

is pipeline visualization, which offers valuable insights into the

architectural design of processors. Although numerous pipeline

visualization tools have emerged for CPUs, it is remarkable that

research specifically on SIMT pipelines has been overlooked in the

existing research. To bridge this gap, this paper proposes a visu-

alization framework specifically for SIMT pipelines. We describe

the methodology for generating and visualizing the SIMT pipeline

trace and present three case studies including latency hiding, warp

scheduling, and memory coalescing to demonstrate the effective-

ness of our visualization framework. Our visualized pipeline traces

provide insightful observations that align with the quantitative re-

sults, demonstrating the framework’s capability of analyzing SIMT

processors.
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1 Introduction
As performance-demanding applications emerge, general-purposed

GPUs (GPGPUs) have become popular in the high-performance

computing domain. GPGPUs rely on the single-instruction,multiple-

thread (SIMT) execution model, which leverages data parallelism to

deliver flexible computing power while preserving programmability.

Meanwhile, RISC-V [2], an open-source instruction set architecture

(ISA), has been gaining attraction in both academic and industry

realms due to its flexibility and scalability. This versatility has en-

abled innovative research in computer architecture across a wide

range of applications. Building on this momentum, recent studies

[8, 21] have proposed solutions for enabling SIMT execution model

on RISC-V processors. However, these implementations are often

presented at the register transfer level (RTL), providing excessive

details that make it difficult to understand the interaction between

individual instructions and the processor as a whole. In contrast, C-

based simulators [3, 4, 11] are widely used in this scenario, allowing

developers to abstract away low-level details and focus on modeling

processor behavior, thereby enabling more effective performance

analysis and optimization.

To better understand the architectural design of a processor,

pipeline visualization is one of the primary techniques adopted by

CPU developers. Various tools have also been developed to provide

a comprehensive analysis of visualized pipeline trace [22, 5, 17, 7].

Figure 1: Pipeline trace example of RSD processor executing
Dhrystone.

While there exist various simulation frameworks for GPGPU, there

has been a notable absence of research that concentrates on the

development of visualizations for SIMT pipelines.

Fig. 1 illustrates a pipeline trace example, which is generated

by running Dhrystone [23] on a RISC-V out-of-order superscalar

processor, RSD [13]. The figure provides visual insight into various

details, including:

• Superscalar pipeline: Two instructions are executed simul-

taneously at the same stage.

• Out-of-order execution: Instructions are executed out of

program order.

• In-order fetch and retirement: Despite being executed

out-of-order, the instructions are fetched and committed in

the program order.

For SIMT processors, we believe that inspecting the pipeline

trace can also offer valuable insights into execution details, enabling

more effective exploration of architecture and design parameter

space. Therefore, we present a visualization framework in this

paper as part of our ongoing project to develop a RISC-V-based

SIMT processor.

Our in-house cycle-based RISC-V SIMT simulator is capable

of running execution-driven simulations and generating detailed

pipeline traces of every fetched instruction. This allows the develop-

ers to navigate throughout the whole executed program, verifying

the correctness of the design and finding potential performance

bottlenecks under different workloads. Our visualization frame-

work leverages Konata [17], a pipeline visualization tool, as the

GUI front-end for rendering the SIMT pipeline. To the best of our

knowledge, this work is the first visualization framework dedicated

for SIMT pipelines.

2 Related Work
2.1 RISC-V GPGPU
Simty [8] proposed by Collange demonstrates the feasibility of lever-

aging RISC-V, a general-purpose ISA, to achieve microarchitecture-

level SIMT execution. Elsabbagh et al. introduce Vortex GPGPU
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[10], which extends the RISC-V ISA with minimal ISA extension.

The design includes runtime kernel library support so that it re-

quires no compiler modification to execute the SIMT program. Tine

et al. extends the Vortex project[21] in 2021, which enhances the

capability of 3D graphic rendering for RISC-V processor. The de-

sign of Vortex also incorporates high-bandwidth caches to enhance

performance. By supporting the OpenCL framework [19] and in-

tegrating seamlessly with LLVM-based compilation tools, Vortex

possesses a tighter connection with the open-source community,

further enhancing its capabilities as a comprehensive GPGPU re-

search platform.

2.2 GPGPU Simulation Frameworks
In recent studies, several simulation frameworks have been pro-

posed specifically for GPGPU simulation. Beckmann et al. introduce
the AMD gem5 APU simulator and model heterogeneous comput-

ing system in gem5 [4]. GPGPU-Sim [3, 16], proposed by Bakhoda

et al. is a detailed GPGPU simulator that can model how contempo-

rary GPUs execute programs written in CUDA [14] and OpenCL

[19] frameworks. Also, GPGPU-Sim is able to model the power

consumption [12] of the GPGPU system for a better understanding

of power performance. Based on GPGPU-Sim, Khairy et al. propose
Accel-Sim [11], which extensively updated GPGPU-Sim’s perfor-

mance model to increase its level of detail, configurability, and

accuracy. Our previous GPU studies [20] with open-sourced HSAIL

ISA [18] are developed in electronic system level (ESL) methodol-

ogy, which allows developers to explore GPU micro-architecture

toward machine-learning-based applications and verify the design

with a full-system software stack.

2.3 Pipeline Visualization for CPU
Pipeline visualization has become a well-established technique in

the CPU architecture domain, allowing developers to quickly iden-

tify performance bottlenecks and troubleshoot complex system

setups. Weaver et al. present a graphical pipeline viewer [22] that
enables users to efficiently spot areas of inefficiency, zooming in or

out to uncover high-level trends or inspect specific code sequences

to diagnose slow-downs. The state-of-the-art system architecture

simulation platform, gem5 [5], features a text-based viewer for

its out-of-order CPU model. This viewer enables users to visual-

ize the specific stage of an instruction across every clock cycle.

While it is useful for understanding the microarchitecture of the

pipeline, the text-based interface’s rendering limitation makes it

difficult for users to navigate through the entire executed program.

Shioya presents Konata [17], a graphical pipeline visualizer capa-

ble of parsing gem5’s O3PipeView format as well as its native log

format, Kanata. Konata features a user-friendly interface, making

it easier to grasp the execution flow. Additionally, the open and

well-documented log format enables seamless integration with our

own simulator.

3 RISC-V SIMT Architecture and Pipeline
Visualization Framework

Most SIMT instruction sets are essentially scalar, which drives our

GPGPU research to shift focus from HSAIL-based ISA to the more

trendy RISC-V-based ISA. This section introduces our modeled

RISC-V-based SIMT architecture, demonstrates the workflow of

our pipeline visualization framework, and provides guidance on

interpreting the rendered pipeline trace.

3.1 RISC-V-based SIMT Architecture
A challenge for RISC-V ISA in enabling SIMT execution model

is that branch divergence cannot be easily resolved by using na-

tive RISC-V instructions alone. To address this issue, previous

works have proposed solutions such as path tracking with min-

imal PC [8, 9] and immediate post-dominator (IPDOM) stack-based

re-convergence scheme [10, 21]. In this work, we implement the

Inner-Conditional-Statement-First (ICS-First) re-convergence
mechanism in our RISC-V-based SIMT simulator. As proposed in

our prior research on enabling SIMT execution on homogeneous

multi-core system[6], the ICS-First algorithm relies on the com-

piler’s assistance to identify and prioritize inner conditional state-

ments, allowing the outer statement to wait until there are no more

diverging code blocks left for execution.

Figure 2: An example of control divergence.

Fig. 2 demonstrates an example of using the ICS-First algorithm

to handle control flow divergence. Consider a conditional branch

that leads to divergent paths BB_1 and BB_2. 1 The processor starts

by executing BB_0 with all threads enabled. 2 After encountering

the branch instruction, the processor jumps to BB_1with only a sub-
set of threads enabled. Note that a priority adjustment instruction

pair is inserted around the divergent code block (BB_1 and BB_2)
to promote the priority of the diverging threads. 3 In this case,

when the execution reaches BB_3, i.e., the re-convergence point,
the priorities of these threads are lowered and they must pause

until their diverging counterparts complete execution. 4 There-

fore, the execution resumes to BB_2 due to the elevated priority.

5 Finally, all of the threads reach BB_3 and re-converge because

they now share the same priority. To integrate with the ICS-First

re-convergence scheme, we introduce 3 additional instructions to

the original RISC-V ISA, as shown in Table 1.

Table 1: Proposed RISC-V SIMT ISA Extension1.

Instructions Description

fsa.pri.raise Raise the threads’ priority

fsa.pri.lower Lower the threads’ priority

fsa.pri.reset Reset the threads’ priority
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Figure 3: Proposed SIMT pipeline architecture.

Fig. 3 illustrates the architecture of themodeled SIMT core, which

is roughly equivalent to NVIDIA’s Streaming Multiprocessor (SM)

[15] or AMD’s Compute Unit (CU) [1]. The SIMT core features a

dedicated fetch scheduler in the front-end to fetch instructions from

the I-Cache. After an instruction is fetched and decoded, it is sent

to the instruction buffer, awaiting scheduling. The scoreboard logic

is used to identify data dependencies among instructions within the

same warp. The warp scheduler selects a warp instruction accord-

ing to its scheduling policy and issues it to the operand collector

unit, which gathers necessary data from the register file and dis-

patches the instruction to the back-end function units, including

the arithmetic logic unit (ALU), multiplication/division unit (MDU),

and load/store unit (LSU).

3.2 Simulation and Trace Generation for the
SIMT Pipeline

Fig. 4 illustrates the workflow of our simulation and trace gen-

eration for the SIMT pipeline. The process begins by compiling

the SPMD program into a RISC-V binary with our patched LLVM

compiler that supports the ICS-First algorithm. Next, our cycle-

based simulator loads the binary file into memory and initiates the

simulation.

Figure 4: Workflow of proposed visualization framework.

To accurately model the propagation of instructions between

pipeline stages and emit the trace, we encapsulate each fetched

instruction as an object. As the cycle progresses, every instruction

object either 1) remains in its current stage or 2) updates the
architectural state and propagates to the next stage depending
on the status of the pipeline. For instance, a load instruction object

can only progress from the execute stage to the commit stage once it

has completed memory read operations. Once the instruction enters

a new stage, a corresponding log is emitted to inform the pipeline

viewer to render the instruction’s current stage. The emitted logs

1
"fsa" is currently the codename of this project.

are formatted in Kanata log format, which records events such as

fetch, decode, and execute as they occur throughout the pipeline.

3.3 SIMT Pipeline Visualization
The generated log file is then loaded into Konata, the pipeline

viewer, to render the pipeline trace. Upon loading the log file, Konata

displays the serial ID, PC, and mnemonic of each warp instruction

on the left-hand side of the interface. On the right-hand side of the

interface, a detailed pipeline trace for every instruction is rendered.

The rendered pipeline trace is essentially a Gantt chart that illus-

trates the progress of every fetched instruction. Each row of the

trace represents a fetched instruction, while the symbol displayed

in every colored column indicates the pipeline stage currently oc-

cupied by the corresponding instruction at that cycle. The meaning

of the symbol is shown in Table 2 which can be mapped to the

components of the processor pipeline depicted in Fig. 3.

Table 2: Symbols shown in the pipeline trace.

Symbol Description

F1 The fetch request of the instruction is issued

F2 I-cache responds to the instruction fetch request

D The instruction is decoded

Sc The instruction is waiting for scheduling

Is The instruction is scheduled and issued

Oc The instruction is collecting operands

X The instruction is being executed by computing units

Cm The instruction commits architectural changes

123... The extra elapsed cycles in the stage

To accommodate various analysis needs, Fig. 5 shows two avail-

able color schemes for the generated pipeline trace a) Coloring
by warp ID: The color of a pipeline trace is determined by each

instruction’s warp ID. This color scheme is particularly useful to

inspect how different warps’ instructions are scheduled. b) Color-
ing by pipeline stage: In this scheme, different colors are used

for various stages, making it suitable for tracing the execution of

individual instructions throughout the pipeline.

(a) Coloring by warp ID

(b) Coloring by pipeline stage

Figure 5: Two color schemes for visualizing the pipeline.

Additionally, the performance characteristics of a simulated

SIMT core can be evaluated by examining the slope of the pipeline
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trace. A steeper slope indicates that the SIMT pipeline is issuing and

committing instructions more frequently, suggesting efficient exe-

cution of parallel threads and a higher IPC (instructions per cycle).

Conversely, a gentler slope indicates pipeline congestion due to

long-latency instructions. By monitoring the slope, one can gain in-

sights into the local performance characteristics of specific program

segments, facilitating targeted optimization and refinement.

4 Case Studies
In this section, we provide three case studies that illustrate the

effectiveness of our visualization framework in tracing and analyz-

ing the behavior of our RISC-V SIMT processor during execution.

For demonstration, these case studies utilize a mix of real-world

examples, such as an inner product of two vectors, alongside some

synthetic examples to provide comprehensive explorations of our

framework’s capabilities.

4.1 Latency Hiding Through Warp Scheduling
A significant challenge in SIMT architecture lies in the warp sched-

uler’s capability to anticipate and schedule the warp instructions

in a manner that effectively minimizes the latency introduced by

control or data dependencies. In situations where an instruction

relies on the result of a previous long-latency operation, SIMT

architecture could effectively mitigate the latency by scheduling

another independent warp into the back-end pipeline. This is pos-

sible because SIMT processors can accommodate multiple warps

simultaneously, thereby enabling them to maintain high through-

put while minimizing the impact of long-latency instructions. This

approach is also referred to as latency-hiding.

We demonstrate the importance of having a sufficient number

of warps available for selection by the scheduler in the example

illustrated in Fig. 6. Fig. 6a shows a scenario where sufficient warps

are available for scheduling. When the purple-colored warp encoun-

ters intensive data dependencies among long-latency instructions,

the scheduler can effectively alleviate the associated performance

penalty by proactively selecting other warps for execution. How-

ever, if we intentionally restrict the scheduler to only two warps for

selection, as depicted in Fig. 6b, the exposure of latency becomes in-

evitable due to the lack of available independent warps that can be

scheduled during the execution of long-latency instructions. This

ultimately leads to sub-optimal performance.

To further explore the impact of warp counts on performance, we

conduct simulations of three workloads, relu, 2mm, and vecmul on

different core configurations. With the total number of threads held

constant, we vary the number of warp per core and threads perwarp.

The results shown in Fig. 7 indicate that as more warps become

available for scheduling, performance tends to improve accordingly,

which also corresponds to the observation in the visualized pipeline

trace.

4.2 Warp Scheduling Policies
We implement two of the most common scheduling policies in our

cycle-based simulator, Loose Round-Robin (LRR) and Greedy-then-

Oldest (GTO). This enables a comprehensive evaluation of their

effects on the performance of our SIMT architecture. The LRR policy

follows a round-robin schedule for warps, ensuring that each warp

(a) More warps available for scheduling

(b) Less warps available for scheduling

Figure 6: The capability of latency hiding through warp
scheduling.

2T-16W4T-8W8T-4W16T-2W

1

1.5
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2mm

vecmul

Figure 7: IPC results for different core configurations. IPC is
calculated by dividing the total number of committed warp
instructions by the number of elapsed cycles.

makes similar progress. In contrast, the GTO policy prioritizes the

execution of a specific warp until it is blocked by instructions with

long latency, such as memory access instructions. Once blocked,

the scheduler then selects the least recently used warp to issue and

execute.

Fig. 8 facilitates visual analysis of performance hotspots for both

scheduling policies, under identical workloads. The workload in-

volves a load-use-store pattern, characterized by significant delays

during the load and store operations and the data dependency be-

tween the memory access and computations. Fig. 8a shows the

simulation result under the GTO scheduler. The pipeline trace ex-

hibits three primary program hotspots, corresponding to warps 0, 1,
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(a) Using GTO scheduling policy (b) Using LRR scheduling policy

Figure 8: Comparison of hotspot positions under two warp scheduling policies.

(a) Using GTO scheduling policy (b) Using LRR scheduling policy (c) Combining GTO and LRR pipeline trace

Figure 9: The behavior of two different warp scheduling policies.

and subsequently, 2 and 3, which are executing the load-use-store

pattern. The scattered hotspots are a result of GTO’s scheduling

strategy, which prioritizes the execution of a single warp until it

encounters a blocking latency event, allowing each hotspot to de-

velop independently. On the other hand, LRR’s strategy of ensuring

similar progress for each warp results in all warps reaching the

program hotspot at roughly the same time, as shown in Fig. 8b.

Although LRR may offer benefits in the special locality of memory

access, the concurrent occurrence of program hotspots may further

stall the pipeline.

The limitations of LRR scheduling become more apparent in

another workload, where each thread is tasked with loading two

data elements and performing multiplication operations on them.

Since the multiplier resource is limited within the SIMT pipeline,

an excessive number of concurrent requests for multiplication can

lead to congestion in the pipeline. As depicted in Fig. 9a, when GTO

is employed, the long-latency patterns are dispersed throughout

the program’s execution. In contrast, Fig. 9b shows that using LRR

causes congestion to emerge in the execute stage of the pipeline,

leading to decreased performance. We compare the two generated

traces in Fig. 9c, and the result indicates a clear performance ad-

vantage for GTO over LRR in this particular scenario. This finding

highlights that warp scheduling can have a substantial impact on

system performance in specific workloads, emphasizing the impor-

tance of designing an appropriate scheduling strategy for optimal

results.

4.3 Memory Coalescing
Memory coalescing is an optimization technique that allows opti-

mal usage of the memory bandwidth. When parallel threads run

the same instruction and access to consecutive locations in the

memory, the hardware coalesces all memory accesses into a single

consolidated access. In this case study, we demonstrate the fact that

the varying task assignments among threads can have a direct im-

pact on the performance of memory accesses. Consider an example

where we need to perform inner-product on two vectors, 𝐴 and

𝐵, with size 𝑛 on an SIMT processor with total 𝑘 threads. If 𝑛 is a

multiple of 𝑘 , one straightforward task distribution is to assign each

thread the calculation of a partial sum on adjacent data elements

as follows:

𝑝𝑠𝑢𝑚𝑖 =

𝑛/𝑘∑︁
𝑗=0

𝐴𝑖×(𝑛/𝑘 )+𝑗 × 𝐵𝑖×(𝑛/𝑘 )+𝑗 (1)
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(a) Task distribution 1 (b) Task distribution 2

Figure 10: Example of coalescing memory accesses.
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Figure 11: Cycle reduction due to coalesced memory accesses.
The cycle counts of coalesced memory access have been nor-
malized to the cycle counts with uncoalesced memory ac-
cesses.

where 𝑖 represents the thread index. An alternative approach would

involve distributing the calculation according to the following equa-

tion:

𝑝𝑠𝑢𝑚𝑖 =

𝑛/𝑘∑︁
𝑗=0

𝐴 𝑗×𝑘+𝑖 × 𝐵 𝑗×𝑘+𝑖 (2)

In this case, each threadwould process data elements that are spaced

𝑘 apart.

We realize both kinds of task distributions and run the simulation

on our cycle-based simulator. For this example, we set 𝑛 = 3𝑘 . Fig.

10 shows the simulation result. For task distribution 1, as shown in

Fig. 10a, each thread 𝑖 handles data element 3𝑖 + 𝑗 in every iteration

𝑗 , resulting in a memory access pattern of {0, 3, 6, ...} for the first

iteration, {1, 4, 7, ...} for the second, and so on. This pattern results

in a larger memory footprint and potentially diminishes the oppor-

tunity for coalesced memory reads. In contrast, task distribution

2 as illustrated in Fig. 10b shows an improved spatial locality in

accessing memory with lower latency. This is because each thread’s

memory accesses become contiguous within each iteration: {0, 1, 2,

...} for the first iteration, {𝑘 , 𝑘 + 1, 𝑘 + 2, ...} for the second, and so on.
As a result, the contiguous memory accesses are coalesced, leading

to optimized performance. In addition, we run simulations with

different combinations of warp schedulers and core configurations

to see the effects on the coalesced memory accesses. The results

shown in Fig. 11 demonstrate that coalesced memory accesses con-

sistently run in fewer cycles than uncoalesced memory accesses,

which aligns to our observation in the visualized pipeline trace.

5 Conclusion and Future Work
This paper introduces a pipeline visualization framework that helps

analyze and verify the behavior of our RISC-V SIMT processor. Our

cycle-based simulator is capable of generating detailed pipeline

traces for every individual instruction. Leveraging the Konata [17]

pipeline viewer, we can visually observe the behavior of the SIMT

pipeline and perform various analyses. Furthermore, we also present

three case studies to demonstrate the feasibility of using the visual-

ization framework in highlighting key characteristics of an SIMT

pipeline.

As our research group is currently developing a RISC-V-based

GPGPU system, we believe that the proposed pipeline visualization

framework would be highly beneficial to uncover potential design

vulnerabilities and optimize the overall performance. When we

progress to the RTL implementation of the processor, the visualized

pipeline trace can also serve as a reference model. By comparing

the RTL waveform and the trace, we can efficiently validate the

design and ensure its correctness. Furthermore, future research

endeavors may focus on building a more comprehensive visualiza-

tion framework for state-of-the-art GPGPU simulation tools like

GPGPU-Sim [3] and Accel-Sim [11]. This would further expand the

applicability of our pipeline visualization framework across various

GPGPU architecture simulation domains.
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