
QEMU-CAS: A Full-System Cycle-Accurate Simulation
Framework based on QEMU

Ye Cao
ye.c@rioslab.org

RIOS Lab, Tsinghua University

Zhixuan Xu
sxxuzhixuan@hotmail.com

RIOS Lab, Tsinghua University

Zhangxi Tan
xtan@rioslab.org

RIOS Lab, Tsinghua University

ABSTRACT
Hardware and software co-design is a significant approach in the
domain of advanced modern processor design, and can largely
help to address the challenges from the early stages of design.
Software simulators, developed by software tools, offer enhanced
effectiveness and flexibility compared to hardware simulation tools.
However, while real-world application benchmarks have gained
prominence among architects for evaluating hardware designs,
existing software simulators face challenges in effectively modeling
complex target systems.

This thesis introduces QEMU-CAS, an innovative full-system
software simulation framework that achieves cycle-accurate sim-
ulation. QEMU-CAS outperforms existing software simulators by
its unique capability to model real-world workloads. To the best
of our knowledge, this work represents the first utilization of a
performance simulator on a functional full-system platform for
RISC-V ISA. Meanwhile, we propose a novel methodology for per-
formance analysis on a dynamic binary translation framework, and
a switch-based mechanism for dynamic workload characterization.
As a result, QEMU-CAS can serve as an efficient virtual platform
for architecture design space exploration and innovation.

KEYWORDS
Computer Architecture, Software Simulation, Modeling

1 INTRODUCTION
Hardware and software co-design, encompassing the integration
of software modeling and simulation techniques, holds substantial
significance in advanced modern processor design. By utilizing
software modeling and simulation, architects can create virtual rep-
resentations of the system architecture, make easier adjustments,
and thoroughly test the design specifications. This iterative pro-
cess empowers architects to evaluate various architectural choices,
analyze their performance implications, and optimize the system
performance and design efficiency.

To measure the capabilities and performance of hardware, ar-
chitects develop various benchmarks as standards[21, 7, 9]. So far,
traditional static benchmarks are facing increasing challenges in
remaining relevant and up-to-date with emerging hardware tech-
nologies. This is due to limitations in various aspects, including
a lack of representativeness of the comprehensive performance
picture, limited scalability, and inadequate coverage of emerging
workloads. As a result, the rapid evolution of hardware architec-
tures and system requirements demands a more dynamic approach
to benchmarking, which can capture real-world conditions by in-
corporating diverse workloads.

However, modeling real-world applications via software presents
several challenges. Performance simulators face limitations in terms

of flexibility and scalability when simulating large workloads. This
leads to a low execution speed[19] and a lack of capabilities to
scale the simulated system models. Besides, it is also challenging to
achieve accurate and efficient simulation of IO device modeling. The
diverse nature of specifications, protocols, and interfaces further
amplifies the efforts and difficulties.

In contrast, functional simulators offer higher performance and
often enable full-system simulations. However, their design focus
on functional modeling limits their effectiveness in conducting
detailed performance analysis. These approaches may not provide
architects and researchers with sufficient information to optimize
and refine their designs in an effective manner.

This thesis presents QEMU-CAS, a novel full-system cycle-accurate
software simulation framework. QEMU-CAS integrates a cycle-
accurate CPU model with QEMU[16, 4], a popular machine em-
ulator with a dynamic binary translation framework, to enable
efficient modeling and simulation for complete systems. Notably,
QEMU-CAS surpasses existing software simulators by offering ca-
pabilities to model full-fledged Linux environments with modern
IO peripherals. To the best of our knowledge, QEMU-CAS is the
first work that introduces cycle-accurate performance modeling on
top of a functional full-system platform for RISC-V ISA[8, 15]. We
introduce a new methodology to gather performance statistics for
architecture emulators executing instruction streams via dynamic
binary translation frameworks. It is a valuable tool for exploring
the architecture design space and holds significant potential for
future extensions and advancements.

This thesis makes the following contributions:

(1) A simulation framework capable of modeling superscalar
out-of-order RISC-V processors.

(2) A novel methodology for full-system modeling and simula-
tions on RISC-V ISA from the adoption of QEMU.

(3) A dynamic switch-based mechanism to characterize target
workloads and make performance analysis on a dynamic
binary translation framework.

2 RELATEDWORK
We can categorize the software simulators by the abstraction level of
their simulation. Functional simulators focus on high performance
and correct functionalities during the simulation and simulate less
architecture information. On the other hand, timing simulators,
also referred to as performance simulators, are capable of detailed
performance analysis, which could achieve accuracy at the timing
level, and can simulate the target specification more precisely.

According to detailed timing implementations, architects usually
categorize the simulators into event-driven and execution-driven.
Execution-driven simulators simulate every individual instruction
in order and update the architecture states accordingly. In contrast,



CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023 Ye Cao, Zhixuan Xu, and Zhangxi Tan

event-driven simulators execute instructions in response to hard-
ware events. With less information to collect, they are usually faster
than execution-driven simulators, yet achieve lower accuracy.

Mainstream performance simulators have various designs and
thus lead to distinct features. PTLSim[22] enables flexible config-
urations and co-sim technology but only supports X86 ISA. Sim-
pleScalar[2] is capable of modeling many CPU architectures, while
the official maintenance of its framework updates slowly. Sniper[6]
and Gem5[5, 10] are sophisticated event-driven full-system simu-
lators and could achieve good simulation performance. However,
they cannot run cycle-accurate simulations, resulting in inconve-
nience for RTL debugging. RISC-V Foundation proposes Sparta[20],
a simulation toolkit for both functional and performance simula-
tion. However, the provided implementation is a trace-driven CPU
model[18], and it has challenges handling complex systems.

On the other hand, functional simulators usually have enhanced
abilities in performance and functionalities. Simics[12] enables
architects to run a virtual system and do full-system simulation.
Dromajo[1] and RISC-V Spike[17] are popular simulators for de-
signs of RISC-V processors. QEMU[16], a system simulator, can also
achieve the functional simulation, which uses binary translation[3]
techniques for fast emulation.

Researchers have demonstrated significant interest in QEMU,
primarily driven by its unique design and the potential for integra-
tion with existing simulators. Yan Luo etc.[11] bring a model using
SimpleScalar as backends and use QEMU as the functional fron-
tend of the simulator. Avadh Patel etc. develop MARSS, an X86-64
ISS[14] which combines PTLSim and QEMU and can change CPU
models at runtime. However, these designs do not get rid of the
limitations such as slow maintenance or ISA dependence, which
come from existing simulators they use.

3 DESIGN METHODOLOGY
This section introduces the methodology of QEMU-CAS. Our frame-
work aims to enable architects and researchers in full-system simu-
lation and analysis towards real workloads and provide an efficient
tool for architecture design testing and exploration.

3.1 Component
QEMU-CAS uses an execution-drivenmodel on CPU simulation and
uses the main clock conversion of hardware as the main timeline
of the simulator. This approach is closer to the implementation
on a real board and is more intuitive for performance analysis.
At the same time, QEMU-CAS uses event-driven models for the
interactions of IO devices when simulating SoC.

Components are the basic units of emitting, receiving, and pro-
cessing events. QEMU-CAS uses this abstraction to simulate both
CPU and IO. For CPU modeling, there are 2 types of resources
during the abstraction:

1) Stages. Stages are the highest layer of the CPU model and
maintain the timing and pipeline structure of the CPU. In the main
execution loop, the simulator executes each stage sequentially ac-
cording to a preset order.

The execution-driven model gives QEMU-CAS high flexibility
when designing pipeline stages. The main loop, rather than the

stages themselves, drives the CPU simulation. In contrast, the event-
driven model such as the Gem5 O3 model uses a large event queue
for the simulation. If the simulator does not update a certain stage
during the execution, it will not add this stage to the event queue.
This may provide obstacles to collecting performance statistics.

2) Function Components. Function Components (FCs) are respon-
sible for detailed functionalities, including both data queues and
function units. Some function units have complex and pipelined
structures and may take multiple cycles to handle instructions. In
these cases, FCs include internal registers to represent timing logic.

3.2 Design of QEMU-CAS

Figure 1: QEMU-CAS Simulation Infrastructure

Figure 1 shows the basic infrastructure of the QEMU-CAS frame-
work. It adopts from QEMU platform and incorporates IO devices
as separate components which can send and receive signals over
the bus. The multi-thread architecture brings an efficient workload
simulation, as IO devices and CPUmodels could run simultaneously
on different threads.

Timing and functionality are not as relevant in the SoC simu-
lation as they are in CPU models. System timing largely depends
on a global clock ticking at a constant frequency. Meanwhile, IO
components connect each other with wires, so their communica-
tions can be independent of clock ticks. Therefore, an event-driven
model can efficiently simulate the SoC behaviors, where a main
loop runs continuously and handles the IO events of various de-
vices. In summary, QEMU-CAS uses hybrid-driven approaches on
its whole framework, which drives the full-system simulation with
events and executes instructions in execution-driven models.

Apart from independent threads representing CPU and IO, QEMU-
CAS also includes a stand-alone memory model. Since QEMU-CAS
decouples the memory from IO and CPU threads, customizing the
memory model becomes easier for architects. Architects can make
customization on top of the existing model, and achieve more com-
plex functionalities.

3.3 CPU-IO Interface
In this section, we propose the general CPU-IO interfaces of QEMU-
CAS, including memory and Interrupt-Request (IRQ) interfaces.
With these interfaces, QEMU-CAS provides an efficient approach



QEMU-CAS: A Full-System Cycle-Accurate Simulation Framework based on QEMU CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023

to facilitating communication between a cycle-accurate CPU model
and an emulated SoC.

3.3.1 Memory Interface. We take advantage of QEMU’s memory
model, a well-established and tested framework for managing mem-
ory and IO operations. When the CPU model requires data in the
Load/Store Unit, the CPU accesses the memory through an emu-
lated bus and seeks results. We decouple the timing behaviors of
the memory model from its functionalities. Architects have free
space to specify their desired delay before or after accessing the
memory.

3.3.2 IRQ Interface. In addition to memory access, IO devices can
also contact the CPU by sending IRQs. An interrupt is a signal
sent by an IO device to the CPU to request its attention. When an
IO device needs to communicate with the CPU, it can assert an
interrupt signal, which causes the CPU to stop executing its current
task and handle the interrupt.

For functional emulation, QEMU executes each instruction in one
cycle. So the whole execution loop could stop immediately when
receiving an IRQ. But for cycle-accurate simulation, an interrupt
may need several cycles before it commits. Therefore, it is important
to maintain the synchronization between cycle-level instruction
execution and functional IO emulation.

QEMU-CAS uses a vector to record the essential architecture
information. Each processor owns a separate vector entry, including
an IRQ code (if exists), the current privilege level of the CPU, and
CSR states. When an IO device sends an IRQ to the CPU, it updates
the IRQ code in the associated entry. The privilege level bit is only
writable to the CPU, while Interrupt Controllers can read this bit
and get information about the CPU’s current privilege mode.

Figure 2: CPU and IO exchange IRQ through an IRQ Vector

3.4 Assistance for Architecture Design Space
Exploration

QEMU-CAS allows for customizing core topology in the configu-
ration file, which largely surpasses the capability of mainstream
simulators and helps architects to test and tune their hardware
architectures.

Architects can customize not only the hardware parameters but
also the pipeline stages. They could preset the stage dependencies
in the configuration file before execution. The simulator executes

each stage sequentially, following the stage sequence in the preset
configurations.

Additionally, QEMU-CAS allows for customizing the FCs in-
volved in data operations, such as issue queues and function units.
Architects could set them as parameters for other components in
the configuration file when they need to adjust the system layout.
Taking an example in designing the Dispatch stage, architects can
freely combine issue queues, functional units, and related ports
according to their needs only by modifying the configurations.

In particular, QEMU-CAS decouples the ISA model from CPU
models. Only in certain stages such as Decode, core models call
the ISA model for associate functions. Therefore, it is easy to make
adjustments to ISA specifications, such as adding new instructions
or extensions.

Figure 3: The ISA model is independent of the core model.

4 SIMULATING MULTI-CORE TARGET
SYSTEMS

As the prevalence of multi-core processors continues to grow, sim-
ulation frameworks that do not incorporate support for multi-core
environments may offer an inadequate understanding of system per-
formance. Hence, it is crucial for simulators to study the behaviors
of multi-core systems. By achieving the multi-thread architecture,
QEMU-CAS allows for efficient parallel simulation of the workload.
In handling multiple cores, the simulator generates a distinct in-
stance for each hart, which runs execution in a separate thread of
the host machine.

A key issue in parallel simulation is dealing with the trade-offs
between performance and accuracy. For extreme cases, a cycle-
accurate simulator could do synchronization every cycle, which is
surely the most accurate way but will have countable performance
bound. The quanta-based approach is one of the most popular
solutions for parallel simulators. During the simulation, each thread
owns a quantum of simulated cycles. When running off the quanta,
threads synchronize with each other. There are a lot of popular
simulators using this idea, such as Graphite[13] and Sniper[6].

QEMU-CAS uses a pre-configured quantum to achieve the simu-
lation of multi-core systems. When the quantum reaches zero, the
simulation stops and the simulator starts the synchronization. Due
to the execution-driven structure, it is efficient to stop the simula-
tion at the synchronization barriers. In contrast, an event-driven
simulator will have much larger overheads since it processes events
in transaction.



CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023 Ye Cao, Zhixuan Xu, and Zhangxi Tan

5 DYNAMIC MODEL SWITCHING
In this section, we present a switch-based mechanism to charac-
terize the workloads, which enables the simulator to switch seam-
lessly and lively between a functional DBT and a cycle-accurate
CPU model. This mechanism is valuable for the testing and debug-
ging purposes of hardware development, and particularly useful
when working with complex systems that are difficult to debug or
diagnose using traditional methods.

5.1 Checkpoint Strategy
When the simulator receives a switching command, the current
core should immediately cease its execution. However, the response
may have a delay in real implementations, which may affect the cor-
rectness of performance behavior. Meanwhile, it is also impractical
to largely sacrifice the original performance to create checkpoints.
To balance this trade-off, we propose different solutions concerning
different architectures of the DBT and the performance simulator.

5.1.1 Checkpointing of DBT. QEMUDBT adopts translation blocks
(TBs) as its base unit of code generation. It batches a contiguous
sequence of instructions in a TB to achieve a more efficient transla-
tion. Since no speculative operations cross TBs, it is easy to stop
the execution at the beginning or end of a TB. To facilitate model
switching, we introduce a new exception code with the lowest
priority, representing model switching.

When DBT receives a switch request and there are no other ex-
ceptions, the exception handler accepts the new exception and stops
execution as usual. QEMU-CAS then handles the corresponding
synchronizations after receiving the return value. In the presence
of other exceptions, the exception handler prioritizes the higher-
priority exception and resumes execution after handling it. This
process repeats until DBT handles all other exceptions, and then
DBT stops executing to perform the necessary synchronization.

5.1.2 Checkpointing in PerformanceModel. The performancemodel
precisely tells the timing behaviors of the core. It is very common
for an instruction to stay in the pipeline for multiple cycles before
it commits. When a switching signal arrives, the whole pipeline
should run to a certain state that can synchronize with DBT which
owns simulation at instruction-level accuracy.

In the pipeline frontend including Fetch and Decode stages, the
simulator decodes the instructions into ISA information. Before the
pipeline sends frontend instructions to issue queues and assigns
them to function units, these instructions would not affect the archi-
tecture states. But after they arrive at the backend, the instructions
do change some architecture states. The determination of the im-
pact of an instruction occurs when the instruction finally commits.
Otherwise, the simulator will recover the changes of architecture
states.

However, a switching command causes the termination of the
whole pipeline, resulting in information loss of uncommitted in-
structions. Figure 4 indicates the scenario when the simulator re-
ceives switching requests. When the simulator suddenly stops and
switches to DBT, the pipeline loses all uncommitted instructions
that have started executing.

To ensure the correctness of the simulation before and after
switching, the simulator should handle timing-associated processes

Figure 4: When receiving a switching request, the pipeline
loses all instructions in the square.

in transaction. The performance model utilizes a switching strategy
that activates only after meeting several prerequisites.

• None instructions are at the backend.
• At least one fetched instruction in the frontend
• No pending interrupts in pipeline

Once meeting these prerequisites, the backend is clear. The sim-
ulator can create checkpoints according to the oldest PC in the
pipeline. This ensures that the pipeline has either committed or
flushed all instructions newer than the oldest PC and thereby accu-
rately synchronizes all CPU states at this tick to the DBT.

5.2 Time Dilation
In an SoC, a global clock ticks at a constant frequency. Simulating
the global clock is a crucial part of the cycle-accurate simulation.
Inaccurate clock simulation can lead to timing errors in the simula-
tion, which can have a significant impact on the overall accuracy
of the simulation results.

For a specific simulator, however, the simulated time could not
always keep pace with the real-world time. This also refers to time
dilation, a rate change of the simulated time.

5.2.1 Timer. In QEMU-CAS, we simulate a global clock linearly
related to host OS time. The timer is a vector including 𝑏𝑎𝑠𝑒_𝑓 𝑟𝑒𝑞
and 𝑑𝑒𝑙𝑡𝑎, the relative frequency of the timer, and the offset for
time calculation. Equation 1 presents the timestamp of the virtual
world, whose unit is one second.

𝑇𝑆𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝑇𝑆𝑟𝑡 ) = 𝑇𝑆𝑟𝑡 ∗ 𝑏𝑎𝑠𝑒_𝑓 𝑟𝑒𝑞 + 𝑑𝑒𝑙𝑡𝑎 (1)
Once the simulator changes time, the time of the virtual clock

and that of the real-world clock are no longer simply proportional.
Therefore, we introduce 𝑑𝑒𝑙𝑡𝑎 as an offset. Whenever the simulator
rewrites time, it sets 𝑑𝑒𝑙𝑡𝑎 as the difference between the new value
and the original value.

5.2.2 Clock Alignment in Core Switching. A read-only Flattened
Device Tree (FDT) records the parameters of each hardware device.
The bootloader and Linux kernel load the FDT when the machine
starts. Configurations of CPUs need to be the same when multiple
models both simulate the same CPU. Otherwise, several mistakes
will occur.

In the simulation, CPU frequency refers to the simulation speed
of the CPU model. It is the ceiling of the model’s performance and
is difficult to get further improved. In case multiple models simulate
a single CPU, the performance CPU model is unlikely to run as fast
as DBT. This could be a crucial issue that results in errors in Linux



QEMU-CAS: A Full-System Cycle-Accurate Simulation Framework based on QEMU CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023

Table 1: Parameters of core models

Item Configuration

Fetch Width 8
ROB Entry Size 32
Load/Store Queue Entry 16
TLB Entry 8
BTB Size 1024
RAS Size 16
Tournament - Local Predictor Size 1024
Tournament - Local History Entry Bits 10
Tournament - Global History Entry Bits 12
Physical Register File 128

time slicing. To provide a solution, we propose a dilation strategy
to keep the CPU frequency relatively constant.

Equation 1 represents the time when the simulator switches
the core model. We can set up a system of equations, and get the
modified 𝑑𝑒𝑙𝑡𝑎 when keeping the target CPU frequency unchanged:

𝑇𝑆𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝑇𝑆𝑟𝑡 ) = 𝑇𝑆𝑟𝑡 ∗ 𝑏𝑎𝑠𝑒_𝑓 𝑟𝑒𝑞𝐷𝐵𝑇 + 𝑑𝑒𝑙𝑡𝑎𝐷𝐵𝑇

𝑇𝑆𝑣𝑖𝑟𝑡𝑢𝑎𝑙 (𝑇𝑆𝑟𝑡 ) = 𝑇𝑆𝑟𝑡 ∗ 𝑏𝑎𝑠𝑒_𝑓 𝑟𝑒𝑞𝑚𝑜𝑑𝑒𝑙 + 𝑑𝑒𝑙𝑡𝑎𝑚𝑜𝑑𝑒𝑙
(2)

𝑑𝑒𝑙𝑡𝑎𝑚𝑜𝑑𝑒𝑙 = 𝑇𝑆𝑟𝑡 ∗ (𝑏𝑎𝑠𝑒_𝑓 𝑟𝑒𝑞𝐷𝐵𝑇 −𝑏𝑎𝑠𝑒_𝑓 𝑟𝑒𝑞𝑚𝑜𝑑𝑒𝑙 ) +𝑑𝑒𝑙𝑡𝑎𝐷𝐵𝑇

(3)
Clock change occurs during the switch. At that time, we use a

global mutex lock to lock every IO device except the timer. After
clock changes, guest OS will run at a slower speed by observation
from the real world. However, for the simulated workload, all timing
behaviors remain unchanged.

6 EVALUATION
In this section, we conduct several experiments to evaluate QEMU-
CAS in different aspects.

We use an execution-driven performance model of a superscalar
out-of-order RISC-V CPU, including performance simulations of
TLB, BPU, and other components. Since the detailed implementa-
tion of simulating each CPU component is not our focus in this
paper, we just list the configurations of the CPU model used in
these experiments in Table 1.

With the integration of a cycle-accurate model, QEMU-CAS is
able to capture precise architecture behaviors. We test all the case
studies based on a RISC-V Fedora Rawhide Linux, and collect the
architectural statistics in a performance monitoring unit (PMU).

6.1 Simulator Performance
Table 2 shows the performance of different core models in QEMU-
CAS. Almost all performance bottlenecks come from the perfor-
mance model as QEMUDBT runs about 103 times faster. In contrast,
removing the BPU from the performance model does not affect
the performance bottleneck. Changing the internal system design
causes about 18% slower than the original model, far less when
compared to DBT performances.

Table 2: Performance of DBT and core model

Simulator Time per cycle(`𝑠)

QEMU DBT 0.241
Performance Model 249.024
Performance Model, no BPU 294.363

Table 3: Ping Test Script

ping_test.sh

./prof_tool begin
ping -c 𝑛 𝑢𝑟𝑙 > 𝑜𝑢𝑡𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒_𝑝𝑎𝑡ℎ
./prof_tool terminate

6.2 Case Study: Linux Ping
In this experiment, we use Linux Ping as a benchmark to test our ca-
pability to interact with IO devices. Table 3 shows the script we use
on a Fedora Linux. We sample the execution per 0.1 million cycles
and plot several critical performance metrics, including IPC, DTLB
hit rate, and BPU accuracy. Figure 5 shows the result diagrams.

Figure 5: PMU Result of Executing Ping.

We can see from the diagrams that the curves have 3 relatively
large fluctuations, nicely corresponding to the 3 packet exchanging
process. Upon the execution and the resulting diagram, QEMU-
CAS has demonstrated its ability to accurately simulate the core
behaviors of network devices as well as the support for simulated
block devices.

The successful execution of ping signifies that our simulator can
effectively simulate popular IO devices. It can be a valuable tool in
the development and testing process of various applications and
systems that rely on these functionalities.

6.3 Case Study: Socket Communication
In this experiment, we aim to investigate the hardware behavior
in a socket network. To accomplish this, we build a server/client
framework through a socket protocol. Figure 6 shows its basic
structure. We run the server on the simulated OS, and the client
on another process in the host machine. During the experiment,
the client uses a socket to send data to the server, and the server



CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023 Ye Cao, Zhixuan Xu, and Zhangxi Tan

replies after processing the data. This will repeat several times, and
we aim to investigate the behavior of the server’s data processing.

Figure 6: Structure of Server/Client network

During the experiment, we especially focus on the behavior of
data processing, not counting the procedures that occur in socket
communication. A good way is to use profiling to only trace the
desired program segments. The traditional method used by existing
simulators is to build checkpoints to locate the start points of tracing
and then generate snapshots. However, this will face challenges in
capturing an accurate performance picture.

In the interactive scenarios, static snapshots may not capture the
whole state, since the client works on another process or even an-
other machine. Furthermore, snapshots need to contain the states of
the entire machine, including memory, CPU states, and IO devices,
which can be cumbersome when the scale turns large.

QEMU-CAS overcomes these challenges with its dynamic switch-
based approaches. It enables the simulator to achieve a seamless
and live change of the CPU model, allowing for easy tracing of
target program segments.

To capture the hardware behavior of the server’s data processing
phase, we use DBT to quickly execute the socket connection parts.
We switch to a high-accuracy CPUmodel when the server processes
data to trace the hardware behavior completely and precisely, and
then switch back to handle the socket.

Figure 7: Time lapse graph of execution. The x-axis is the time
spent during sampling. The blue/yellow/red blocks represent
setup, socket connecting, and data processing.

We create a time-lapse graph in Figure 7. The results indicate that
the performance model takes a significant portion of time, while

QEMU takes only less than 1% time. These findings demonstrate
the efficiency of QEMU in simulation. Moreover, we draw PMU
statistics during the execution. The result diagrams in Figures 8
demonstrate the correspondence to Figures 7.

Figure 8: The interval separated by the red line represents
the analysis result of PMU. We label the phases of arithmetic
processing on X-axis.

For arithmetic phases, the trend of curves is not quite the same
in different periods. We could find that in Phase 2 and Phase 5, the
curves are smooth, while the other 3 phases have large fluctuations.
This is mainly because of interrupts and exceptions generated by
the OS either randomly or periodically.

This provides a practical example to demonstrate the capability
of locating the target program segments with the help of hybrid
simulation, while static approaches will have challenges. In practice,
QEMU-CAS provides architects high flexibility on debugging and
testing, allowing for detailed analysis as well as a high degree of
suitability for specific needs.

7 CONCLUSION
This work introduces a software simulator capable of full-system
simulation. Our simulator exhibits great capabilities by well mod-
eling complex target hardware systems with high accuracy. Fur-
thermore, the paper proposes a dynamic and agile switch-based
mechanism to characterize large target workloads. It allows ar-
chitects and researchers substantial time and effort savings and
can largely increase the efficiency of the simulation of large-scale
workloads.

This paper also conducts several experiments on real-world
workloads. The evaluation results demonstrate the value and capa-
bility of QEMU-CAS for assisting the architecture design of RISC-V.
Our ongoing effort is focusing on the implementation of more ad-
vanced systems, to better provide the simulation and optimization
for real-world scenarios.

REFERENCES
[1] Chips Alliance. [n. d.] Dromajo: an open-source risc-v processor verification

framework. https://github.com/chipsalliance/dromajo. Accessed: April 15,
2023. ().

[2] Todd Austin, Eric Larson, and Dan Ernst. 2002. Simplescalar: an infrastructure
for computer system modeling. Computer, 35, 2, 59–67.

[3] Fabrice Bellard. 2005. Qemu, a fast and portable dynamic translator. In USENIX
annual technical conference, FREENIX Track. Vol. 41. Califor-nia, USA, 46.

[4] XiaoXiao Bian. 2017. Implement a virtual development platform based on qemu.
In 2017 International Conference on Green Informatics (ICGI). IEEE, 93–97.

https://github.com/chipsalliance/dromajo


QEMU-CAS: A Full-System Cycle-Accurate Simulation Framework based on QEMU CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023

[5] Nathan Binkert et al. 2011. The gem5 simulator. ACM SIGARCH computer
architecture news, 39, 2, 1–7.

[6] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, 1–12.

[7] EEMBC. [n. d.] Coremark: a simple, yet sophisticated, benchmark for embedded
processors. https://github.com/eembc/coremark. Accessed on April 15, 2023. ().

[8] RISC-V Foundation. [n. d.] Risc-v. https://riscv.org. Accessed: April 15, 2023. ().
[9] John L Henning. 2006. Spec cpu2006 benchmark descriptions. ACM SIGARCH

Computer Architecture News, 34, 4, 1–17.
[10] Jason Lowe-Power et al. 2020. The gem5 simulator: version 20.0+. arXiv preprint

arXiv:2007.03152.
[11] Yan Luo, Ying Li, Xinyu Yuan, and Rong Yin. 2012. Qsim: framework for

cycle-accurate simulation on out-of-order processors based on qemu. In 2012
Second International Conference on Instrumentation, Measurement, Computer,
Communication and Control. IEEE, 1010–1015.

[12] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and
Bengt Werner. 2002. Simics: a full system simulation platform. Computer, 35, 2,
50–58.

[13] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. 2010.
Graphite: a distributed parallel simulator for multicores. In HPCA-16 2010 The

Sixteenth International Symposium on High-Performance Computer Architecture.
IEEE, 1–12.

[14] Avadh Patel, Furat Afram, and Kanad Ghose. 2011. Marss-x86: a qemu-based
micro-architectural and systems simulator for x86 multicore processors. In 1st
International Qemu Users’ Forum. Citeseer, 29–30.

[15] David A Patterson. 1985. Reduced instruction set computers. Communications
of the ACM, 28, 1, 8–21.

[16] [n. d.] Qemu. https://www.qemu.org/. Accessed: April 15, 2023. ().
[17] RISC-V Foundation. [n. d.] RISC-V ISA Simulator (Spike). https://github.com/ri

scv-software-src/riscv-isa-sim. Accessed: April 29, 2023. ().
[18] RISC-V Software Source. [n. d.] RISC-V Performance Modeling Framework.

https://github.com/riscv-software-src/riscv-perf-model. Accessed: April 30,
2023. ().

[19] Wilson Snyder and Dan Gisselquist. [n. d.] Verilator: open source verilog
simulator. https://www.veripool.org/papers/Verilator_Modeling_UMass2017
b_pres.pdf. Accessed on 18 May 2023. ().

[20] [n. d.] The Sparta Modeling Framework. https://sparcians.github.io/map/index
.html. Accessed: April 30, 2023. ().

[21] Reinhold P Weicker. 1984. Dhrystone: a synthetic systems programming bench-
mark. Communications of the ACM, 27, 10, 1013–1030.

[22] Matt T Yourst. 2007. Ptlsim: a cycle accurate full system x86-64 microarchitec-
tural simulator. In 2007 IEEE International Symposium on Performance Analysis
of Systems & Software. IEEE, 23–34.

https://github.com/eembc/coremark
https://riscv.org
https://www.qemu.org/
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-perf-model
https://www.veripool.org/papers/Verilator_Modeling_UMass2017b_pres.pdf
https://www.veripool.org/papers/Verilator_Modeling_UMass2017b_pres.pdf
https://sparcians.github.io/map/index.html
https://sparcians.github.io/map/index.html

	Abstract
	1 Introduction
	2 Related Work
	3 Design Methodology
	3.1 Component
	3.2 Design of QEMU-CAS
	3.3 CPU-IO Interface
	3.4 Assistance for Architecture Design Space Exploration

	4 Simulating Multi-core Target Systems
	5 Dynamic Model Switching
	5.1 Checkpoint Strategy
	5.2 Time Dilation

	6 Evaluation
	6.1 Simulator Performance
	6.2 Case Study: Linux Ping
	6.3 Case Study: Socket Communication

	7 Conclusion

