
RGen: A Tool for Generating RISC-V Compiler,
Simulator, and Application Support

Derek Zijie Tu and Zhangxi Tan

RIOS Lab

2023.06.17

1

Instruction Extensions are Important

2

AI

Communications

Security

Cryptography

IoT

HPC

Adding Instruction Extensions is Painful

3

Machine
Spec

Machine
SpecMachine
Spec

Machine
SpecMachine
Spec

Machine
Spec

Compiler Simulator Application

● Easy to make mistakes

● Big time sink

Overview

● RGen: a RISC-V infrastructure for instruction extension support
● Artifact discussion
● RGen Architecture

- RGenIR: A language extension to Sail
- Support for targeted artifacts

● Testing
● Discussion

4

Choosing Artifacts

1) Machine Specification
2) Compiler
3) Simulator
4) Application

5

Sail

Discussion on Sail

6

Concerns
● Focused on instruction

semantics

● Lacks some key target
backends

● Simulator not as powerful
as others

Our Solution
● Add a new isolated

description

● Add the key backends

● Generate support for
another simulator

Discussion on LLVM

7

Concerns
● Large amount of TableGen

files

● Hard for new users to
understand

● Very prone to mistakes

Our Solution
● Automatically generate

support

● Provide support to help
guide users in LLVM

Discussion on QEMU

8

Concerns
● Complex

Our Solution
● Automatically generate

support

● Provide support to help
guide users in QEMU

Discussion on PyTorch

9

Concerns
● In regards to RISC-V

● Hard to compile new
instructions into PyTorch

Our Solution
● Provide quick and dirty

method

RGen Architecture

● Two handwritten specifications:
1) RGenIR
2) Sail RISC-V definitions

● Generate support for:
1) LLVM
2) QEMU
3) PyTorch

10

RGenIR

● Language extension to Sail
● High-level descriptor

- Instruction semantics not
 always needed

● For high-level operations
- Combination of
 assembly-level instructions

11

RGenIR Pattern and Type Matching

● Simple patterns
● Tree-based traversal

12

Generating Support for Artifacts

13

RGen Support for LLVM

● Sail RISC-V definitions
● Help translates gMIR to Machine Instructions

- Generate instruction semantics for LLVM’s TableGen

14

Generated Components for LLVM

● Instruction Format TableGen definition
● Scheduler TableGen definition
● Instruction Information TableGen definition

15

RGen Support for QEMU

● Sail RISC-V definitions
● Decoder

- Instruction semantics
● Tiny Code Generator

- Translation functions
- CPU state manipulators

16

Generated Components for QEMU

● Instruction decode information
● Instruction functionality information

17

PyTorch Support

● RGenIR
● PyTorch Python API Generator

- Generate Tensor definitions
● C++ backend

- Generate Tensor implementations

18

Generated PyTorch Components

● YAML definitions
● C++ implementation

- PyTorch API facing implementation
- External Library

19

Tests and Evaluations

20

Choosing an Extension

● Matrix Extension
- New to RISC-V environment
- State of the art

● Based on Apple-AMX

21

Methodology

● Cross-compile generated PyTorch operations using LLVM15.0.1
● Run on QEMU 7.2.0

- Fedora Rawhide 20200108 kernel
- Fedora RISC-V 64-bit Rawhide drive
- 64 GB of memory with 4 simulated cores

● Run generated PyTorch operations on QEMU

22

Testing

● End-to-end time < 20 mins

23

● Operations run < 1 second

● Promising results!

Sail+RGen

Discussion

● Future Work
- Code generation improvements
- More target artifacts

● How to show the work is useful?

● How to integrate into the open source community?

● Contact: derek.t@rioslab.org
24

