
Cache Coherent Framework for RISC-V Many-core Systems
Zexin Fu

fzx20@mails.tsinghua.edu.cn
Tsinghua University

Mingzi Wang
wmz22@mails.tsinghua.edu.cn

Tsinghua University

Yihai Zhang
zhang-yh22@mails.tsinghua.edu.cn

Tsinghua University

Zhangxi Tan
xtan@rioslab.org

Tsinghua University

ABSTRACT
Given the limitations of single-core processors in achieving per-
formance gains, the industry and academia have shifted towards
many-core processors. While many-core processors have many
advantages, their design poses several new requirements, such as
on-chip interconnect scalability, cache coherence maintenance, and
large system verification. Thus, this paper aims to address some
of these challenges by proposing a completely verified many-core
cache coherent system framework with an efficient and scalable
on-chip interconnect design.

This paper presents a comprehensive study of the design, imple-
mentation, and verification of a many-core cache coherence system
that employs a directory-based MESI coherence protocol and a 2D
mesh NoC. The main contributions of the paper are the design and
implementation of a MESI cache coherence protocol suitable for
package switching NoC, a sparse directory-based Snoop Control
Unit (SCU) used to maintain system coherence, and a 2D mesh-
based Network-on-Chip (NoC) that enables high bandwidth, low
latency, and scalable many-core systems. The cache coherence sys-
tem is verified under a novel verification flow using both simulation
and formal methods. This work is planned to be open-sourced to
boost many-core system research and development in the RISC-V
community.

KEYWORDS
Computer Architecture, Cache Coherence, Network-on-Chip, Veri-
fication, Many-core

1 INTRODUCTION
Recent years have witnessed the core counts of chips both industry
chip vendors and academic groups have released growing rapidly,
leading to hundreds and even thousands of cores integrated on
a single chip. There have already been server chip products with
more than 100 cores on-die[1]. Additionally, chiplet technology,
enabled by advanced packaging technologies, allows many silicon
dies to be integrated into a single package, resulting in higher core
counts in the system.

Many-core processors offer several benefits[4], which have con-
tributed to their increasing popularity in recent years. Firstly, many-
core processors provide a scalable and versatile means of improving
performance beyond the limitations of the underlying technology.
This is particularly relevant since it is challenging to exploit more
instruction-level parallelism (ILP). Secondly, the replication of cores
within a multi-core processor enables the leverage of design invest-
ments, which in turn facilitates the modular design and Intellectual

Property (IP) reuse, resulting in cost savings. Finally, the sharing
of on-chip resources such as system-level cache and peripherals
leads to improved resource utilization and enables optimization
techniques such as private cache sharing. Consequently, multi-core
processors have replaced single-core processors as the mainstream
direction for processor design.

To achieve a many-core system that boasts high performance
and reliability, several key areas must be addressed, such as on-chip
interconnect scalability, cache coherence maintenance, and large
system verification.

On-Chip Interconnect Scalability The growth in the number
of cores in modern many-core processors has resulted in a signif-
icant increase in communication traffic between them, requiring
scalable on-chip interconnects. The design of on-chip intercon-
nects needs to provide low-latency, high-bandwidth communica-
tion channels while accommodating various traffic patterns and
ensuring equitable resource sharing. The Network-on-Chip (NoC)
architecture is a promising solution for addressing the challenge.
NoC replaces traditional bus-based interconnects with a packet-
switched network that can handle multiple communication requests
concurrently. NoC can provide scalable, efficient, and predictable
communication between cores while also supporting various traffic
patterns.

Cache Coherence Maintenance Cache coherence is the mech-
anism that ensures that all cores in a many-core system have a
coherent view of shared memory. With multiple cores accessing the
same memory locations, it’s crucial to maintain cache coherence to
avoid conflicts and inconsistencies. Cache coherence maintenance
involves tracking changes to shared memory locations and ensur-
ing that all caches are updated with the latest data. This requires
complex hardware and software mechanisms to ensure that data
is consistent and up-to-date across all cores. Directory-based co-
herence, snooping-based coherence, and many other variations are
used to solve this problem.

Large System Verification As many-core processors become
more complex, verifying the correctness of the design becomes
increasingly challenging. Large system verification involves testing
the design to ensure that it meets its functional and performance
requirements. This requires sophisticated verification tools and
techniques to test the system’s functionality, performance, and
reliability. As many-core processors increase in complexity, verify-
ing the design becomes more challenging, and designers need to
use advanced verification techniques, such as simulation, formal
verification, and emulation, to ensure the design is correct.

This paper contributes to the field in several significant ways,
including the following:



CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023 Zexin Fu, Mingzi Wang, Yihai Zhang, and Zhangxi Tan

• A Cache coherent system: we present a cache coherent sys-
tem with MESI protocol, including a private cache controller
and a sparse directory-based Snoop Control Unit (SCU).

• A 2D-mesh-based Network-on-Chip: we present a NoC with
2Dmesh topology, dimension-ordered routing, and flit-based
flow control, as well as its verification environment.

• A cache coherence verification flow: we present a verifica-
tion framework for a cache coherence system with both
simulation-based verification and formal verification, for
both model and RTL implementation.

2 RELATEDWORK
In this section, we discuss several other cache coherent fabric
projects and the key distinguishing features of our work.

Chipyard and TileLink Chipyard is an open-source platform
for designing and evaluating advanced SoC designs that use TileLink
as its default on-chip interconnect standard. By leveraging the
TileLink interconnect, Chipyard provides a communication infras-
tructure for the different PEs in the SoC, thereby enabling the design
of complex, multi-core SoCs with high performance and reliability.
However, the TileLink protocol is not designed for packet-switching
NoCs, e.g., its flow control is based on a valid-ready handshake
instead of the credit-based flow control widely used in NoCs. Addi-
tionally, Chipyard is built using the Chisel hardware construction
language, which helps speed up the ASIC front-end process but can
cause difficulties with back-end processes, such as the renaming of
wires.

Open2C Open2C is a tool developed to explore cache-coherent
memory subsystems in large-scale computing systems. Open2C
provides a library of parameterized components that can be used
to build a complex coherent cache memory subsystem, including a
missing register, TAG array, replacement policy unit, and others.
But it doesn’t include a NoC implementation, and since it’s built
with Chisel, it has the same ASIC backend process difficulties as
Chipyard.

OpenPiton OpenPiton is a research framework that enables
academic research of many-core systems. It uses a tile-based archi-
tecture on top of a multi-plane NoC. Each OpenPiton tile includes
a private L1.5 cache and a slice of the distributed L2 cache. The
chipset in an OpenPiton chip provides access to external DRAM
and other I/O and connects to other OpenPiton chips through the
NoC via a chip bridge. OpenPiton can be configured with up to 500
million cores, but the memory bandwidth is limited by the 32-bit
wide chip bridge between the tile and the chipset, which results in
lower scalability in terms of memory bandwidth.

3 THE SYSTEM ARCHITECTURE
The coherence system architecture is aimed at a scalable many-core
design for server applications as Figure 1 illustrates. The system
features a coherent network, scalable cache coherence support, and
a mesh linker for on-die network scale-up. The system is built with
tiles, including Compute Tile, Home Tile, I/O Tile, and PCIe Tile.

Compute Tile As shown in Figure 1(b), each Compute Tile can
be configured with multiple cores to form a cluster, each core has
its own private L1 cache, each cluster has a cluster level SCU to
maintain the cache coherence inside the cluster, and each cluster has

Figure 1: System Structure

a shared L2 cache, which is inclusive with L1 cache, so the cluster
level directory can be merged with the shared L2 tag. The cluster-
level SCU can quickly and efficiently handle coherence requests
inside the cluster, reducing the latency of coherence requests and
reducing the number of requests that need to be sent to the NoC.
Meanwhile, each cluster is represented as a whole to the outside
SoC, so only one bit is needed to represent a cluster for the system-
level coherence directory, which leads to better scalability.

Home Tile As shown in Figure 1(c), each Home Tile contains
a system-level SCU, a system-level directory, a last-level cache,
and a memory controller. The system-level SCU manages cache
coherency requests between clusters and tracks valid cache lines in
each cluster in the system-level directory, the tracking granularity
is each cluster. If there are multiple Home Tiles in the system, each
of them will work in the form of a Home Tile slice, which will
manage the cache coherence and the read and write access to the
memory of a part of the memory addresses through the configured
memory address interleaving method.

I/O Tile I/O Tile contains many peripherals, such as UART, I2C,
SPI, etc., as well as DMA and platform-level interrupt controller
(PLIC). There is also JTAG for test and debug access.

PCIe Tile PCIe Tile includes PCI express controller and DMA
controller, and some other peripherals can be drawn out through
high-speed PCIe channels to a chipset.

3.1 The Coherence Protocol Design
For the coherence protocol design for the aforementioned multi-
core system, we made the following design decisions and the rea-
sons are followed.

3.1.1 Cache line state information tracking mechanism. We choose
the sparse directory, which reduces the directory storage require-
ment compared to traditional directory-based protocols because
it only stores directory entries for cache lines that are cached in
multiple caches. As a result, it avoids storing redundant information



Cache Coherent Framework for RISC-V Many-core Systems CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023

Table 1: Five Virtual Networks

Channels Blockable Description

Request Yes Request from private cache to SCU
Evict Yes Evict request from private to SCU

Response No Response message, both direction
Snoop No Snoop request from SCU to private cache
Data No Data message, both direction

about single-cached lines, which reduces the overhead of maintain-
ing directory coherence. And as it is a directory-based protocol, it
has the advantage of reducing network traffic and energy consump-
tion compared to snoop-based protocols.

3.1.2 Protocol state. We choose the MESI protocol. By introducing
Exclusive state, the MESI protocol reduces the coherence traffic
when a processor reads a line and then subsequently writes it in
MSI protocol. This is a typical sequence of load then store requests
in many important applications, not only for multi-threaded appli-
cations[7].

3.1.3 Message types. The coherence protocol has five different
message types, namely request, evict, response, snoop, and data
channel, each forming an independent virtual network. Table 1
shows the message structure design of each channel. It is worth
noting that the evict channel is divided from the request channel,
the reason why we divide them is that the request channel has the
lowest priority, its messages can be stalled by many other messages
and architecture states, but evict messages are critical and shouldn’t
be blocked by any other messages.

3.2 The Coherence Controller Design
In this section, we present the design of a private L1 coherence data
cache controller and SCU+LLC controller.

3.2.1 Private Cache Coherence Controller. To handle a snoop re-
quest, the cache coherence controller needs to check the tag ram
and Line State Table (LST) for line state and generate a snoop re-
sponse corresponding to the check result. In some cases, snoop
transactions may conflict with other transactions, requiring special
consideration. During the design, we find some corner cases which
require special handling processes, followings are some examples.

• First case: when a conflict happens between a snoop request
and an existing valid request in the pipeline, requiring the
snoop buffer to stall until the pipeline is empty.

• Second case: when a conflict happens between a snoop re-
quest and a valid request in the MSHR, requiring the snoop
buffer to stall until the MSHR is available or back-pressing
all incoming requests.

• Third case: when a conflict happens between a snoop re-
quest and an Eviction Write Request Queue (EWRQ) entry,
requiring the snoop transaction to stall until the eviction
process is completed before executing.

• Fourth case: if there is a same-line-address write-back re-
quest from the upper-level memory that hits an in-flight
coherent transaction, the write-back cache line should be

forwarded to the hit coherence transaction, and no need to
allocate a new MSHR for the write-back transaction.

3.2.2 SCU + LLC Controller Design. The snoop control unit (SCU),
and last-level cache (LLC) are integrated together. The LLC is de-
signed to be inclusive of private caches, and the sparse directory to
track cache line-sharing information is integrated with the tag in
LLC. The inclusion property of the LLC with private caches means
that all the data present in the private caches is also present in the
LLC. This property provides several advantages, such as reduced
latency and improved cache coherence. Since all private caches
have a copy of the data in the LLC, when a cache miss occurs in
one of the private caches, the data can be retrieved from the LLC
instead of going to the next level of memory, which significantly
reduces access latency. Additionally, the inclusion property can en-
able the SCU directory to merge with the LLC tag. This implies that
a single tag entry in the LLC can represent both the valid and dirty
state and the coherence state for private caches. This also simpli-
fies the directory eviction invalidation by merging it with the LLC
eviction invalidation to keep cache inclusion. This approach can
reduce the complexity of cache coherence protocols and increase
their efficiency by minimizing the number of coherence messages
exchanged between caches.

In order to achieve high parallelism, the SCU is designed based
on the Snoop State Table (SST), each SST entry can operate its own
FSM independently, and in order to serialize some access to the
critical resource like ram read and write and message sending, a
lot of first in first out (FIFO) queues are employed, namely memory
write queue, memory read queue, tag+directory ram write queue,
data ram read queue, data ram write queue, snoop message send
queue, response message send queue, data message send queue.
Although there are a lot of queues, they will not take a lot of extra
storage because they only store SST id and replace-SST id, not the
actual message and data it involves. Only when it is at the top
of the FIFO queue, it will read the SST entry it points to, parse
the SST’s state and do corresponding pending action. This enables
fine-grained control of all the critical resources and helps SCU to
improve resource utilization.

3.3 The Network-on-Chip Design
This section describes the design of the NoC, including topology,
routing, flow control, router micro-architecture, and Quality of
Service (QoS) support.

3.3.1 Topology. The 2D mesh topology was chosen as it provides
an efficient, scalable, and straightforward solution for intercon-
necting the cores. With four neighboring nodes connected bidi-
rectionally through links, the 2D mesh can provide efficient com-
munication between nodes while maintaining a regular and easily
implementable structure.

3.3.2 Routing. We choose DOR with X-Y routing and look-ahead
routing. In the case of 2D mesh topology, DOR with X-Y routing
sends packages along the X-dimension first, and after the value of X-
coordinate equals to the target X-coordinate, it then sends packages
along the Y-dimension, it is naturally dead-lock free[5]. Look-ahead
routing removes the route computation (RC) stage from the critical
path by determining the route of the routing packet one hop in



CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023 Zexin Fu, Mingzi Wang, Yihai Zhang, and Zhangxi Tan

advance and encoding it within the head flit. This enables incoming
flits to compete for virtual channels (VCs) and switches immediately
after the buffer write (BW) stage, and the route computation for the
next hop can be performed in parallel with VC/switch allocation.

3.3.3 Flow Control. We choose the wormhole flow control with
virtual channel flow control and credit-based buffer backpressure
mechanisms due to its ability to minimize packet latency while
conserving area and power. The wormhole flow control technique
enables a router to send a flit as soon as a buffer of next hop is
available, reducing latency compared to packet-based techniques.
The virtual channel flow control technique provides additional
virtual channels, allowing multiple packets to share a physical
link and preventing congestion. Credit-based buffer backpressure
provides a simple and efficient mechanism for stalling flits when
downstream buffers are full.

3.3.4 Router Micro-architecture. The NoC router consists of a 2-
stage pipeline, which includes credit-based flow control and virtual
channels (VC) for QoS and switch allocation efficiency. Each VC
has a priority level for allocation, which is based on the look-ahead
routing result. The switch allocation is performed in two levels,
using a fair round-robin algorithm. To improve the timing and VC
allocation, the router employs look-ahead routing for the next hop
router. Furthermore, the VC selection is decoupled from the VC
allocation to improve timing.

As for VC allocation policy, we use Adjustable VC Assignment
with Dynamic VC Allocation (AVADA)[11]. AVADA is a VC allo-
cation policy in which VCs are assigned based on the designated
output port of a packet to reduce the Head-of-Line (HoL) block-
ing, and the number of VCs allocated for each output port can be
adjusted dynamically for better VC utilization.

3.3.5 Quality of Service. The QoS support includes several features.
Firstly, each flit supports a flit QoS value of 0-15, and the larger
the value, the higher the priority. Secondly, fair round-robin arbi-
tration is performed on flits with the same priority, which ensures
fairness among the same-priority flits. Thirdly, if an input port
is not sent out after several cycles by the flit selected by round-
robin, another flit with the same priority will participate in the
arbitration, reducing head-of-line blocking and improving arbitra-
tion efficiency. Fourthly, support is provided to put the flits that
need the same router output port on the same virtual channel first,
a feature derives from AVADA policy, which reduces HoL blocking
and improves arbitration efficiency. Fifthly, we support assigning a
dedicated virtual channel to the flit with the highest QoS priority to
ensure the lowest latency and end-to-end message ordering, which
can be used for I/O devices and real-time applications. Finally, the
QoS value of each flit is given by the requesting node when sending
the request, the QoS value-setting strategies are dynamic based on
transaction latency and requester throughput, respectively.

4 VERIFICATION METHODOLOGY
Cache coherence verification is essential in ensuring that cache
coherence protocols are correctly implemented and performing as
designed. There are two main verification methods, each with its
own advantages. Simulation-based verification can be used to test
the functionality of the protocol in realistic scenarios, while formal

verification can be used to exhaustively verify the correctness of
the protocol under all possible legal input values subject to assump-
tions and initialization. By using a combination of both techniques
and careful planning, the verification process can be performed
efficiently and effectively.

Figure 2: Verification Flow

As shown in Figure 2, the entire verification process consists of
three parts, namely RTL simulation verification, model simulation
verification and formal verification. In the following of this section,
we will introduce the verification framework and the connection
of each part.

Build the model and do simulation verification. In the first
step, we build our own cache coherence model based on the Gem5
Ruby cache coherence model. Ruby cache coherence uses SLICC
Domain-Specific Language (DSL), which mainly describes the finite
state machine, input/output, cache replacement algorithm, etc. in
the cache coherence controller. In the existing Gem5 flow, the syntax
tree will be generated from SLICC through the lexical analyzer Lex
and the parser Yacc, and C++ code will be generated and compiled
with other parts of Gem5, and the compiled Gem5 simulator will
be used for full-system simulation or tested by tools in Gem5.

One of these testing tools is Ruby random tester, which is a cache
coherence verification tool that aims to ensure the correctness of
the cache coherence protocol implementation. It maintains a check
table, each check in the check table maintains a finite state machine
that controls its behavior. Each check sends four consecutive stores
to a random core to initialize the check and then sends a load in-
struction to verify the data coherence properties. To detect potential
deadlocks, the tester uses a timeout mechanism. If a check’s finite
state machine cannot change its state for a given time interval, the
tester throws a timeout error.

After completing the early verification of our model using Ruby
random tester, we can use Gem5’s mature system-wide framework
to boot Linux and run benchmarks and practical applications.



Cache Coherent Framework for RISC-V Many-core Systems CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023

Formal verification. In our verification flow, we not only use
the above simulation verification process for the model, but also
hope to perform formal verification on the same code base.

Murphi[3] is a formal verification tool that was originally devel-
oped by Professor David Dill’s group at Stanford University. It is
a state enumeration model checker that is designed to check the
correctness of hardware and software systems. The Murphi tool
provides a formal verification framework that can be used to prove
the correctness of designs, by generating and analyzing all possible
system states.

One limitation of Murphi is that it requires a complete and ac-
curate model of the system under test. This means that we need
to spend a considerable amount of time and effort in developing
a correct and complete model of the cache coherence protocol we
want to verify. However, once the model is developed, Murphi can
provide powerful insights into the behavior of the system and can
help us find and fix potential bugs or issues in the cache coherence
protocol.

To address the limitations of Murphi, which requires manual
effort to build the model and may have equivalence issues with the
original design, some efforts have been done to generate Murphi
code from other source code, for example, ProtoGen[9] generates
Murphi code from a DSL which specifies directory-based coherence
protocols. We found their DSL lack of implementation detail and
flexibility, and doesn’t have the ability to execute applications. Our
approach is to generate the Murphi model from a more detailed and
executable specification. We have identified that the core part of
both SLICC andMurphi is the description of the finite state machine
for each coherence controller, which includes the initial state, state
transition, state action and output, and next state decision of the
coherence controllers. Thus, it is possible to generate one model
from the other.

Figure 3: Example of Murphi Code Generation

Since we already have a Ruby cache coherence model, which is
written in SLICC code, we aim to generate Murphi code directly
from the same code base. To achieve this, we have modified the
SLICC compiler in the Gem5 Ruby model. As shown in Figure 2, the
SLICC code is parsed into a syntax tree by Lex + Yacc flow, and other
code generation like C++ proceeds on it, so we add a Murphi code
generator at this stage, and successfully generate Murphi code from
exist SLICC code. This enables us to automatically generate Murphi

code from the Ruby cache coherence model, thereby eliminating
the need for manual effort and potentially reducing the equivalence
problem between the two models. Figure 3 left part is an example
of an L1 cache store miss transition, it allocates a cache block and
a transition buffer entry (TBE), then it sends a GetM request to
the interconnect, and finally it pops the processed message out of
the request queue, and Figure 3 right part shows the generated
Murphi code from the above SLICC code, it describes the same state
transition and called action as the SLICC code.

RTL simulation verification After completing the full verifi-
cation of the model, we can build our RTL implementation based
on this model. We port the C++-based Ruby random tester to Sys-
temVerilog, in order to enable the use of the Ruby tester on the
RTL implementation. This allows the tester to be used directly on
the RTL implementation, which can be run on both simulators and
emulators such as FPGAs and Zebu. Since the process from model
to RTL implementation still has to be done manually, in order to
strive for equivalence between the RTL implementation and the
model in order to migrate our model validation efforts to the RTL
implementation, we injected the same sequence of load-store re-
quests into both via the Ruby random tester and compared the logs
output from both.

5 EVALUATION
In this section, we present the evaluation of the design described in
the previous sections, from the perspective of cache performance
and back-end flow result.

5.1 Cache Performance
In our experimental platform, we utilized a core matching Arm A75.
This core has the capability of performing up to two load operations
and one store operation per cycle to the L1 data cache. The cache
configuration used in our platform specified a 32kB size for both
L1 data and instruction caches, a 128kB size for the L2 cache, and
a 1MB size for the LLC. Additionally, the set-associativity values
used were 4 for L1 data, L1 instruction, and L2 caches, and 8 for the
LLC.

5.1.1 Cache Latency and Bandwidth. To evaluate the latency and
bandwidth characteristics of the cache system, we conducted bench-
marking using the "bw mem" and "lat mem rd" programs provided
in the lmbench suite. The lmbench benchmark measures the latency
and bandwidth of different cache operations, including read and
write accesses to the cache.

Figure 4 (a) shows the result of "lat mem rd" with different mem-
ory access sizes ranging from 16 KB to 8192 KB. Figure 4 (b) shows
the results of the "bw mem" benchmark with different memory
access sizes ranging from 32 KB to 8192 KB. From the Figure 4 (a)
and (b), we can see there are three major latency increases and
bandwidth drops. This is because when the memory access size is
small, the data can fit entirely in the higher-level memory, which
has lower latency and higher bandwidth. However, as the memory
access size increases, the data goes into lower-level memory, lead-
ing to higher-level memory misses and leads to lower bandwidth
and higher latency.



CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023 Zexin Fu, Mingzi Wang, Yihai Zhang, and Zhangxi Tan

Figure 4: Lmbench Cache Benchmark Results: (a) Latency;
(b) Bandwidth

Table 2: Murphi Formal Verification Results

Protocol Core number State number Time Result

MI 1 121 8.46s No error
2 276111 64.85s No error
3 123768664 61783.27s No error

MSI 1 5596 8.89s No error
2 22741 10.71s Deadlocked
3 99504 21.63s Deadlocked

5.2 Formal Verification
We generate Murphi code from Gem5 Ruby SLICC code and com-
pile it to an executable using Cmurphi[2]. In our experiment, we
performed Murphi code generation and formal verification on two
Ruby models that come with Gem5, namely MI and MSI protocol.
The number of states, time, and results generated by formal verifi-
cation are shown in Table 2, which shows that the MSI protocol has
a deadlock in the case of multi-core, which exists because the MSI
protocol is based on a point-to-point network. When its network is
configured as a multi-hop NoC in this paper, the private cache write-
back operation and directory snoop operation can easily conflict
and cause deadlocks.

In addition, we can see from the verification time that as the
number of cores increases, the number of states that formal verifica-
tion needs to traverse and the corresponding running time increase
significantly. The verification time required for systems with more
than three cores is unbearable. Therefore, we can consider:

• Simplify the formal verification model, reduce the state, and
use the symmetry of the model to prune[8];

• Fractal approach can be used to design our coherence system,
and the reliability of the larger system can be deduced from
the verification of the subsystems[12];

• Multi-threading and hardware acceleration can be consid-
ered to increase the speed of running the formal model[10].

5.3 ASIC Prototype
We have taped out the ASIC prototype on a 6nm process with indus-
try collaborators. As shown in Figure 5, the system configuration
of our ASIC prototype is 1 Home Tile with 512 KB LLC and 100
KB system directory, and 8 Compute Tile each with 32 KB L1 in-
struction cache, 32 KB L1 data cache, and 128 KB L2 cache. Tiles
are connected via a 3x3 mesh NoC.

The clock frequency meets 1GHz with minimal effort. The total
area is 4.52𝑚𝑚2, the area of each compute tile is about 0.51𝑚𝑚2

and the area of each home tile is about 0.46𝑚𝑚2.

Figure 5: ASIC Prototype Layout

6 CONCLUSION AND FUTUREWORK
This work presents the framework of a verified many-core system
consisting of four tiles connected by a 2D mesh NoC, and goes
through a verification process combining simulation and formaliza-
tion from model to RTL.

As future work, we list five major directions: exploring higher
performance coherence system implementation and more efficient
cache allocationmechanism; analyzing the bottleneck of NoC traffic,
optimizing the bandwidth allocation, routing algorithm, and QoS
mechanism; conducting large-scale system-level emulation to test
the performance of the entire system; exploring ways to accelerate
formal tools, including multi-threading and hardware acceleration;
trying the backend implementation under the open EDA flow and
use the open PDK for tape-out[6]. We plan to open-source the entire
work when it is complete.

REFERENCES
[1] Ampere Computing. 2021. Ampere altra max 64-bit multi-core processor fea-

tures. Ampere Computing.
[2] Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci, and

Marisa Venturini Zilli. 2004. Exploiting transition locality in automatic veri-
fication of finite-state concurrent systems. International Journal on Software
Tools for Technology Transfer, 6, 320–341.

[3] David L Dill. 1996. The mur 𝜙 verification system. In Computer Aided Veri-
fication: 8th International Conference, CAV’96 New Brunswick, NJ, USA, July
31–August 3, 1996 Proceedings 8. Springer Berlin Heidelberg, 390–393.

[4] John L Hennessy and David A Patterson. 2011. Computer architecture: a quan-
titative approach. Elsevier.

[5] Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. 2017. On-chip
networks. Synthesis Lectures on Computer Architecture, 12, 3, 1–210.

[6] Andrew B Kahng and Tom Spyrou. 2021. The openroad project: unleashing
hardware innovation. In Proc. GOMAC.



Cache Coherent Framework for RISC-V Many-core Systems CARRV’23, June 2023, Orlando, FL, Co-located with ISCA 2023

[7] Vijay Nagarajan, Daniel J Sorin, Mark D Hill, and David A Wood. 2020. A
primer on memory consistency and cache coherence. Synthesis Lectures on
Computer Architecture, 15, 1, 1–294.

[8] C Norris Ip and David L Dill. 1996. Better verification through symmetry.
Formal methods in system design, 9, 41–75.

[9] Nicolai Oswald, Vijay Nagarajan, and Daniel J Sorin. 2018. Protogen: automati-
cally generating directory cache coherence protocols from atomic specifica-
tions. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 247–260.

[10] Ulrich Stern and David L Dill. 2001. Parallelizing the mur𝜙 verifier. Formal
Methods in System Design, 18, 117–129.

[11] Yi Xu, Bo Zhao, Youtao Zhang, and Jun Yang. 2010. Simple virtual channel
allocation for high throughput and high frequency on-chip routers. In HPCA-16
2010 The Sixteenth International Symposium on High-Performance Computer
Architecture. IEEE, 1–11.

[12] Meng Zhang, Alvin R Lebeck, and Daniel J Sorin. 2010. Fractal coherence:
scalably verifiable cache coherence. In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 471–482.


	Abstract
	1 Introduction
	2 Related Work
	3 The System Architecture
	3.1 The Coherence Protocol Design
	3.2 The Coherence Controller Design
	3.3 The Network-on-Chip Design

	4 Verification Methodology
	5 Evaluation
	5.1 Cache Performance
	5.2 Formal Verification
	5.3 ASIC Prototype

	6 Conclusion and Future Work

