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Motivation
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● Frequency

● Single-threaded performance 

● Core count

Rapidly growing 
core count

2.  Interconnect scalabilityNew challenges

1. Cache coherence maintenance

3. Large system verification



Motivation
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Our Solutions

2.  Interconnect scalability

1. Cache coherence maintenance

3. Large system verification

2.  Scalable Network-on-Chip IP

1. Verified cache coherent fabric

3. Generated verification models 
    combining simulation & formal

Challenges



System architecture

● Coherence protocol design

● Coherence controller design

● Network-on-Chip(NoC) design
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• Features

• Tile-based flexible design

• Scalable package-switching NoC

• Two-level coherence control to reduce traffic

• Tiles

• Compute Tile

• Home Tile

• I/O Tile

• PCIE Tile
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System architecture

System architecture



• Features

• MESI protocol

• Optimize for sequence of load then store requests

• Sparse directory-based cache line tracking mechanism

• Less directory overhead while low coherence traffic

• Five Coherence message

• Each form a virtual network to avoid deadlock

7

Coherence protocol design

Channels Can be blocked? Description

Request Yes Request from private cache to SCU

Evict Yes Evict request from private to SCU

Response No Response message, both direction

Snoop No Snoop request from SCU to private 
cache

Data No Data message, both direction

Five virtual networks 



• Private Cache Coherence Controller

• Private cache

• Snoop request handling logic

• Coherent fabric interface with cores

• Snoop Control Unit(SCU) & LLC Controller

• Directory

• Coherence control logic

• Last-level Cache

• Coherent fabric interface with the main memory
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Coherence fabric

Coherence controllers



• Features

• 2D Mesh topology
• High scalability
• Easy to layout on-chip

• Virtual Channel (VC) flow control
• Multiple virtual channels time-division multiplex physical 

channels to improve link utilization.
• Flits from different messages can be put in the same VC to 

improve buffer utilization.

• Quality of Service (QoS) support
• Priority based on the QoS value of packages
• Extra real-time VC channel for I/O and real-time 

applications
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Network-on-Chip(NoC) design

NoC architecture



Verification methodology

● Simulation-based verification

● Formal verification

● Combine both methods
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Verification methodology

Simulation-based

Easy to 
implement

Functional & 
performance 

verify

Formal

High 
coverage

Verify on wide 
parameter 

space

Our approach

Combine
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Verification methodology

Combined verification flow

Simulation

• DUT: 

• Gem5 ruby cache coherence model

• RTL implementation

• Tester:

• Ruby random tester

Formal

• DUT: 

• Murphi generated from Gem5 ruby model

• Tester:

• CMurphi

Ruby
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Verification methodology

Example of generating Murphi code from Ruby code

Ruby Code Murphi Code

Ruby

Code generating flow

● Generate Murphi formal model from Ruby simulation model.



Evaluation

● Cache Performance

● Formal verification

● ASIC Prototype
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Cache Performance

• Benchmark: Lmbench

• Configuration

• Core: ~Arm A75
• Max throughput: 2 load and 1 

store per cycle

• Cache
• L1 I/D: 32KB, 4 ways

• L2: 128KB, 4 ways

• LLC: 1MB, 8 ways
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Lmbench cache benchmark result: 
(a) latency; (b)bandwidth



Formal verification

• Generated Murphi code from Gem5 Ruby SLICC code

• Found deadlock in a Ruby model in gem5

• The model is design for a point-to-point ordered 

interconnect, when it shift to a unordered NoC, it runs 

into deadlock

• Discovery:

• Formal verification is effective for finding deadlocks.

• When the number of cores exceeds three, the 

verification time will be prohibitively long.
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Murphi formal verification results



ASIC Prototype
• Testchip tapes out at 6nm process

• Test cache coherence system with NoC

• Verify NoC backend implementation

• System configuration
• 1 Home Tile

• with 512 KB LLC and 100 KB system directory

• 8 Compute Tile
• 32 KB L1 instruction cache, 32 KB L1 data cache

• 128 KB L2 cache. 

• 3x3 Mesh NoC

• Backend implementation
• Target frequency: 1GHz

• Process corner: 0.85V@TT

• Total area: 4.52 mm2, each
• Compute Tile: 0.51 mm2

• Home Tile: 0.46 mm2
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ASIC prototype layout



Experience

1. The performance overhead of coherence need to be reduced.

=> including cut down the critical path of coherence transactions, filter more coherence traffic at 

near core side and design more efficient coherence protocol.

2. Formal verification is powerful but has state explosion problem

=> Exploring ways to accelerate formal tools, including multi-threading and hardware acceleration

3. Back-end implementability is important in Network-on-Chip design

=> High bandwidth designs may strain routing resources
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Conclusion and future work
This work presents 

• A framework of a many-core system consisting of four kinds of tiles;

• A 2D-mesh-based Network-on-Chip;

• A verification process combining simulation and formalization from model to RTL.

Future work

• Exploring coherence system and cache design; 

• Improve NoC with more real workloads; 

• Large-scale system-level emulation;

• Accelerate formal verification process;

• Try and improve Open EDA flow
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