
QEMU-CAS: A Full-System Cycle-Accurate
Simulation Framework based on QEMU

Ye Cao, Zhixuan Xu, Zhangxi Tan

RISC-V International Open-Source Laboratory (RIOS Lab)

Tsinghua University

1

OUTLINE

• Background

• Design Methodology

• Evaluation

• Conclusion

2

BACKGROUND

3

• Software Simulation

• Benchmarks

• Motivation

4

■ Hardware development is a costly and
time-consuming process

Hardware & Software Co-design

- Validations are needed to ensure
the quality and correctness

■ Embracing hardware & software co-design
- To reduce the cost and expense

of design trial and error
- Software simulation: modeling with software

language on host OS

● Software Simulators[1] Savaton G, Delatour J, Courtel K. Roll your own hardware description language[C]//OOPSLA &
GPCE Workshop Best Practices for Model Driven Software Development. 2004.

5

Software Simulation

■ A representative flow incorporating software modeling
- Approaches to efficiently modifying and adapting the design
- Accelerating the design process

6

■ Benchmarks: important standards of measuring hardware capability
and performance

Benchmarks

■ Dynamic benchmarks: real-world workloads & applications
- Larger scale & complexity
- Requirements for enhanced environment & peripherals

■ Limitations of static, numeric benchmark
- Mainly focus on some specific aspects, may not show the comprehensive picture
- Unsensitive to emerging hardware & software technologies

- Dhrystone, CoreMark, SPEC CPU, …

● Abstraction levels of simulation

7

■ Divided by abstraction levels

- Functional simulator
- Timing (performance) simulator

■ Detailed timing implementation

Simulator Classification

- Execution-driven simulator
- Event-driven simulator

8

■ Existing challenges for performance simulators

Challenges & Motivation

■ Research Objectives

- Lack of capabilities to effectively simulate complex hardware components
- Limited flexibility when dealing with large workloads

- Cycle-accurate simulation on advanced modern processor models
- Capability of full system modeling
- A dynamic approach to characterize the target workloads

■ What about functional simulators?

- Capability & performance
- Cannot provide architecture behaviors and details

9

QEMU-CAS

■ A novel full-system cycle-accurate software simulation framework
- Integrating a cycle-accurate CPU model with QEMU
- Capable of modeling full-fledged Linux environments with modern IO peripherals

■ Our Contributions
- A simulation framework capable of modeling superscalar out-of-order processors
- A novel methodology for full-system modeling and simulations on RISC-V
- A dynamic switch-based mechanism to characterize the target workload

- cycle-accurate performance analysis on a dynamic binary translation framework

DESIGN METHODOLOGY

10

• Components

• Design of QEMU-CAS

• CPU-IO IRQ Interface

• ISA Model

• Simulating Multi-Core Target Systems

• A Switch-based Approach to Characterizing Workload

11

■ Components: basic units of simulation

Components

- Stages: pipeline topology
- the highest layer of the CPU model
- maintain the timing and pipeline structure

- Function Components: detailed functionalities
- including data queues, function units, …

● Pipeline of Gem5 Out-of-Order CPU Model

12

■ Multi-thread Structure

Design of QEMU-CAS

- CPU Threads
- IO Thread

■ Hybrid-driven Architecture
- Execution-driven in performance CPU model
- Event-driven for SoC simulation

● Infrastructure of the simulator

13

■ Memory Region (MR)
- contiguous range of memory that can be

accessed by the CPU and IO

■ Easy for memory model customization

Memory Model

- Decoupled from IO and CPU
- Allowing timing models on top of MRs

● MR Tree

14

CPU-IO IRQ Interface

■ A shared IRQ vector to keep the synchronization between different components

● CPU and IO exchange IRQs through an IRQ Vector

15

ISA Model

■ The ISA Model is independent from CPU models

● The ISA model is independent of the core model

16

Discussion: Simulating Multi-Core Target Systems

■ Our multi-thread architecture is suitable for
simulating multi-core system

■ A key issue: trade-off of synchronization

- High concurrency in execution

- Balancing the performance & accuracy of simulating
multi-core system

- A quanta-based approach

● Core Execution with Quanta-based Synchronization

17

A Switch-based Approach to Characterizing Workload

■ For large-scale workloads, traditional snapshot methods have limitations
- Limited Scalability issues
- Unable to reflect real-time behaviors

■ A dynamic switch-based approach in QEMU-CAS
- Capable of dynamically switching core models in runtime

- A QEMU DBT & a performance core model
- Sharing other hardware components in emulated SoC

18

■ Ideally, Current core needs stopping at the time it receives a switching command

Checkpointing Strategy

- In real case, the response may have a delay
 may lead to inaccurate performance picture

■ Checkpointing on QEMU DBT
- QEMU uses TBs (Translation Blocks) as basic units

of instruction translation
- No speculative operations cross TBs

- A new exception with lowest priority
- EXCP_SWITCHING

● QEMU DBT workflow

19

■ Instruction execution are not transactions in a performance core model

Checkpointing on Performance Model

- Instructions may take multiple cycles from fetched to committed
- A simple switching method results in instruction loss

● An out-of-order pipeline ● Instructions in blue square are lost when switching

■ Uncommitted instructions should not affect the architecture states
- None instructions are at backend.
- At least one fetched instruction in the frontend
- No pending interrupts in pipeline

20

■ Simulated Time vs Real Time

Time Dilation

- Normally, they need to tick at the same time; But in some cases, simulated time need a dilation

■ Clock Alignment in Core Switch

■ Timer

EVALUATION

21

• Experiment Setup

• Simulator Performance

• Case Studies

22

■ Fedora Linux in RISC-V

Experiment Setup

- OS Image: uboot + Fedora Rawhide

■ Core Configurations

23

Simulator Performance

■ In the simulation, QEMU DBT runs much faster
than performance model

■ Changing the inner system design causes
performance change to original model

- about 1000x

- Taking BPU as an example, removing it results in 18%
performance loss

- far less difference when compared to DBT performances

24

■ Ping is a commonly-used tool to test the
reachability to Internet

Case Study: Linux Ping Test

- can be used as a benchmark in hardware development
to test the capability of networking

● PMU result of the execution

■ Redirect to a text file

■ Sampling per 0.1 million cycles

- to test the support of block devices

25

■ We conduct an experiment to investigate the
hardware behavior in a socket network

Case Study: Socket Communication

- building a client/server framework
- server.c: run on a simulated OS
- client.c: run on host machine

- focusing on the segments of data processing

■ Hard for traditional snapshot approach
to locate the target program segments

- Scalability issues
- Static approaches are hard to solve

real-time communications
● A client/server framework used in the experiment

26

■ Dynamic model switching can accurately
characterize the workload

Case Study: Socket Communication(2)

● Time Spent on performance model & QEMU DBT

● PMU result of the execution

- run data processing on performance model
- switch to QEMU DBT at socket communication

CONCLUSION

27

28

Conclusion

■ We build a hybrid-driven and full-system simulator adopted from QEMU

■ We propose a dynamic switch-based approach to characterizing large
workload

■ We use several real-world applications to evaluate the capability and
performance of our simulation framework.

29

Future Work

■ Enhanced implementation on multi-core systems

■ Compatibility with other memory models

