(A RIOS

QEMU-CAS: A Full-System Cycle-Accurate
Simulation Framework based on QEMU

Ye Cao, Zhixuan Xu, Zhangxi Tan
RISC-V International Open-Source Laboratory (RIOS Lab)

Tsinghua University

(A RIOS

OUTLINE

* Background
* Design Methodology

e Evaluation

 Conclusion

(A RIOS

BACKGROUND

e Software Simulation

e Benchmarks

e Motivation

Hardware & Software Co-design (A RIOS

i Specifications
S — System-}evel
modeling
* System-level model
: Manual/guided RTL
= Hardware development is a costly and design
* Register-transfer-level description

time-consuming process

RTL
synthesis

- Validations are needed to ensure Ty Gatedevel netlist

the qllallty and COI’I’GC'[IIGSS Semi-automatic Physical

synthesis

* Layout

Semi-automatic

Manufacturing
\/ Chip

e A typical hardware design flowl]

s Embracing hardware & software co-design

- To reduce the cost and expense Software Simulator
of design trial and error

Target Workload

- Software simulation: modeling with software

language on host OS v
Host OS
[1] Savaton G, Delatour J, Courtel K. Roll your own hardware description language[C]//OOPSLA & o Software Simulators 4
GPCE Workshop Best Practices for Model Driven Software Development. 2004.

Software Simulation (A RIOS

= A representative flow incorporating software modeling

- Approaches to efficiently modifying and adapting the design
- Accelerating the design process

Specifications

Fail to meet design Software Modeling

ASIC Backend

RTL Implementation ————> RTL Verification —————> ST
Pipeline

Benchmarks F AL

= Benchmarks: important standards of measuring hardware capability
and performance
- Dhrystone, CoreMark, SPEC CPU, ...

s Limitations of static, numeric benchmark
- Mainly focus on some specific aspects, may not show the comprehensive picture
- Unsensitive to emerging hardware & software technologies

= Dynamic benchmarks: real-world workloads & applications

- Larger scale & complexity
- Requirements for enhanced environment & peripherals

Simulator Classification (A RIOS

Abstraction Level

= Divided by abstraction levels

High T High Low

- Functional simulator o

- Timing (performance) simulator

Functional Simulator

Performance Accuracy
Timing Simulator

\ RTL Simulator ‘

= Detailed timing implementation

- Execution-driven simulator Low Low High

- Event-driven simulator

e Abstraction levels of simulation

Challenges & Motivation (A RIOS

= Existing challenges for performance simulators

- Lack of capabilities to effectively simulate complex hardware components
- Limited flexibility when dealing with large workloads

s What about functional simulators?

- Capability & performance
- Cannot provide architecture behaviors and details

= Research Objectives

- Cycle-accurate simulation on advanced modern processor models
- Capability of full system modeling
- A dynamic approach to characterize the target workloads

QEMU-CAS (YRIOS

= A novel full-system cycle-accurate software simulation framework

- Integrating a cycle-accurate CPU model with QEMU
- Capable of modeling full-fledged Linux environments with modern IO peripherals

s Our Contributions

- A simulation framework capable of modeling superscalar out-of-order processors
- A novel methodology for full-system modeling and simulations on RISC-V
- A dynamic switch-based mechanism to characterize the target workload

- cycle-accurate performance analysis on a dynamic binary translation framework

(A RIOS

DESIGN METHODOLOGY

* Components
* Design of QEMU-CAS
 CPU-IO IRQ Interface

* ISA Model
* Simulating Multi-Core Target Systems

* A Switch-based Approach to Characterizing Workload

(A RIOS

Components

ROB

= Components: basic units of simulation

) Stages plpe llne topology Fetch » Decode »Rename » Execute » Writeback » Commit
- the highest layer of the CPU model 3 5
- maintain the timing and pipeline structure & ((issvequeve |

- Function Components: detailed functionalities [v J—{ ocemeron]
- including data queues, function units, ...

e Pipeline of Gem5 Out-of-Order CPU Model

Design of QEMU-CAS

(A RIOS

= Multi-thread Structure g =
- CPU Threads CPU Threads W
- IO Thread [DBT] [Reriermente } ™)
| -
SoftMMU
BUS
s Hybrid-driven Architecture I : i
- Execution-driven in performance CPU model 0 Thrend (S
- Event-driven for SoC simulation (o §
UART
10 Components) =2 e Memory

e Infrastructure of the simulator

12

(A RIOS

Memory Model
= Memory Region (MR) 0 ——> FFFFFFFFFFFFFFFF
- contiguous range of memory that can be | MRO: System Memory
accessed by the CPU and 10 AN mcoowooo e
“— \ N
!\ | L wR
00000000c0020000 —» OOOOOOOOfFfFfFff/f\WOOOOO —» fFFffrfffffrfffff
\/ MR3: pci‘m/emory]] :AAR4 |
\ 2 \ ,
= Easy for memory model customization « MR Tree

- Decoupled from 10 and CPU
- Allowing timing models on top of MRs

CPU-IO IRQ Interface (A RIOS

= A shared IRQ vector to keep the synchronization between different components

10 Device

Raising an IRQ

Reading CPU States
A Shared Vector

Hart 0 Hart 1

Accepting Interupt

IRQ Entry

No.
Privilege Level

Associated CSR States

e CPU and IO exchange IRQs through an IRQ Vector

14

ISA Model (4 RIOS

= The ISA Model is independent from CPU models

ISA Model Blocoder Core Model

$> Decodelnst = | e====

IsInstructionLegal

ISA_Decoder
............ 3 Decode

1
1
Context [l
1
1
1
1

Privilege Level @ | eececceeca-

Register
ISA_Context

> pmp

o The ISA model is independent of the core model

Discussion: Simulating Multi-Core Target Systems (A RIOS

s Our multi-thread architecture 1s suitable for
simulating multi-core system

- High concurrency in execution

= A key issue: trade-off of synchronization

- Balancing the performance & accuracy of simulating
multi-core system

Pre-configured

- A quanta-based approach . oG

Core Execution Loop { |

- /
SYNC

T o

e Core Execution with Quanta-based Synchronization
16

A Switch-based Approach to Characterizing Workload (ARIOS

= For large-scale workloads, traditional snapshot methods have limitations

- Limited Scalability issues
- Unable to reflect real-time behaviors

s A dynamic switch-based approach in QEMU-CAS

- Capable of dynamically switching core models in runtime
- A QEMU DBT & a performance core model
- Sharing other hardware components in emulated SoC

Checkpointing Strategy (ARIOS

» Ideally, Current core needs stopping at the time it receives a switching command
- Inreal case, the response may have a delay
——may lead to inaccurate performance picture

’ CPU Can Run

s Checkpointing on QEMU DBT .
- QEMU uses TBs (Trgnslation Blocks) as basic units (m B2
of instruction translation < *Excemms? e, EE—
- No speculative operations cross TBs WatForio .
SR JlNo

- A new exception with lowest priority < "é""é = —% interrupt Handler |

- EXCP_SWITCHING e

l| Execution ‘ J

e QEMU DBT workflow

18

Checkpointing on Performance Model

(A RIOS

= Instruction execution are not transactions in a performance core model
- Instructions may take multiple cycles from fetched to committed

- A simple switching method results in instruction loss

‘ Fetch Decode

Dispatch

IEW

o |

Fetch

Decode

Dispatch

IEW

o

Fetch

Decode

Dispatch

IEW

Commit ‘

Core Model Switching Request

’ Fetch

Decode

Dispatch

IEW

‘ Commit ‘ 1

Fetch

Decode

Dispatch

IEW

’ Commit ‘

e An out-of-order pipeline

Fetch

Decode

Dispatch

IEW

‘ Corthnit |

Fetch

Decode

Dispatch

o)]

Commit ‘

Fetch

Decode

Dispatcp IEW

‘ Commit ‘

Fetch

DecodJ Dispatch

IEW ‘ Commit

I
Fetch Decode Dispatch’ IEW ‘ Commit ‘

1
o Instructions in blue square are lost when switching

s Uncommitted instructions should not affect the architecture states
- None instructions are at backend.

- At least one fetched instruction in the frontend

- No pending interrupts in pipeline

19

Time Dilation (A RIOS

s Simulated Time vs Real Time

- Normally, they need to tick at the same time; But in some cases, simulated time need a dilation

s Timer
- TS(simulated) = TS(rt) x basefreq + delta

- —~——— -~ - - ~ ea e ~

s Clock Alignment in Core Switch

- CPU frequency writes to FDT when system booting
- Performance model cannot run as fast as QEMU

- deltaey, = TS,; * (basefreq,q — basefreq,e,) + delta,q

20

(A RIOS

EVALUATION

* Experiment Setup

e Simulator Performance

e Case Studies

Experiment Setup (A RIOS

s Fedora Linux in RISC-V
- OS Image: uboot + Fedora Rawhide

Table 1: Parameters of core models

s Core Configurations

Item Configuration
Fetch Width 8

ROB Entry Size 32

Load/Store Queue Entry 16

TLB Entry 8

BTB Size 1024

RAS Size 16
Tournament - Local Predictor Size 1024

Tournament - Local History Entry Bits 10
Tournament - Global History Entry Bits 12
Physical Register File 128

22

Simulator Performance (A RIOS

s In the simulation, QEMU DBT runs much faster
than performance model

- about 1000x Table 2: Performance of DBT and core model
Simulator Time per cycle(us)
QEMU DBT 0.241
Performance Model 249.024

Performance Model, no BPU 294.363

= Changing the inner system design causes
performance change to original model

- Taking BPU as an example, removing it results in 18%
performance loss

- far less difference when compared to DBT performances

Case Study: Linux Ping Test (ARIOS

Algorithm 5.1 run_ping_test.sh

Arguments: numbers of ping n
target website ur/

= Ping is a commonly-used tool to test the output path output_path
reaChabﬂity to Internet prof_tool begin
- can be used as a benchmark in hardware development ping -c n url > output_path
to test the capability of networking -

s Redirect to a text file

Branch predict accuracy

- to test the support of block devices

» Sampling per 0.1 million cycles . O : . : : - |

Sample Points

e PMU result of the execution 24

Case Study: Socket Communication (A RIOS

= We conduct an experiment to investigate the Client Server
hardware behavior in a socket network
. . . Hos_t socket() socket() SimUIa_ted
- building a client/server framework Machine RS
- server.c: run on a simulated OS — Establigh Connaction =
- client.c: run on host machine T
- focusing on the segments of data processing — e Read |———

Data Exchange -
De-serialize Serialize

Data Data
Processing Processing

s Hard for traditional snapshot approach = y
to locate the target program segments S

Write AEE—

- Scalability issues | L

___..-——/— -
. close() Close Connection close()
- Static approaches are hard to solve

real-time communications

A

o A client/server framework used in the experiment

25

Case Study: Socket Communication(2) (A RIOS

= o
= Dynamic model switching can accurately e
characterize the workload
- run data processing on performance model
- switch to QEMU DBT at socket communication = - - o - -
Time(s)
- = o TOMTS IR 1337 1361 1363 4466 4468 6432 6485 9838 9840 13372 13376 1527.4

run by QEMU

o Time Spent on performance model & QEMU DBT

90%

80%

Branch predict accuracy

60%

IPC

50%

45%

H
i
o | f
100%
i i
80%
I i I i i
60% i i 1 i H
40% i i [i H
: 1 2 3 4 5
5C

0 10 20 30
Sample Points

DTLB hit rate

e PMU result of the execution -

(A RIOS

CONCLUSION

Conclusion (A RIOS

= We build a hybrid-driven and full-system simulator adopted from QEMU

= We propose a dynamic switch-based approach to characterizing large
workload

= We use several real-world applications to evaluate the capability and
performance of our simulation framework.

Future Work (YRIOS

= Enhanced implementation on multi-core systems

s Compatibility with other memory models

