
Advancing Cloud Computing Capabilities on gem5 by
Implementing the RISC-V Hypervisor Extension

George-Marios Fragkoulis Nikos Karystinos George Papadimitriou Dimitris Gizopoulos
University of Athens, Greece

{gm.fragkoulis, n.karystinos, georgepap, dgizop}@di.uoa.gr

Abstract
This paper presents the implementation and evaluation of
the H (hypervisor) extension for the RISC-V instruction set
architecture (ISA) on top of the gem5 microarchitectural
simulator. The RISC-V ISA, known for its simplicity and
modularity, has seen widespread adoption in various com-
puting domains. The H extension aims to enhance RISC-V’s
capabilities for cloud computing and virtualization. In this
paper, we present the architectural integration of the H ex-
tension into gem5, an open-source, modular platform for
computer system architecture research. We detail the modi-
fications required in gem5’s CPU models and virtualization
support to accommodate the H extension. We also present
evaluation results regarding the performance impact and
functional correctness of the extension’s implementation on
gem5. This study not only provides a pathway for further
research and development of RISC-V extensions but also con-
tributes valuable insights into the optimization of the gem5
simulator for advanced architectural features.

CCS Concepts
• General and reference→ Performance; Experimenta-
tion; • Computer systems organization → Reduced in-
struction set computing; • Computing methodologies→
Modeling and simulation.

Keywords
RISC-V, gem5, hypervisor, virtualization, microarchitecture-
level simulation, xvisor, modeling

ACM Reference Format:
George-Marios Fragkoulis, Nikos Karystinos, George Papadim-
itriou, Dimitris Gizopoulos. 2024. Advancing Cloud Computing
Capabilities on gem5 by Implementing the RISC-V Hypervisor Ex-
tension. In 8th Workshop on Computer Architecture Research with
RISC-V (CARRV), November 2–6, 2024, Austin, Texas, USA , 8 pages.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
8th Workshop on Computer Architecture Research with RISC-V (CARRV), No-
vember 2–6, 2024, Austin, Texas, USA
© Copyright held by the owner/author(s).

1 Introduction
The open standard, simplicity, and modular design of the
RISC-V instruction set architecture (ISA) have led to wide-
spread attention in the computing industry [19]. RISC-V is a
foundation that can be used for many applications, such as
embedded systems, high-performance computing (HPC), and
cloud computing [29]. One of its most significant features
is its extensibility, which allows the integration of custom
extensions to meet specific computational needs [6, 7, 16].
A notable example of this is the H (Hypervisor) extension,
recently introduced and ratified to enhance RISC-V’s capa-
bilities in virtualization and cloud computing. The demand
for these paradigms is driving the need for more effective
and adaptable microprocessor designs. Multiple virtual ma-
chines (VMs) can be operated on a single physical machine
to optimize resource usage and provide flexibility in manag-
ing workloads. To achieve effective virtualization, hardware
assistance is required to minimize overhead and enhance per-
formance [17]. These demands are met by the H extension
in the RISC-V ISA [6], which provides hardware support for
hypervisor-level operations. Several factors motivated the
implementation and open-sourcing of the H extensionwithin
the gem5 simulation framework, as enumerated below:
(1) Researchers can explore the potential of RISC-V for

virtualization and high-performance computing by in-
corporating the H extension into gem5. This implemen-
tation provides the foundation for further innovations
and improvements within the RISC-V ecosystem.

(2) The simulation of the H extension in gem5 facilitates
comprehensive performance evaluation and bench-
marking. This helps researchers understand how the
extension affects system performance, especially in
virtualized environments.

(3) The educational potential of gem5 is widely utilized for
teaching computer architecture. The inclusion of the
H extension in gem5 provides students with a valuable
educational tool for analyzing advanced architectural
features and their ramifications.

(4) As an open-source project, gem5 gets contributions
from a global community of developers and researchers.
The implementation of the H extension promotes col-
laboration and knowledge sharing, thereby fostering
innovation in the field of computer architecture.

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

CARRV ’24, November 2024, Austin, Texas, USA Fragkoulis et al.

The main purpose of this paper is to examine how the H
extension is implemented in the gem5 simulator [1, 14, 22],
a widely used tool in computer architecture research. The
primary contributions of this paper are as follows:
(1) We implement and integrate the H extension into the

latest version of the gem5 simulator (v24.0), detailing
the modifications required in CPU models and virtual-
ization support.

(2) We assess the performance and functional correctness
of the H extension implementation in gem5 with and
without running VMs.

(3) We provide insights into the impact of the H extension
on RISC-V’s performance in virtualized environments
to guide further research and development.

2 Background
2.1 The gem5 simulator & the H extension
gem5 [1, 14, 22] is a state-of-the-art, open-source, cycle-level,
full-system simulator that can provide accurate performance
evaluation results and supports many commercial CPUs ISAs.
gem5 flexibly provides support for configuring a rich set
of microarchitectural parameters (number, size, organiza-
tion of cores, pipelines, caches, buffers, queues, speculation
structures, etc.). The gem5 simulator can operate with the
functional (atomic) and the cycle-level (detailed) microarchi-
tecture detail. Moreover, it can work by performing syscall
emulation (SE) or full system (FS) simulation. In this paper,
we are based on the FS mode and the atomic CPU of gem5 for
the porting and evaluation of the H extension on top of RISC-
V CPUs. Also, we present how to extend the gem5 simulator
to provide a complete open-source detailed system simula-
tion framework that incorporates that hypervisor extension
for accelerated evaluation of RISC-V software deployments.
The H extension is a RISC-V ISA extension that can en-

hance virtual memory support in virtualized environments.
This extension can improve performance and security by
using hardware to perform virtual address translation and
manage page tables, reducing overhead in virtualization. This
is especially beneficial in cloud computing and data centers,
where virtualization is extensively used to enhance resource
utilization and decrease expenses. Moreover, the H exten-
sion can enforce memory protection and isolation in virtual-
ized environments, preventing unauthorized memory access
and improving security. Additionally, it can enhance the
efficiency of virtual memory management, improving perfor-
mance and reducing power consumption. The H extension is
widely supported and utilized in many industries, including
cloud computing, data centers, and embedded systems [25].

Figure 1 shows the required features for the development
of the RISC-V Hypervisor extension. It provides a standard-
ized interface for hypervisors (i.e., Xvisor [23], KVM [24]) to

access and control the VMs running on the system. Specifi-
cally, the H-extension requires the following key features:
(1) It should define new instructions and registers for man-

aging virtual machine state and virtual interrupts.
(2) It should provide support for memory virtualization

and device virtualization to enable efficient sharing of
hardware resources among multiple virtual machines.

(3) It should provide support for multiple privilege lev-
els, allowing hypervisors to have higher privileges
than the guest operating systems they manage. The
base ISA includes three privilege levels: M (Machine),
which has the highest privileges; S (Supervisor), used
for system-level operations; and U (User), utilized for
user applications. With the H extension enabled, a new
privilege level called HS (Hypervisor-extended Super-
visor) is introduced. This level operates similarly to
the S level but includes additional registers. In a guest
context, there are two additional modes: VS (guest’s
OS) and VU (guest’s applications). Hence, having the
H extension enabled, the privilege levels in decreasing
order of accessibility are M (Machine), HS, VS, and VU.

(4) It should ensure isolation between VMs by providing
mechanisms for enforcing access control policies and
preventing unauthorized access to VM resources.

2.2 Xvisor bare-metal hypervisor
Xvisor [2] is an open-source type-1 (bare-metal) hypervi-
sor designed to offer a lightweight, portable, and flexible
virtualization solution. It delivers high performance and a
low memory footprint for various CPU architectures, includ-
ing RISC-V. The Xvisor code is highly portable, making it
adaptable to most general-purpose architectures. It primarily
supports full virtualization, accommodating a broad range of
unmodified guest operating systems, including Linux [10]. It
includes many features typical of modern hypervisors, such
as device tree-based configuration, a threading framework,
runtime loadable modules, dynamic guest creation/destruc-
tion, network virtualization, input device virtualization, etc.

3 Implementation Methodology
Implementing the H-extension in the gem5 simulator to
support virtualization in the RISC-V ISA requires extensive
changes in core parts of the simulator. The main parts of
this extension can be described in three sections: 1. Regis-
ters, 2. Exceptions & Interrupts Handling and 3. Two-Stage

Hypervisor (H)

Registers
VM Load/Store

Instructions
Memory Management

Fence Instructions

Figure 1: Illustration of the Hypervisor (H) extension.

Advancing Cloud Computing Capabilities on gem5 by Implementing the RISC-V Hypervisor Extension CARRV ’24, November 2024, Austin, Texas, USA

Translation. Each section encompasses new definitions de-
scribed in the RISC-V ISA specification [7], which are added
to specific header files in gem5, as well as modifications to
the core logic, such as handling faults or page table walk-
ing. After implementing the aforementioned parts of the
H-extension in gem5, we present the way we test the im-
plementation with various scenarios, including comparing
the architectural state under complex conditions, such as
handling exceptions based on the values of new hypervisor
registers. Further testing involved booting a Type-1 hypervi-
sor, named Xvisor [2, 3] in gem5, and evaluating its behavior
by running benchmarks in both host and guest OS.

3.1 Registers
Control and Status Registers (CSRs) are responsible for en-
coding permissions related to memory access and instruction
execution at a certain privilege level. The hypervisor exten-
sion adds more CSRs to manage two-stage address transla-
tion and control the behavior of a VS-mode guest as shown
in Table 1. Additionally, manipulating CSRs must respect the
read-only permissions of certain bit fields and maintain priv-
ilege protection among the registers, meaning some registers
cannot be accessed in lower privilege modes.
Moreover, CSRs have bit-fields that serve as aliases for

other CSRs. This means that reading or modifying one CSR
also involves accessing parts of another CSR. For example,
reading the HVIP (Hypervisor Virtual Interrupt Pending)
CSR includes reading the MIP (Machine Interrupt Pending)
CSR because the VSSIP (Virtual Supervisor Software Inter-
rupt Pending) bit of HVIP is an alias of the VSSIP bit in MIP.
Further, accessing supervisor CSRs in VS mode is modified
so that access is redirected to the virtual supervisor regis-
ters instead (see Table 1). gem5 defines the CSRs in the file
arch/riscv/misc.hh. Some CSRs are mapped to the same hard-
ware register, such as SSTATUS and MSTATUS. To prevent
access to certain bit fields from lower privilege levels, the
simulator utilizes READ REGISTERS MASKS. We extend
this approach by adding WRITE REGISTERS MASKS to en-
sure that read-only bits remain unchanged. Also, register
swapping in VS-mode and the new write masks added in
arch/riscv/standard.hh::CSRExecute() which implements the
main functionality of the CSR-managing instructions.

3.2 Exceptions & Interrupts Handling
The H extension defines new interrupts and exceptions han-
dled differently based on the current privilege level and the
values of the delegation registers. gem5 utilizes the func-
tion RiscvFault::invoke() for handling both exceptions and
interrupts. This is responsible for modifying the status and
cause registers. It also calculates the new program counter
value and the privilege level. New cases have been added

Table 1: Overview of the implemented registers.

mstatus

mpv and gva fields added.
mpv stores the previous virtualization when a trap
is taken to M mode and gva is written when a trap

happens to a guest virtual address
and taken to M mode

hstatus H-extension CSR that manages the exception
handling behavior of a VS mode guest

mideleg

New read-only 1-bit fields for
VS and guest external interrupts have been
introduced, meaning these interrupts are

now handled by HS mode
hideleg
hedeleg

H-extension CSR that handles the delegation
of VS interrupts and traps to VS mode

mip, mie New bit fields for hypervisor interrupts

hvip H-extension CSR that allows a hypervisor to
signal virtual interrupts intended for VS mode

hip
hie

H-extension CSRs for VS-level and
hypervisor-specific interrupts

hgeip, hgeie H-extension CSRs for guest external interrupts

hcounteren H-extension CSR for accessing the HPM
the virtual machine

htval
H-extension CSR for storing the guest physical
address that faulted, shifted right by 2 bits
when the fault is handled by HS mode

mtval2
H-extension CSR for storing the guest physical
address that faulted, shifted right by 2 bits
when the fault is handled by M mode

hgatp
H-extension CSR that is responsible for the

second stage of a guest virtual address translation
hgatp holds the PPN of the guest physical root table

vsstatus
vsip, vsie, vstvec
vsscratch, vsepc

vscause
vstval, vstap

H-extension CSRs that are used in place of
the supervisor CSRs when

virtualization mode is enabled

for delegating faults at VS level, including handling faults
such as Virtual Instruction Fault. Interrupt detection has
been modified to account for the new register for interrupt
pending and the new bit fields in the status register.
Figure 2 presents an example of an interrupt handling in

atomic (functional) CPU type of the gem5. Assume that the
interrupt should be delegated to HS level. In every tick (the
gem5-specific unit of simulation time), the CPU calls Check-
Interrupts(), which reads the interrupt pending and enable
registers, as well as the delegation registers based on the cur-
rent privilege level (mideleg is read if the current privilege
is lower than M, and hideleg is read if the current privilege
is lower than HS). If an interrupt is detected, a fault is cre-
ated and handled by a specific interrupt handler according to
the values of the aforementioned CSRs. After the interrupt
handler completes, execution may resume.

3.3 Two-Stage Address Translation
The translation process of a virtual address is described in
the ISA specification [7]. The Sv39 scheme, which utilizes 39

CARRV ’24, November 2024, Austin, Texas, USA Fragkoulis et al.

VU Mode

HS Mode

CPU::Tick() CPU::CheckInterrupts() Fault::Invoke()

CPU::Tick()
(Trap Handler)

CPU::Tick()

Interrupt

Figure 2: The gem5’s interrupt handling behavior.
bits of a 64-bit virtual address to provide a three-level page
table hierarchy, is shown in Figure 3. In this scheme, the
virtual address is divided into several fields: a 25-bit unused
field, three 9-bit Virtual Page Number (VPN) fields (VPN2,
VPN1, and VPN0), and a 12-bit page offset (assuming a 4KB
page size in this example). Each VPN𝑖 serves as an index into
the corresponding level of the page table. The base address
of the page table is a physical address, and the sum of this
base address and the VPN𝑖 offset yields the address of the
next-level page table or the final physical page. Guest address
translation consists of two stages, with each stage involving
a full-page table walk, as shown in Figure 3. However, in
virtualized environments, the base register (satp) is split into
two different (hypervisor) registers, the vsatp and the hgatp,
supporting address translation in both guest and host layers.
The first stage, known as the VS-Stage, is controlled by the
vsatp register and is responsible for translating a guest virtual
address to a guest physical address, which is also a virtual
address. Subsequently, this guest physical address must be
translated to a host physical address. This process, called
G-Stage translation, utilizes the hgatp register. Both the vsatp
and hgatp registers hold the base address of the appropriate
page table and the current translationmode, such as Sv39 and
Sv39x4 respectively (the guest physical address is widened
by 2 bits). Thus, every page table address is virtual and must
be translated to a physical address by the G-stage.

The gem5 walking process starts by initializing basic fea-
tures like the translation mode (gem5 supports only Sv39)
and storing some notable fields of status registers, which are
used to identify invalid accesses that caused page faults. Sub-
sequently, arch/riscv/pagetablewalker.hh::walk() performs the
walk by calling arch/riscv/pagetablewalker.hh::stepWalk() for
intermediate page table accesses. To support the two-stage
address translation, the walk() procedure is redesigned. This
procedure calculates the intermediate addresses for the guest
page table and calls walkGStage() for G-Stage translation.

VPN2 VPN1 VPN1 offset

L0 PTE

L0 Page Table

L1 PTE L2 PTE
PA

PFN (44 bits)

011122021293038
39-bit Virtual Address

9 bits

4KB PageL1 Page
Table

L2 Page
Tablesatp

9 bits 9 bits

Figure 3: Sv39 page table walk in RISC-V ISA.

Subsequently, if no fault is raised, the stepWalk() is called to
access the guest page table. This process is repeated until a
valid page is found, or a page fault occurs due to missing per-
missions. New page fault conditions, such as Load Guest Page
Fault, have been added to arch/riscv/tlb.hh::checkPermissions()
incorporating notable attributes of this access, such as the
current privilege mode. In addition, we have implemented
new memory instructions that access memory as if virtual-
ization mode is on, utilizing the newly defined ArchFlagsType
for RISC-V in arc/riscv/memflags.hh::XlateFlags. These flags
contain information about the instruction, such as forced vir-
tualization, the HLVX option (a hypervisor load requiring ex-
ecute permission), and the LR option (load reserved), which
has been added to the arc/riscv/isa/decoder.isa file. Further-
more, templates describing the behavior of hypervisor loads
and stores have been added to arc/riscv/isa/formats/mem.isa.

3.4 Validation
We thoroughly validate our implementation using special-
ized tests [4]. They compare the system’s behavior to the
expected outcomes in various scenarios. Specifically:

• tinst_tests: These tests check the tinst value written af-
ter a page fault. This value, defined by the specification,
can be either zero, an instruction trapped to acceler-
ate hardware by skipping the loading of the trapping
instruction from memory, or a specific pseudoinstruc-
tion encoding to provide additional information about
the guest page fault.

• wfi_exception_tests: These tests validate the conditions
under which faults occur from the wfi instruction or
verify the successful execution of the instruction.

• hfence_tests: Execute hfence instructions affecting only
the guest TLB (Translation Lookaside Buffer) entries.

• virtual_instruction: These tests perform various in-
structions that, under certain conditions, result in a
virtual instruction fault.

• interrupt_tests: These tests write to interrupt pending
and enable registers and check the cause affected by
the interrupt priority [5] and the privilege level that
handled the interrupt.

• check_xip_regs: These tests validate the aliasing of the
interrupt pending registers and the encryption of some
of their bit fields because, at some privilege levels, there
is no access to information from higher privilege levels.

• m_and_hs_using_vs_access: These tests execute hyper-
visor load and store instructions, validating the data

Advancing Cloud Computing Capabilities on gem5 by Implementing the RISC-V Hypervisor Extension CARRV ’24, November 2024, Austin, Texas, USA

from memory or the page fault caused by page permis-
sions or the mstatus value.

• second_stage_only_translation: Performs G-Stage trans-
lations only by setting the vsatp’s mode to zero (BARE).

• two_stage_translation: Validates the complete two-stage
translation by checking the final translation or throw-
ing a page fault with the correct information (code,
privilege mode handled, gva, and tval2 values).

3.5 Challenges
Initially, we utilized a Linux kernel packaged with the Berke-
ley Bootloader (bbl). Unfortunately, bbl requires the MIDE-
LEG register, which handles interrupt delegation, to be set to
0x222 (indicating that supervisor software, time, and external
interrupts should be delegated). The issue arises because the
H extension mandates that virtual interrupts (software, time,
and external) must also be delegated from Machine Mode,
resulting in an incorrect condition that prevents Linux from
booting. Consequently, we opted to use the latest version
of gem5 and the SBI bootloader [8]. After implementing the
critical parts of H-extension, we boot Xvisor. During this
attempt, we encountered several challenges, including: (1)
Default creation of the device tree by gem5 caused I/O issues.
We modified the device tree based on Spike’s device tree [9],
(2) The H extension affects many common instructions, in-
cluding floating-point operations. Access to the Floating-
Point Unit (FPU) is controlled by the float status bits in status
CSRs. Consequently, when virtualization mode is enabled,
the vsstatus should also be checked, and (3) The necessity of
TLB modification arises from its ability to bypass the page
table walking procedure by storing the translation of a vir-
tual page number (VPN) to a physical frame number (PFN),
along with some permission bits. Due to the two-stage trans-
lation, it is crucial to store both the guest PFN and supervisor
PFN to effectively support megapage or gigapage translation.
Additionally, it is necessary to store the permission bits of
the guest page table entry in gem5’s TLB because, in virtu-
alization mode, the guest assumes that the physical address
is derived from the guest PFN, which may have different
permissions than the supervisor PFN.

4 Experimental Results
We present results from nine workloads of the MiBench
Suite [20], executing with and without the hypervisor exten-
sion enabled (i.e., with and without a VM). All executions
are performed on an AMD EPYC 7402 CPU.

4.1 Simulation Time Overhead
We first present the time overhead induced by the guest OS
when executing a workload. Note that the Linux boot time is
10 times longer when running in a VM compared to native

execution in gem5. Therefore, every benchmark simulation
we present in this section utilizes gem5’s checkpoint func-
tionality to ensure that only the current benchmark is being
studied. Additionally, some benchmarks exhibit significantly
lower simulation times than others, making it difficult to see
their bars in the presented graphs. Figure 4 shows the simu-
lation times in seconds for benchmarks running natively in
a full system setup of the gem5 (green bars) versus running
in a guest VM in the same environment (red bars). The blue
horizontal line indicates the slowdown of each benchmark
between the guest OS and the host OS. With an average
slowdown of 50%, these benchmarks show an increase in
execution time ranging from approximately 30% to 100%.

4.2 Executed Instructions Overhead
The hypervisor creates virtual representations of physical
hardware resources for VMs. This process, which includes
managing virtual CPUs and virtual network interfaces, intro-
duces some computational overhead and results in additional
executed instructions, as shown in Figure 5. In this figure,
a notable difference in the number of executed instructions
is presented. Xvisor operates directly on the hardware and
oversees the guest operating system (Linux in our case). Con-
sequently, several factors cause the execution of the same
program on a guest OS to involve slightly more instructions
than running it directly on the hardware [28]. One major rea-
son is the additional executed hypervisor instructions. The
hypervisor executes additional instructions for managing the
VM, such as scheduling, and resource allocation. Moreover,
certain instructions or operations performed by the guest
OS or applications within the VM might need to be trapped
by the hypervisor and emulated. For example, privileged
instructions that cannot be executed directly by the guest OS
must be handled by the hypervisor, adding extra instructions
to the execution path. Another reason is the memory man-
agement. As we described earlier, virtualized environments
use a layer of memory management (i.e., two-stage address
translation [11, 13]). Managing these additional layers of
memory translation requires extra instructions compared
to the single-layer memory management in a native run. Fi-
nally, additional instructions need operations intercepted by

0%
20%
40%
60%
80%
100%
120%

0

50

100

150

200

250

basic
m

ath
iFFT

FFT

dijk
st

ra

bitc
ount

sm
ooth

edges

co
rn

ers

se
arc

h

Sl
o

w
d

o
w

n
 [

%
]

Se
co

n
d

s

Benchmarks

Simulation Time

guest OS
native OS
Slowdown

Figure 4: Simulation time (in seconds) of benchmarks
between native and guest OS executions.

CARRV ’24, November 2024, Austin, Texas, USA Fragkoulis et al.

0%

2%

4%

6%

8%

10%

0Μ
25Μ
50Μ
75Μ

100Μ
125Μ
150Μ

basic
m

ath
iFFT

FFT

dijk
st

ra

bitc
ount

sm
ooth

edges

co
rn

ers

se
arc

h

D
if

fe
re

n
ce

 [
%

]

In
st

ru
ct

io
n

s

Benchmarks

Executed Instructions
w/ VM
w/o VM
Diff

Figure 5: Executed instructions of each benchmark
running with (w/) or without (w/o) VM (i.e., a guest OS).
the hypervisor that require elevated privileges, such as set-
ting hardware registers, configuring interrupts, or accessing
certain control registers.

4.3 Exceptions handled overhead
Figures 6, 7 show the exception handling in the native OS
and the guest OS, respectively. Each benchmark includes
colored bars representing the number of exceptions handled
at specific privilege levels. In the native OS, exceptions can
be delegated to two possible levels (M and S), whereas in the
guest OS, there are three possible levels (M, HS, and VS) due
to the hypervisor extension. When an exception occurs, the
delegation registers are read to determine the appropriate
privilege level for handling. The two-stage translation pro-
cess in the guest OS involves more accesses compared to the
base translation, leading to a higher frequency of page faults.
This trend is evident in the results presented in Figures 6, 7.
Additionally, it is noteworthy that the number of exceptions
delegated to the S level in the native OS and the VS level in
the guest OS are nearly equal, highlighting a similar distri-
bution of exception handling across these levels.

5 Related Work
The RISC-V H extension is a relatively new addition to the
privileged architecture of the RISC-V ISA, ratified in Decem-
ber ’21 [7]. This extension opens up numerous opportunities
for both academia and industry to explore advanced virtu-
alization capabilities within the RISC-V ecosystem. Many
projects have been undertaken to integrate the hypervisor
extension into various models. From a hardware perspective,
the Rocket core [26], the CVA6 core [27], and the Legarto

10
7

46

77

226

16 19 34 26

3

22
0

53 57 55 53

34

2 2 0

0

50

100

150

200

250

ba
sic
m
at
h

FF
T

iFF
T

di
jks
tra

bi
tc
ou
nt

sm
oo
th

co
rn
er
s

ed
ge
s

se
ar
ch

E
xc

ep
ti
o
n
s

Benchmarks

of Exceptions (native)

S

M

Figure 6: Number of exceptions for native execution
and the privilege levels at which they are delegated.

2.
95

1.
67

1.
31

1.
11

1.
01

0.
61

0.
00

0.
00

0.
00

1.
61

0.
87

0.
69

0.
59

0.
54

0.
33

0.
00

0.
00

0.
000.
11

0.
05

0.
08 0.
23

0.
02

0.
02

0.
03

0.
03

0.
00

0.0Κ
0.5Κ
1.0Κ
1.5Κ
2.0Κ
2.5Κ
3.0Κ

ba
sic
m
at
h

FF
T

iFF
T

di
jks
tra

bi
tc
ou
nt

sm
oo
th

co
rn
er
s

ed
ge
s

se
ar
ch

E
xc

ep
ti
o
n
s

Benchmarks

of Exceptions (guest)
HS

M

VS

Figure 7: Number of exceptions handled by the guest
OS and the privilege levels at which they are delegated.

core [18] fully support the H-extension. In addition to hard-
ware, software tools, and simulators have also adopted the
hypervisor extension. For instance, QEMU [12], a widely
used open-source emulator, and the official RISC-V ISA sim-
ulator, Spike [9], have both integrated support for the H
extension. Furthermore, gem5 [22] already supports full sys-
tem (FS) simulation [21] enabling a Linux kernel boot for
RISC-V ISA. Also, manymicroarchitectural components com-
plement RISC-V CPUs, such as accelerators [15].

6 Conclusion & Future Work
We explored the H (Hypervisor) extension for the RISC-V ISA
and implemented it in the gem5 simulator. This integration
demonstrates the cloud computing capabilities it brings to
the cycle-level simulator. We discussed our modifications to
gem5’s simulator and its virtualization support, with bench-
marking results confirming the functional correctness of the
H extension. This work aims to encourage further innova-
tion in computer system architecture using RISC-V and gem5.
Future work includes extending support to all ISA-compliant
virtual address sizes, all CPU types in gem5, and KVM (a
Type-2 hypervisor). We do not expect major disruptions, as
gem5 already supports full-system simulation and the hyper-
visor extension. Furthermore, we plan to use our open-source
implementation to enable comprehensive microarchitectural
design space exploration for cloud deployments.

Acknowledgments
This work was supported by the EU’s Horizon Europe re-
search and innovation programme under grant agreements
No 101093062 (Vitamin-V), No 101097224 (REBECCA), and
No 101070238 (NEUROPULS). Views and opinions expressed
are however, those of the authors only and do not neces-
sarily reflect those of the EU. Neither the European Union
nor the granting authority can be held responsible for them.
This project is also carried out within the framework of the
National Recovery and Resilience Plan Greece 2.0, funded by
the European Union– NextGenerationEU (Implementation
body: HFRI) with the title "Reliable Highly Parallel Systems
by Design (REDESIGN) and Project Number 16973.

Advancing Cloud Computing Capabilities on gem5 by Implementing the RISC-V Hypervisor Extension CARRV ’24, November 2024, Austin, Texas, USA

References
[1] 2003. gem5 GitHub Repository. https://github.com/gem5/gem5. Ac-

cessed: 2024-07-30.
[2] 2011. Xvisor: an open-source bare-metal monolithic hypervisor. https:

//xhypervisor.org. Accessed: 2024-07-30.
[3] 2011. Xvisor GitHub Repository. https://github.com/xvisor/xvisor.

Accessed: 2024-07-30.
[4] 2020. Unit tests for RISC-V Hypervisor extension. https://github.com/

josecm/riscv-hyp-tests. Accessed: 2024-07-30.
[5] 2021. RISC-V Advanced Interrupt Architecture (AIA). https://github.

com/riscv/riscv-aia
[6] 2024. The RISC-V Instruction Set Manual Volume I: Un-

privileged ISA. https://drive.google.com/file/d/1uviu1nH-
tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link Document Version
20240411, Accessed: 2024-07-30.

[7] 2024. The RISC-V Instruction Set Manual Volume II: Privileged Archi-
tecture. https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-
SI1gPGd5sJ_/view?usp=drive_link Document Version 20240411, Ac-
cessed: 2024-07-30.

[8] 2024. RISC-V Open Source Supervisor Binary Interface (OpenSBI).
https://github.com/riscv-software-src/opensbi. Accessed: 2024-07-30.

[9] 2024. Spike RISC-V ISA Simulator. https://github.com/riscv-software-
src/riscv-isa-sim. Accessed: 2024-07-30.

[10] 2024. The Linux Kernel Archives. https://www.kernel.org. Accessed:
2024-07-30.

[11] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation
caching: skip, don’t walk (the page table). In Proceedings of the 37th
Annual International Symposium on Computer Architecture (Saint-Malo,
France) (ISCA ’10). Association for Computing Machinery, New York,
NY, USA, 48–59. https://doi.org/10.1145/1815961.1815970

[12] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In
USENIX annual technical conference, FREENIX Track, Vol. 41. California,
USA, 10–5555.

[13] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. 2008. Accelerating two-dimensional page walks for virtualized
systems. In Proceedings of the 13th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Seat-
tle, WA, USA) (ASPLOS XIII). Association for Computing Machinery,
New York, NY, USA, 26–35. https://doi.org/10.1145/1346281.1346286

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The
Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (aug 2011), 1–7.
https://doi.org/10.1145/2024716.2024718

[15] Odysseas Chatzopoulos, George Papadimitriou, Vasileios Karakostas,
and Dimitris Gizopoulos. 2023. Enabling Design Space Exploration
of RISC-V Accelerator-rich Computing Systems on gem5. https://api.
semanticscholar.org/CorpusID:270493978

[16] Enfang Cui, Tianzheng Li, and Qian Wei. 2023. RISC-V Instruction Set
Architecture Extensions: A Survey. IEEE Access 11 (2023), 24696–24711.
https://doi.org/10.1109/ACCESS.2023.3246491

[17] Xiaoning Ding and Jianchen Shan. 2015. Diagnosing Virtualization
Overhead for Multi-threaded Computation on Multicore Platforms. In
2015 IEEE 7th International Conference on Cloud Computing Technology
and Science (CloudCom). 226–233. https://doi.org/10.1109/CloudCom.
2015.102

[18] Jaume Gauchola, JuanJosé Costa, Enric Morancho, Ramon Canal,
Xavier Carril, Max Doblas, Beatriz Otero, Alex Pajuelo, Eva Rodríguez,
Javier Salamero, and Javier Verdú. 2024. Hypervisor Extension for a
RISC-V Processor. arXiv:2406.17796 [cs.AR] https://arxiv.org/abs/

2406.17796
[19] Akanksha Gaur. 2024. RISC-V Open-Source Architecture Redefining

The Future Of Computing. https://www.opensourceforu.com/
2024/01/risc-v-open-source-architecture-redefining-the-future-of-
computing/. Accessed: 2024-07-30.

[20] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B.
Brown. 2001. MiBench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538).
3–14. https://doi.org/10.1109/WWC.2001.990739

[21] Peter Yuen Ho Hin, Xiongfei Liao, Jin Cui, Andrea Mondelli, Thannir-
malai Muthukaruppan Somu, and Naxin Zhang. 2021. Supporting
RISC-V full system simulation in gem5. In Proc. Workshop Comput.
Architect. Res. RISC-V.

[22] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-
mussen, Brad Beckmann, Srikant Bharadwaj, Gabe Black, Gedare
Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jeronimo Castril-
lon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy
Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-Farahani,
Pouya Fotouhi, RyanGambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swap-
nil Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew
Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeya-
paul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli,
Christian Menard, Andrea Mondelli, Miquel Moreto, Tiago Mück,
OmarNaji, KrishnendraNathella, HoaNguyen, Nikos Nikoleris, Lena E.
Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec
Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris
Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo
Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, William
Wang, Zhengrong Wang, Norbert Wehn, Christian Weis, David A.
Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator: Ver-
sion 20.0+. arXiv:2007.03152 [cs.AR] https://arxiv.org/abs/2007.03152

[23] Anup Patel, Mai Daftedar, Mohamed Shalan, and M. Watheq El-
Kharashi. 2015. EmbeddedHypervisor Xvisor: A Comparative Analysis.
In 2015 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. 682–691. https://doi.org/10.1109/PDP.
2015.108

[24] Avi Qumranet, Yaniv Qumranet, Dor Qumranet, Uri Qumranet,
and Anthony Liguori. 2007. KVM: The Linux virtual ma-
chine monitor. Proceedings Linux Symposium 15 (01 2007).
https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf.

[25] Bruno Sá, José Martins, and Sandro Pinto. 2021. A First Look
at RISC-V Virtualization from an Embedded Systems Perspective.
arXiv:2103.14951 [cs.AR] https://arxiv.org/abs/2103.14951.

[26] Bruno Sá, José Martins, and Sandro Pinto. 2022. A First Look at RISC-V
Virtualization From an Embedded Systems Perspective. IEEE Trans.
Comput. 71, 9 (2022), 2177–2190. https://doi.org/10.1109/TC.2021.
3124320

[27] Bruno Sá, Luca Valente, José Martins, Davide Rossi, Luca Benini, and
Sandro Pinto. 2023. CVA6 RISC-VVirtualization: Architecture, Microar-
chitecture, and Design Space Exploration. arXiv:2302.02969 [cs.AR]
https://arxiv.org/abs/2302.02969

[28] Guan Tong, Hai Jin, Xia Xie, Wenzhi Cao, and Pingpeng Yuan. 2011.
Measuring and Analyzing CPU Overhead of Virtualization System. In
2011 IEEE Asia-Pacific Services Computing Conference. 243–250. https:
//doi.org/10.1109/APSCC.2011.40

[29] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou,
Yue Jin, Qianruo Li, Xin Li, Zuojun Li, Jiawei Lin, Tong Liu, Zhigang Liu,
Jiazhan Tan, Huaqiang Wang, Huizhe Wang, Kaifan Wang, Chuanqi

https://github.com/gem5/gem5
https://xhypervisor.org
https://xhypervisor.org
https://github.com/xvisor/xvisor
https://github.com/josecm/riscv-hyp-tests
https://github.com/josecm/riscv-hyp-tests
https://github.com/riscv/riscv-aia
https://github.com/riscv/riscv-aia
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view?usp=drive_link
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view?usp=drive_link
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://www.kernel.org
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.1145/2024716.2024718
https://api.semanticscholar.org/CorpusID:270493978
https://api.semanticscholar.org/CorpusID:270493978
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.1109/CloudCom.2015.102
https://doi.org/10.1109/CloudCom.2015.102
https://arxiv.org/abs/2406.17796
https://arxiv.org/abs/2406.17796
https://arxiv.org/abs/2406.17796
https://www.opensourceforu.com/2024/01/risc-v-open-source-architecture-redefining-the-future-of-computing/
https://www.opensourceforu.com/2024/01/risc-v-open-source-architecture-redefining-the-future-of-computing/
https://www.opensourceforu.com/2024/01/risc-v-open-source-architecture-redefining-the-future-of-computing/
https://doi.org/10.1109/WWC.2001.990739
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://doi.org/10.1109/PDP.2015.108
https://doi.org/10.1109/PDP.2015.108
https://arxiv.org/abs/2103.14951
https://doi.org/10.1109/TC.2021.3124320
https://doi.org/10.1109/TC.2021.3124320
https://arxiv.org/abs/2302.02969
https://arxiv.org/abs/2302.02969
https://doi.org/10.1109/APSCC.2011.40
https://doi.org/10.1109/APSCC.2011.40

CARRV ’24, November 2024, Austin, Texas, USA Fragkoulis et al.

Zhang, Fawang Zhang, Linjuan Zhang, Zifei Zhang, Yangyang Zhao,
Yaoyang Zhou, Yike Zhou, Jiangrui Zou, Ye Cai, Dandan Huan, Zusong
Li, Jiye Zhao, Zihao Chen,Wei He, Qiyuan Quan, Xingwu Liu, SaWang,
Kan Shi, Ninghui Sun, and Yungang Bao. 2022. Towards Developing
High Performance RISC-V Processors Using Agile Methodology. In
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1178–1199. https://doi.org/10.1109/MICRO56248.2022.00080

https://doi.org/10.1109/MICRO56248.2022.00080

	Abstract
	1 Introduction
	2 Background
	2.1 The gem5 simulator & the H extension
	2.2 Xvisor bare-metal hypervisor

	3 Implementation Methodology
	3.1 Registers
	3.2 Exceptions & Interrupts Handling
	3.3 Two-Stage Address Translation
	3.4 Validation
	3.5 Challenges

	4 Experimental Results
	4.1 Simulation Time Overhead
	4.2 Executed Instructions Overhead
	4.3 Exceptions handled overhead

	5 Related Work
	6 Conclusion & Future Work
	Acknowledgments
	References

