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ABSTRACT
The landscape of technology is changing and it is becoming
increasingly harder for proprietary architectures such as x86
and ARM to meet ever evolving demands. Instead it is impor-
tant to look towards architectures that are easily malleable
and scalable to meet the use cases of the industry, architec-
tures such as RISC-V. RISC-V is an important vehicle for
driving technological developments forward. One of the most
important features of RISC-V is its modularity,. New instruc-
tion extensions to be easily implemented for it and increase
RISC-V’s performance in many domains. However, there are
few ways to test such proposed instruction extensions on real
world applications.

In this work an extension to Sail, RGen, is presented.
RGen aims to provide an infrastructure for generating com-
piler, simulator, and real-world application support through
machine readable specifications. A new extension for the
RISC-V ISA, the matrix extension, is explored and imple-
mented in the Sail language in order to test and validate
RGen. The language extension proposed by RGen, RGenIR,
is a high-level descriptor and is added as an extension to
the base Sail language. RGen is used to generate code for
a compiler, simulator and real-world application. Using the
designed instructions as inputs, RGen is evaluated in terms
of a code generation tool. Furthermore, the generated sup-
port allows for the new instructions to be run in PyTorch
and evaluated on an emulated RISC-V environment. Further
work is also discussed to explore and enhance RGen’s scope,
including comments towards limited code generation, testing
environments, and making it open source.
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1 INTRODUCTION
When a new instruction extension is designed, a new machine
specification must be written for it. For proprietary architec-
tures, the specification might be sent to a vendor, and an
engineer might have to wait for the vendor to finish an imple-
mentation before they can continue to the application layer.
Many pain points can occur when both communicating with
the vendor for implementations and the time loss waiting for
the vendor. On the other hand, RISC-V allows the engineer
to be completely self-reliant and implement the instruction
extension themselves. Instruction extensions can be quickly
designed, implemented, and validated on the application layer

because the engineer is able to work closely with all parts of
the system.

However, a great amount of time is lost translating the
specification over to implementation. While more mature
architectures such as ARM have tools to parse their specifi-
cations[5], RISC-V does not. Each time an implementation
needs to be handwritten, it can lead to time losses from hu-
man errors such as incorrectly porting over bit fields, instruc-
tion mnemonics, execution functions, etc. If the engineering
time taken to implement, test, and validate the instruction
extension takes too long then the window of opportunity
to utilize the instruction extension can be lost. Thus, it is
important to have a machine readable specification in or-
der to reduce the time lost from the implementation step
of instruction design and allow for more effort to be put
towards testing and validating the usage of the instruction
extension. Alongside, there needs to be ecosystem support
for the specification.

It is important to survey solutions that will help assess
the performance of an instruction in real-world applications.
Fully supported native RISC-V environments are rare, even
more so those that can be easily modified to help test the
performance of newly proposed instructions. This work uses
sequential models for simulated environments which, while
not representative of real hardware, can be used as a re-
placement for validation and co-design support of hardware
development[10, 4, 12]. Unfortunately, the current software
environment of RISC-V has few open source tools that can
generate support for compilers, simulators, and applications
from instruction semantics.

The goal of this work is to tackle these problems and sup-
port and speed up instruction extension design by connecting
multiple open source projects. The Sail language is used as
the origin point for code generation and takes on the role of
a machine readable specification. RGen adds an extension to
the Sail[3] language (RGenIR) for high-level descriptions of
operations. Then, the backend of Sail is extended to compile
and generate files that will aid users in regards to compilation
toolchains (LLVM[8]), simulation environments (QEMU[1]),
and real-world applications (PyTorch[9]). This gives any de-
fined instruction extension full validation support. It also
supports testing for performance by introducing the instruc-
tion extension to an environment in which it may be used
often. In order to test and validate RGen, a simple design of a
matrix extension is proposed and used in generated PyTorch
operations to be evaluated on a RISC-V environment.
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Figure 1: Example RISC-V Sail definition for a macco.mm
instruction.

2 MATRIX EXTENSION DESIGN
A simple matrix extension is proposed as an example target
extension for RGen for testing and validation. In the imple-
mented matrix extension any matrix-vector register (VR)
can be freely designated to any matrix-accumulator register
(MR). This decision was made to reduce implementation
complexity and keep the design space open for modifications.
Each VR represents a register within the file of registers that
contains 512-bits of elements. Each MR represents a register
from the file of 64x64 byte registers where the results of
instructions are accumulated. Registers are defined in respect
to bits because the matrix registers should adapt to the needs
of the application.

Memory (load/stores) and arithmetic (outer/inner-product)
operations are implemented for testing. These operations are
based on the reverse-engineered Apple-AMX instructions
found by Cawley[2]. The instruction semantics, at the time of
writing, for the matrix extension instruction Matrix-Multiply
Accumulate (macco.mm) can be seen in Figure 1. The def-
inition is shortened for clarity, however it can still be seen
that new matrix specific functions, such as matrix registers
and matrix register manipulating functions, are added to the
Sail definitions. In total, 22 new instructions are defined and
implemented.

Figure 2: RGen’s architecture with respect to inputs, Sail, and
output artifacts.

3 RGEN ARCHITECTURE
RGen is an infrastructure that provides code generation
support for a compiler, RISC-V emulator and real-world
application. Since RGen introduces completely new types
and targets to the Sail compiler, all sections of it must be
extended. The architecture of RGen, including its inputs,
middle-end and outputs can be seen in Figure 2.

A new language extension RGenIR is introduced as an
input to Sail in order to give it new functionality. RGenIR
allows Sail to quickly generate support for a real-world appli-
cation, a feature it did not have before.

The frontend and backend components of Sail are also
enhanced. The Sail frontend is extended to understand new
types and patterns in order for it to correctly parse RGenIR.
The Sail backend is extended in order for it to correctly
translate the given definitions to a multitude of formats, each
one different from the other.

3.1 RGenIR Design
Currently, the Sail Language is tailor made for instruction
semantics. However, many user-level applications do not
require that level of detail. As a result, RGenIR was devised
as a way to provide Sail with the functionality to generate
support for user-level applications with minimal effort.

The RGen language extension for Sail, RGenIR, follows
the same syntactic rules of the base Sail Language. However,
it adds a new rgenir clause, new patterns, and new type
representations in the form of the Tensor type and Scalar
type. The structure of the RGenIR takes inspiration from the
TableGen definitions of MLIR[6]. It goal is to provide a simple
definition to generate support for whole-tensor operations.
The syntax of rgenir can be described using Figure 3.

An RGenIR definition is defined per-operation and will
always start with an rgenir clause declaration followed by
an RGENIR_DEF name that is used to group up similar
RGenIR definitions. Two RgenIR definitions with the same
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Figure 3: Structure of an RGenIR definition.

RGENIR_DEF will be grouped together, but ones with a
different RGENIR_DEF will not. This is to enhance user
debuggability by putting the RGenIR definitions of a similar
type closer together. Furthermore, it reduces code generation
complexity of the backend.

The RGENIR_DEF is followed by a per-operation RGenIR
definition. Following the declaration is the per-operation
constructor, starting with the formal name of the opera-
tion Sail_OpName. The parameters for the operation are a
comma-delimited list in order of: the intermediate representa-
tion level name of the operation, sail_ir_name, and another
comma-delimited list describing the properties of the opera-
tion. These can be tied to backend specific implementations.
The pattern of this section of an RGenIR definition is similar
to the one used by MLIR[6] in TableGen. The MLIR pattern
is simple and descriptive, giving a reader all the information
they need about the operation in a high-level description. by
using similar patterns, RGenIR can eventually be used to
generate similar support for functions that use this MLIR
pattern such as Torch-MLIR[11].

After the constructor is the body definition of RGenIR
which is a high-level description of the operation. This section
of the RGenIR definition uses the formal syntax defined by
the Sail Language. In particular, it makes use of the Sail’s
syntax for variable declaration.

The variable definitions starts with a VAR_NAME must
be of: summary, description, inputN (where N is an integer),
execute_* (where the asterisk is replaced by the extension
name), output, or DEF_END.

RGenIR only supports the following types for variables:
string, Tensor, or Scalar. Strings denote lines of text, while
Tensors and Scalars, are types used for describing the execu-
tion of the operation itself. Tensor and Scalar types have a
parameter (enclosed within round brackets) denoting which
Sail primitive type (int for set of integers or real for set of
real numbers) its data type is.

The value for Tensor and Scalar types is always unde-
fined. The value for strings depend on if it is a summary,
description, or execute_* string. Summary and description
variable declarations are for describing the operation. The
asterisk within an execute_* declaration must be replaced
with an associated instruction extension name. Furthermore,

Figure 4: Tree relation of RGenIR types

execute_* strings must contain the data type of the operation
and the mathematical op relationship between its input(s).

The syntax of the body of RGenIR was built this way to
reuse much of the functionalities offered by the Sail language
and reduces the amount of extra engineering work needed
to modify it. The defined types were designed to ensure the
operation definition conveys as much as possible in as little
as possible.

3.2 RGenIR Sail Pattern Matching
In order to correctly pattern match for the RGenIR the Sail
frontend must be extended. Firstly, different types relating
to RGenIR are added to Sail.

These defined types are used to abstract different possible
patterns for the Sail frontend. It allows for reusability and
reduces code duplication. Currently, RGenIR types are simple
and can be substituted with already defined Sail types. How-
ever, they have been defined in order to provide a clean split
from the base code. This way, as RGenIR evolves and requires
patterns that the original patterns do not want to support, it
can easily add them without worrying about contaminating
older Sail types.

The types defined for RGenIR have a tree-like relationship
as seen in Figure 4. Each declared type has two forms. The
first is the auxiliary type which is what the Sail compiler
interacts with for semantic checking. The second is the non-
auxiliary wrapper that is used to ensure each type has location
information that can be used to trace the pattern (denoted by
the l node). Each auxiliary type can have multiple patterns
defined for it for pattern definition reusability and readability.
The patterns themselves can consist of further high-level
patterns, such as a combination of other RGenIR types, or a
primitive Sail base type, such as strings.

Pattern matching is done using simple string matching
logic where the Sail frontend parser will look through all the



CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023 Derek Zijie Tu and Zhangxi Tan

possible combinations of a defined type to ensure correctness
and does this in a tree-traversing fashion. Looking at Figure 4
as an example, for an RGenIR A type, the parser will expect
to find a pattern containing RGenIR B type and RGenIR C
type. An RGenIR B type is expected to have child patterns
of RGenIR D type and RgenIR E type. Both of these types
will have base Sail types as children that are the leaf nodes of
the tree. Like with all tree-traversing algorithms, the pattern
matching algorithm will stop at the leaf nodes and ensure
the section of the string it is currently is the correct type.
After confirming the patterns at the leaf node, the algorithm
will propagate the results back upwards.

The implementation of type-checking is also done in a
tree-like manner and follows the same logic as the base Sail
types. Each type will be deconstructed into the types of its
child nodes, which will also be deconstructed. This continues
until all leaf nodes in the Sail AST are visited and checked
to ensure type correctness. Once this process is done the
original parent node will be returned and marked as correctly
type checked.

4 RGEN SAIL BACKEND EXTENSION
The Sail backend is modularized so any new target outputs
can be written as extension backends to Sail. Since the im-
plementation of each backend is independent of the other
implementation files are less bloated and much easier to man-
age. Each Sail backend will take the parseable AST from the
Sail frontend and grab the relevant information needed to
generate their respective files. The full Sail definition (exam-
ple shown in Figure 1) is used to construct the generic ASTs
used for code generation. Instruction encode and instruction
decode information is generated through the defined encdec
and assembly mappings. The functionality of an instruction
is generated through the execute function of the generic Sail
AST.

4.1 RGen LLVM Support
RGen offers support towards the LLVM through instruc-
tion legalization and selection. Helping LLVM understand
how to legalize and select the instructions can be achieved
by introducing full instruction semantics such as bit-fields,
mnemonics, and argument string format. RGen does this by
automatically generating LLVM’s TableGen definitions[7].

For this work, three main files are generated: an instruction
format TableGen definition, a scheduler TableGen definition,
and finally an instruction information TableGen definition.
The instruction decode (encdec mappings) information is
used to generate the instruction format TableGen definitions
while the instruction mnemonic inputs (assembly mappings)
are used to generated both the scheduler TableGen definitions
and the instruction information TableGen definitions.

Adding an instruction extension to the LLVM backend
also involves adding the generated files to existing ones, as
well as ensuring the LLVM understands any new types that
may have been added with the extension. Many of these
additions are handwritten because they require little effort.

For this work, the matrix extension is added as a RISC-V
subtarget feature by defining it in the RISCV TableGen file
and RISCVSubtarget header file. The generated instruction
scheduler definitions are added to the general RISCVSchedule
TableGen file, and the generated instruction information is
added to the RISCVInstrInfo TableGen file. Finally, because
the matrix extension introduces a new matrix register type
(MR) to the LLVM, information about the matrix registers
is added to the RISCVRegisterInfo TableGen files as well as
the RISCVDisassembler code.

4.2 RGen QEMU Support
There are two main sections within the QEMU execution loop
that must be extended in order to enhance QEMU for it to
correctly simulate the added instructions. These two sections
are extending QEMU’s decoder and Tiny Code Generator
(TCG). Generating support for QEMU’s decoder requires
RGen to fully translate over the instruction semantics such
as bit-fields, as well as the instruction mnemonic. Further-
more, the format of each instruction argument string must be
correctly parsed in order to generate the correct instruction
argument string alias required by QEMU.

Generating support for QEMU’s TCG requires RGen to
correctly set up all the instruction parameter based TCG
variables as well as generating all the support to allow the
instructions to modify the simulated CPU state. This in-
cludes creating helper methods that meticulously follow the
QEMU code generation workflow. Furthermore, the helper
methods must be generated with functionally correct code
that compiles without further assistance from the engineer.

The instruction decode information from Sail (encdec map-
pings) is used to generate QEMU instruction decode files,
while the instruction execution information from Sail (execute
functions) is used to generate the QEMU TCG code.

4.3 RGen PyTorch Support
Enhancing PyTorch and adding the relevant matrix oper-
ations as PyTorch Tensor operations requires generating
support for certain areas of PyTorch’s interface and data
flow. These two areas are PyTorch’s Python API genera-
tor and the associated C++ backend implementations of
each operator. Unlike code generation for LLVM and QEMU,
RGen uses RGenIR for PyTorch support generation as Py-
Torch operations do not require instruction-level semantics.
RGen generates a one-to-three mapping of input definitions
to PyTorch operations. Each input definition has different
parameters and fulfill different roles within the PyTorch
ecosystem and RGen must ensure each operation is gener-
ated in a correct manner. Each C++ implementation follows
the same basic logic: ensures the given data types within each
input tensor is correct, sets up the tensors so that the data
within them can be manipulated, and finally manipulates the
data within each given tensor in accordance to associated
PyTorch operation.



RGen: A Tool for Generating RISC-V Compiler, Simulator, and Application Support CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023

Table 1: Lines of code generated of target artifacts for matrix extension instructions.

Instruction/Op Number of Handwritten Lines LLVM QEMU PyTorch

macco.mm 30 26 61 x
fmacc64o.mm 30 26 62 x
mvv.mm 23 25 49 x
loadz.mm 36 25 53 x
storez.mm 42 25 49 x
All instructions (22) 696 593 1226 x
Sail_MACCOMMOp 10 x x 41

Table 2: Code generation results for RGen targets

Code Generation Target Code Generation Time(s) Code Size (%)

LLVM 11.613 0.017
QEMU 12.124 0.83
PyTorch 0.23 0.0057

5 TESTING AND EVALUATION
RGen’s code generation has been evaluated in terms of lines
of code generated, code generation time, generated code
size, and stopwatch runtime. All work was done run on a
GNU/Linux x86_64 distribution with an Intel(R) Xeon(R)
Silver 4214 CPU at 2.20GHz. Results related to lines of code
generated can be seen in Table 1. Results for code generation
time and generated code size can be seen in Table 2.

5.1 Lines Of Code Generated
Lines of code generated are measured per target backend.
Table 1 shows the amount of lines of code generated for some
of the matrix extension instructions using the Sail language
for instruction semantics (the targets are LLVM and QEMU
in columns three and four respectively). The average ratio of
handwritten to generated code is 1:2.6. Arithmetic instruc-
tions such as fmacc64o.mm and macco.mm have higher ratios
of 1:2.9 because there are no optimizations done for them and
many lines of code are generated 1 to 1. On the other hand,
memory instructions such as loadz.mm and storez.mm have
lower ratios of 1:2.2 and 1:1.7 respectively because RGen tries
to optimize and combine some lines of code. PyTorch files
(column five) were generated using RGenIR and the ratio of
amount of handwritten code to generated PyTorch code is
1:4. Both results show that RGen has promise in ensuring
users can save a lot of time that would otherwise be spent
writing individual implementations.

5.2 Code Generation Time
The code generation times can be seen in the second column of
Table 2. Times were recorded using Linux’s time function and
the real value was recorded. The longest amount of time is 12
seconds with the fastest being 0.23 seconds. RGen compilation
time is fast enough that the amount of time saved by those
12 seconds of compilation is already a great boon, especially

when considering the result is support for three very different
target artifacts. The amount of time required by RGen to
generate code is acceptable for validation, verification, and
testing purposes.

5.3 Generated Compiled Code Size
The third column of Table 2 shows the size of the code when
it is compiled into its respective target application. Byte
size numbers for QEMU and PyTorch were calculated by
analyzing the byte numbers for the compiled binaries that
used the generated code. The byte size number for LLVM was
found by calculating the approximate size of elements and
classes added due to the inclusion of the matrix extension.
The percentages are then found by calculating how large the
generated code is in relation to the full size of the application.
The sizes of the compiled code are small and represent a very
small percentage portion of the application they are a part
of. Generated support for QEMU which is the largest, is still
less than 1% of the whole QEMU application. PyTorch in
particular has a low amount because the implementation of
the Ops are always simple small lines of code, resulting in
smaller compiled code sizes. The compiled size of RGen’s
generated code is acceptable and will not negatively affect
the size of the overall application.

5.4 Runtime Metrics
The native RISC-V environment was emulated on QEMU7.2.0
using a Fedora Rawhide 20200108 kernel and a Fedora RISC-
V 64-bit Rawhide drive with 64 Gigabytes of memory and 4
cores. The generated matrix extension instructions were run
in generated PyTorch Matrix-Multiply Accumulate (MMA)
Ops. Each Op was run as follows: 64-bit operations with
eight element vectors, 32-bit operations with sixteen element
vectors, and 16-bit operations with 32 element vectors. Stop-
watch based runtime was calculated by using the Python
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Table 3: Runtime (seconds) of generated PyTorch MMA Ops

Data Type Time (s)

Integer32 0.053
Float64 0.016
Float32 0.0046

time package to calculate the time between starting the Op
and ending it. Results are shown in Table 3.

The runtime in seconds of the generated PyTorch Ops
all take less than a second, and most of the operations take
less than 0.02 seconds. These are promising numbers con-
sidering that the PyTorch Ops are being run on a emulated
environment, which is naturally going to be slower than
a non-emulated one. Since runtimes are low, the support
generated by RGen can reliably be used for validation and
performance-based evaluation of instruction extensions under
real-world applications.

6 FUTURE WORK
Future considerations for this work are: increasing the robust-
ness of the Sail generic AST to C++ translator, enhancing
the testing environment, and opening RGen up to the com-
munity.

The current code generation from the AST to C++ is a
simple one-to-one translator utilizing basic logic to filter out
AST information that may not be needed. This can result
in some unused lines being generated. Furthermore, this
disallows for more complex statements to be written in the
Sail language. The level of the translation is sufficient for the
current iteration of the matrix extension. However, once the
matrix extension is expanded (or more complex extensions
are tested) and requires more than simple statement logic,
the code generation logic will also need to be enhanced as
well.

Due to the lack of easily attainable and modifiable hardware-
level simulators it is difficult to quickly test performance and
energy efficiency of the added extensions. Using software-
level simulators only allows for functionality verification and
ballpark estimations on the performance values of the in-
structions. To enhance the testing environment and give
more accurate performance numbers future work can entail
code generation of hardware languages, and introducing a
cycle-accurate simulator. While giving better performance
metrics, both solutions can also be helpful in many other
areas. Introducing hardware language code generation will
also allow for hardware and software co-driven development,
enhancing the development environment of both sides.

At the time of writing, RGen is not in a state that allows
it to be easily used by the open source community. However,
there are plans to open this work to the community.

7 CONCLUSION
This work introduces and describes an infrastructure for
realizing a new RISC-V extension from design to running

on a real-world application. A simple matrix extension for
RISC-V is proposed, defined in the Sail Language, and used to
target LLVM and QEMU code generation. The Sail Language
is also extended to understand a new type, RGenIR, so high-
level descriptors of operations can be used for PyTorch code
generation. RGen’s code generation is evaluated and found
to be acceptable. The matrix extension is run in PyTorch on
an emulated RISC-V environment with promising results.

Future work for RGen is discussed and it is acknowledged
that there are improvements to be made in regards to the Sail
generic AST to C++ translation and testing environment.
This work is a step forward for providing quick access to pre-
liminary testing and evaluation of simple extensions. However,
there is more work to be done to increase its flexibility and
scope and open RGen up to the community. Though there
are enhancements to be made, this work has shown promis-
ing results for automatic code generation and validation of
instructions from a single language source.
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