
Cache Coherent Framework for
RISC-V Many-core Systems

RISC-V International Open-Source Laboratory

Tsinghua University

Zexin Fu, Mingzi Wang, Yihai Zhang, Zhangxi Tan

Contents
● Motivation

● System architecture
○ Coherence protocol design

○ Coherence controller design

○ Network-on-Chip design

● Verification methodology

● Evaluation

● Conclusion and future work

2

Motivation

3

● Frequency

● Single-threaded performance

● Core count

Rapidly growing
core count

2. Interconnect scalabilityNew challenges

1. Cache coherence maintenance

3. Large system verification

Motivation

4

Our Solutions

2. Interconnect scalability

1. Cache coherence maintenance

3. Large system verification

2. Scalable Network-on-Chip IP

1. Verified cache coherent fabric

3. Generated verification models
 combining simulation & formal

Challenges

System architecture

● Coherence protocol design

● Coherence controller design

● Network-on-Chip(NoC) design

5

• Features

• Tile-based flexible design

• Scalable package-switching NoC

• Two-level coherence control to reduce traffic

• Tiles

• Compute Tile

• Home Tile

• I/O Tile

• PCIE Tile

6

System architecture

System architecture

• Features

• MESI protocol

• Optimize for sequence of load then store requests

• Sparse directory-based cache line tracking mechanism

• Less directory overhead while low coherence traffic

• Five Coherence message

• Each form a virtual network to avoid deadlock

7

Coherence protocol design

Channels Can be blocked? Description

Request Yes Request from private cache to SCU

Evict Yes Evict request from private to SCU

Response No Response message, both direction

Snoop No Snoop request from SCU to private
cache

Data No Data message, both direction

Five virtual networks

• Private Cache Coherence Controller

• Private cache

• Snoop request handling logic

• Coherent fabric interface with cores

• Snoop Control Unit(SCU) & LLC Controller

• Directory

• Coherence control logic

• Last-level Cache

• Coherent fabric interface with the main memory

8

Coherence fabric

Coherence controllers

• Features

• 2D Mesh topology
• High scalability
• Easy to layout on-chip

• Virtual Channel (VC) flow control
• Multiple virtual channels time-division multiplex physical

channels to improve link utilization.
• Flits from different messages can be put in the same VC to

improve buffer utilization.

• Quality of Service (QoS) support
• Priority based on the QoS value of packages
• Extra real-time VC channel for I/O and real-time

applications

9

Network-on-Chip(NoC) design

NoC architecture

Verification methodology

● Simulation-based verification

● Formal verification

● Combine both methods

10

11

Verification methodology

Simulation-based

Easy to
implement

Functional &
performance

verify

Formal

High
coverage

Verify on wide
parameter

space

Our approach

Combine

12

Verification methodology

Combined verification flow

Simulation

• DUT:

• Gem5 ruby cache coherence model

• RTL implementation

• Tester:

• Ruby random tester

Formal

• DUT:

• Murphi generated from Gem5 ruby model

• Tester:

• CMurphi

Ruby

13

Verification methodology

Example of generating Murphi code from Ruby code

Ruby Code Murphi Code

Ruby

Code generating flow

● Generate Murphi formal model from Ruby simulation model.

Evaluation

● Cache Performance

● Formal verification

● ASIC Prototype

14

Cache Performance

• Benchmark: Lmbench

• Configuration

• Core: ~Arm A75
• Max throughput: 2 load and 1

store per cycle

• Cache
• L1 I/D: 32KB, 4 ways

• L2: 128KB, 4 ways

• LLC: 1MB, 8 ways

15

Lmbench cache benchmark result:
(a) latency; (b)bandwidth

Formal verification

• Generated Murphi code from Gem5 Ruby SLICC code

• Found deadlock in a Ruby model in gem5

• The model is design for a point-to-point ordered

interconnect, when it shift to a unordered NoC, it runs

into deadlock

• Discovery:

• Formal verification is effective for finding deadlocks.

• When the number of cores exceeds three, the

verification time will be prohibitively long.

16

Murphi formal verification results

ASIC Prototype
• Testchip tapes out at 6nm process

• Test cache coherence system with NoC

• Verify NoC backend implementation

• System configuration
• 1 Home Tile

• with 512 KB LLC and 100 KB system directory

• 8 Compute Tile
• 32 KB L1 instruction cache, 32 KB L1 data cache

• 128 KB L2 cache.

• 3x3 Mesh NoC

• Backend implementation
• Target frequency: 1GHz

• Process corner: 0.85V@TT

• Total area: 4.52 mm2, each
• Compute Tile: 0.51 mm2

• Home Tile: 0.46 mm2

17

ASIC prototype layout

Experience

1. The performance overhead of coherence need to be reduced.

=> including cut down the critical path of coherence transactions, filter more coherence traffic at

near core side and design more efficient coherence protocol.

2. Formal verification is powerful but has state explosion problem

=> Exploring ways to accelerate formal tools, including multi-threading and hardware acceleration

3. Back-end implementability is important in Network-on-Chip design

=> High bandwidth designs may strain routing resources

18

Conclusion and future work
This work presents

• A framework of a many-core system consisting of four kinds of tiles;

• A 2D-mesh-based Network-on-Chip;

• A verification process combining simulation and formalization from model to RTL.

Future work

• Exploring coherence system and cache design;

• Improve NoC with more real workloads;

• Large-scale system-level emulation;

• Accelerate formal verification process;

• Try and improve Open EDA flow

19

