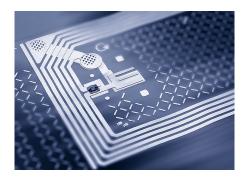
Image: Norwegian University of Science and Technology


Minimizing the Energy Usage of Tiny RISC-V Cores

Asbjørn Djupdal, Magnus Själander, Magnus Jahre, Snorre Aunet

Introduction

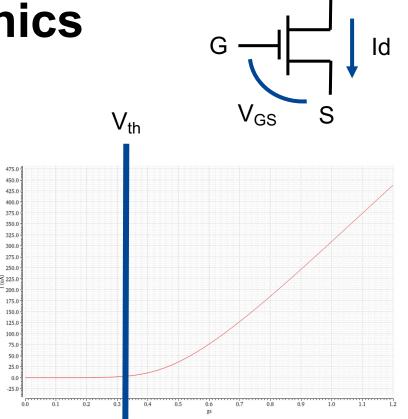
- Minimizing energy is important for many applications
 - Biomedical devices
 - RFID tags
 - Devices using batteries or energy harvesters

- We evaluate two approaches for low-energy CPU cores
 - Reduce the supply voltage (V_{DD})
 - Reduce the complexity of the core

Low Power Electronics

• Power =
$$\frac{1}{2} \times \alpha \times C \times f \times V^2$$

- Reducing supply voltage (V_{DD}) is the most effective way of reducing power
- DVFS is commonly used
 - But normally not reduced below transistor threshold voltage (V_{th})



Subthreshold Electronics

- Transistor threshold voltage (V_{th}):
 - Gate-to-Source voltage needed for transistor to "turn on"

• $V_{DD} < V_{th}$

- Transistors will never fully turn on
- Still small currents that depend on the gate-source voltage
- Can be used for signaling
- Power decreases by orders of magnitude compared to nominal supply voltage

Current vs gate-to-source voltage

Subthreshold Electronics

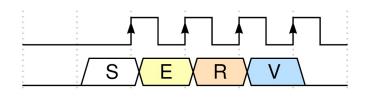
- First used in Swiss watches in the 1970s
- Extensively researched in the 1990s and 2000s
- Still not commonly used in industry
 - Some commercial implementations exist (Ambiq SPOT)
- Challenges
 - Very slow due to small currents (kHz to a few MHz)
 - Exponential dependencies on the threshold voltage (V_{th})
 - Threshold voltage affected by process variations, temperature, supply voltage variations, ...
 - Performance will vary significantly between samples and different environments

Custom Subthreshold Library

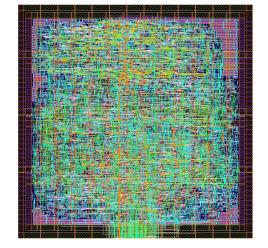
- We designed a cell library for a commercial 130nm process $V_{th} = 350 \text{mV}$
- Characterized for a range of voltages
 - 250mV 600mV
- Transistors sized for subthreshold operation
 - Limit V_{th} and frequency variability
- 15 gate types of different sizes
 - 36 gates in total

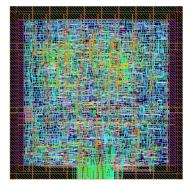
Energy Efficient Architectures

- What is the most energy efficient CPU architecture?
 - Power is roughly proportional to core complexity (area)
- We decided to investigate small cores of low complexity
- Two tiny cores are compared
 - PicoRV32 (conventional multicycle architecture)
 - SERV (multicycle bit-serial architecture)
- Both configured as RV32E with equivalent feature set
- Both cores use our custom latch-based register file


PicoRV32

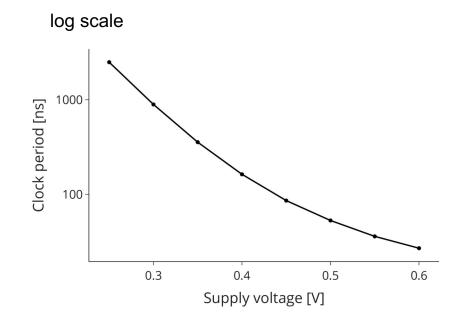
- Designed to be tiny in area
- Multicycle
 - Pipelined but executes a single instruction at a time
 - Average CPI around 4
- 32-bit parallel datapath
- https://github.com/YosysHQ/picorv32


SERV


- Claims to be the world's smallest RISC-V CPU
- Bit-serial datapath
 - ALU works on one bit at a time
 - Tiny in area
 - CPI between 35 and 76
- https://github.com/olofk/serv

Physical Layout

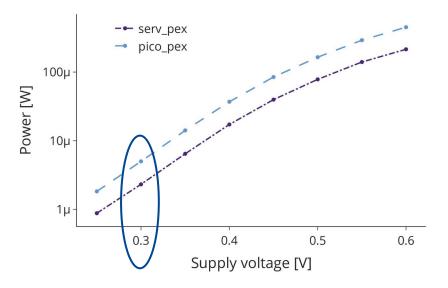
- · Full physical flow
 - Cadence tools
- Simulated with Spectre
 - SPICE; transistor level simulations
 - Extracted parasitic
- PicoRV32
 - $0.23 mm^2$
 - 54 632 transistors
- SERV
 - $0.13 mm^2$
 - 27 008 transistors



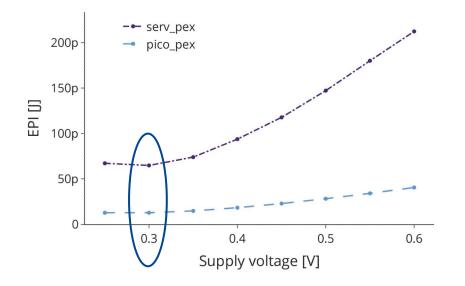
PicoRV32

SERV

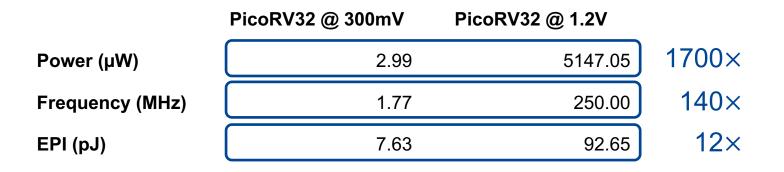
Clock vs Supply Voltage



- Clock period determined by static timing analysis
- Exponential increase in clock period with decreasing supply voltage


Power vs Supply Voltage

- Power decreases by three orders of magnitude, going from 1.2V to 300mV
- At 300mV
 - SERV 2.3 μW
 - PicoRV32 5.0 μW
- PicoRV32 dissipates twice as much power as SERV


Energy per Instruction (EPI)

- Energy minimum at 300mV
 - Below threshold voltage
- PicoRV32 one fifth the EPI of SERV
 - SERV 64.8 pJ
 - PicoRV32 12.7 pJ

Subtreshold vs Nominal Supply Voltage

Note: Simulated with standard library without extracted parasitic, i.e., EPI is 7.63 pJ instead of 12.7 pJ at 300 mV

Conclusion

- Energy optimal supply voltage lies below threshold voltage
- The simplest core (SERV) dissipates less power
- The more complex core (PicoRV32) is more energy efficient
 - The increased performance more than makes up for the increased power dissipation