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ABSTRACT
There is an emerging class of applications for which minimizing
energy usage is significantly more important than achieving high
performance, and the energy consumption of a CPU core fundamen-
tally depends on the supply voltage and the switched capacitance
of the core. Two key approaches for minimizing energy usage are
hence (i) to reduce the supply voltage into the near or subthreshold
region, and (ii) to minimize processor core area to reduce leakage
currents and total switched capacitance.

In this paper, we combine our subthreshold cell library with the
PicoRV32 and SERV tiny RISC-V cores and evaluate the resulting
energy per instruction across supply voltages from subthreshold
250mV to above-threshold 600mV. Reducing the supply voltage to
300mV decreases power consumption by three orders of magnitude
and energy consumption by one order of magnitude compared to
the nominal 1.2V supply voltage for both cores. While bit-serial
SERV yields 54% lower power consumption than bit-parallel Pi-
coRV32 because it is smaller, PicoRV32 yields 80% lower energy per
instruction because its higher performance makes up for its higher
power consumption compared to SERV.

1 INTRODUCTION
There is a niche for ultra low-power CPU coreswhere the energy per
instruction (EPI) is more important than performance. Applications
include, for example, biomedical devices, RFID, and self-powered
IoT devices where data processing needs are very modest, and
where the amount of available energy for computation is very
limited. This can be because they run on battery and need extremely
long battery life, or that they use some form of energy harvesting
mechanism that has a very low power or intermittent output.

One approach for creating low-power CPU cores is to lower the
supply voltage of the core close to, or below, the threshold volt-
age of the transistors. It is well known that reducing the supply
voltage is the most direct and dramatic means of reducing power
consumption. This is because dynamic power consumption is pro-
portional to supply voltage squared. However, reduced voltage also
reduces the speed at which gates can switch. Lower voltage implies
lower currents and it, therefore, takes longer time to charge and dis-
charge the same capacitance [10]. This is precisely the relationship
leveraged by conventional dynamic voltage and frequency scaling
(DVFS) [8, 14]. The voltages exploited by conventional DVFS are
much higher than the absolute values of the inherent threshold
voltages to maintain reasonable performance and reliability. Power
consumption, however, continues to decline when reducing sup-
ply voltage, resulting in near- or subthreshold CPU cores yielding
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ultra-low power consumption while reducing maximum switching
speeds / performance.

Designing cell libraries that enable the use of subthreshold oper-
ation throughout larger parts of a chip is challenging, mainly due
to vulnerabilities to process-, voltage-, and temperature variations.
The principles were exploited by Swiss watchmakers in the 70s [17],
but it was not until about the last decade that a company like Ambiq
Micro was able to provide microcontrollers exploiting subthreshold
operation for larger parts of their chips [9].

A complimentary approach to reduce the power consumption of
the core is to choose a smaller and simpler CPU architecture that
reduces the total core area, i.e., the total number of transistors. By
reducing the transistor count, both the leakage currents, switching
currents, and switched capacitance will be reduced, resulting in cir-
cuits that consume less power. This, however, also leads to reduced
performance because most or all of the performance enhancing
hardware modules have to be left out to keep the transistor count
down.

In this paper, we implement and evaluate both of these ap-
proaches. We consider two simple CPU cores, both designed with
the goal of minimizing core size: 1) PicoRV32 [21], which is a con-
ventional but minimalistic 32-bit RISC-V core, and 2) SERV [11],
which is a tiny bit-serial RISC-V core. They are compared to each
other with respect to power and EPI. Both cores are evaluated at
different supply voltages, ranging from 250mV (below the abso-
lute values of the transistor threshold voltages of about 350mV) to
600mV (well within superthreshold operation). In addition, they are
compared to cores running at the nominal supply voltage of 1.2V.

We find that the energy optimal supply voltage for the chosen
process is close to 300mV. When running the PicoRV32 core at
300mV, the power decreases by three orders of magnitude and the
energy usage decreases by one order of magnitude when compared
to running the same core on the nominal supply voltage. At all
supply voltages, the bit-serial SERV core is more power efficient
than the larger PicoRV32 core, but turns out to use more energy
per instruction due to its slow execution.

2 ULTRA LOW VOLTAGE CIRCUITS
Dynamic power is proportional to the supply voltage 𝑉𝐷𝐷 squared.
Lowering the supply voltage may reduce power consumption by
several orders of magnitude. As mentioned in the introduction, this
is commonly done in modern CPUs with DVFS, when the voltage
is normally not lowered below the absolute value of the threshold
voltages of the transistors. The threshold voltage 𝑉𝑇ℎ is the mini-
mum voltage needed between the gate and source terminals of a
transistor for an NMOS transistor to start conducting significantly
between source and drain, the transistor is commonly said to be
turning on. A supply voltage below |𝑉𝑇ℎ𝑝 ,𝑉𝑇ℎ𝑛|, means that the
transistors will never turn fully on, but operate in the subthreshold
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region. However, the transistors never turn completely off. Even in
subthreshold there is a current flowing between source and drain.
These currents can also be used for signalling, which is exactly
what is exploited in subthreshold circuits.

There are some properties of the subthreshold currents that make
designing subthreshold circuits more complex than conventional
circuits. These currents are exponentially dependent on 𝑉𝑇ℎ , un-
like the currents flowing when 𝑉𝐺𝑆 > 𝑉𝑇ℎ . Several exponential
dependencies make the circuits prone to performance deviation
or even malfunction due to variations in 𝑉𝑇ℎ [3], temperature et
cetera. Chip foundries are not able to control 𝑉𝑇ℎ accurately, and
𝑉𝑇ℎ can therefore vary significantly, both within a single chip (mis-
match) and between chips (process variations). 𝑉𝑇ℎ is also affected
by temperature and a noisy supply voltage, and makes circuits per-
form very differently as the temperature or supply voltage changes.
These 𝑉𝑇ℎ variations can lead to, e.g., hold-time violations, and
any subthreshold circuit must be designed to handle effects from
process, voltage and temperature variations.

In addition, noise margins are worse in subthreshold [3]. It gets
more difficult to achieve a gate output close to either 𝑉𝐷𝐷 or 𝑉𝑆𝑆 .
The transistor can be regarded as a voltage controlled resistor, and
in subthreshold the difference in resistance between a (somewhat)
conducting state and a (mostly) non-conducting state is not very
high. Combinedwith high loads on gate outputs, the output voltages
may get degraded or take long to stabilize. This makes it important
to keep a low number of transistors in series between a gate output
and either 𝑉𝐷𝐷 or 𝑉𝑆𝑆 [7].

3 CUSTOM SUB-THRESHOLD LIBRARY
Vendor supplied standard cell libraries are commonly only charac-
terized for nominal supply voltages. This paper uses a commercially
available 130nm process where the nominal supply voltage is 1.2V
and the absolute threshold voltage is around 350mV. Exact behavior
of the cells at voltage levels near or below the threshold can not
be known without characterizing them. Characterization requires
access to the detailed layouts of the cells, and this is unfortunately
not available to normal customers of the chosen 130nm process. It
is therefore not possible for us to characterize these cells ourselves.
This means that the synthesis tools cannot optimize the circuits for
any other voltage than the nominal supply voltage. In addition, the
standard cell library is not designed for ultra low voltage operation.
As explained in Section 2, there are different design choices to be
made when the supply voltage is very low, so it is expected that a
cell library specifically targeting these voltages could be advanta-
geous. Many cells in standard libraries will not work well, or at all,
at lower voltages. When using standard cell libraries for subthresh-
old operations, often a selected subset is chosen, which can handle
low voltages reasonably well, though not in an optimal fashion.

The dimensions of the transistors are highly dependent on the
supply voltage the library is intended for, and are chosen to provide
good tradeoffswith respect to speed, power etc. This alsomeans that
transistors in subthreshold cell libraries need different dimensions
than for typical standard libraries. By sizing the transistors for
balanced cells around the threshold voltage, it is expected that the
noise margins and switching speeds will improve [7].

A custom cell library was, therefore, developed for the chosen
130nm process. This library consists of a small but sufficient number
of standard cells. A summary of the cells is found in Table 1. The
layout is conventional, but with transistors sized for low voltage
operation. In addition, only cell types with low transistor stacks are
included. It is important to keep the height of the transistor stacks
in the cells low, which means few inputs to the cells. For logic gates,
the number of inputs are often restricted to a maximum of 2 [13],
which is also the case for this paper.

The library has been characterized and found working in simu-
lations for all supply voltages between 250mV and 600mV, in 50mV
increments.

4 THE CORES
Two cores are compared in this paper: PicoRV32 and SERV. Both
are RISC-V cores, and both are designed to be tiny in area.

PicoRV32 [21] is a multi-cycle CPU with a 32-bit datapath. A
multi-cycle architecture differs from a pipelined architecture in
that instructions do not overlap in time. For example, to execute
an add instruction, the core fetches and decodes the instruction in
the first cycle, fetches operands in cycles 2 and 3 and executes the
instruction and writes back the result in the fourth cycle; the core
continues with fetching and decoding the next instruction in the
fifth cycle. In PicoRV32, instructions execute in 3 to 15 cycles, where
most instructions require 4 cycles as in the example above. This
means that without memory stalls, the CPI (cycles per instruction)
is around 4, depending on the instruction mix in the program.

The SERV [11] core is also a multi-cycle CPU, but with a bit-serial
datapath. This architecture operates on one bit at a time, resulting in
a lot more cycles needed for executing an instruction. Instructions
execute in 35 to 76 cycles, where most instructions require 35. As for
PicoRV32, there is no pipelining, so the CPI is somewhere between
35 and 76 depending on the instruction mix. The upside to this is
a modest area footprint. In our physical implementation, SERV is
only 57% as large as the size of PicoRV32.

To enable a fair comparison between the PicoRV32 core and
the SERV core, we have configured them with similar feature sets.
More specifically, we configured both cores to support the RV32E
ISA [20], which is identical to the more common RV32I ISA, except
for having half the number of registers. They also include only the
minimum set of hardware modules, i.e., all optional hardware has
been excluded.

In these tiny cores, the register file dominates both area and
power consumption, and it is therefore important to implement the
register file efficiently. The easiest approach is to use D flip-flops,
but this is very inefficient as each D flip-flop consists of two latches.
For this reason, most ASIC implementations use either SRAM or
latches for the register file. As indicated in [1], latch-based register
files can be more area efficient than SRAM-based register files when
the register file is small (1Kib or less). Since the RV32E register file
is 512 bits, we implemented latch-based register files in both the
PicoRV32 and SERV cores.

The interfaces of the cores have been modified to be the same
on both cores, making each core fully compatible with each other.
They can, therefore, be simulated with the same testbench.
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Table 1: Custom cell library

Name Size variants Description
IV X1, X2, X5, X10, X20, X40, X80, X160, X320 Inverter
NAND2 X1, X2, X5, X10 2-input NAND
NOR2 X1, X5, X10 2-input NOR
XOR 2-input XOR
XNOR 2-input XNOR
AOI 2-input And-Or-Invert
OAI 2-input Or-And-Invert
BF X2, X5, X10, X20, X40, X80, X160, X320 Buffer
DLY X4, X8 Delay
LDHQ Latch
DFPQ D-flipflop
DFPRQ D-flipflop with async reset
DFPSQ D-flipflop with async set
FA Full adder
MUXI21 2-input multiplexer

(a) PicoRV32 (b) SERV

Figure 1: Layout of the cores. Same scale for both cores.

5 EXPERIMENTAL SETUP
The cores from Section 4 have gone through synthesis (Cadence
Genus [4]) and the full physical design flow (Cadence Innovus [5])
using the custom cell library from Section 3 at 250mV. The cores
are given a square floorplan with an area resulting in around 80%
utilization after routing. All I/O pins are placed at the bottom edge.
The finished layouts of the cores are shown in Figure 1 and the
synthesis and implementation statistics are shown in Table 2.

To get accurate power estimates, the circuits are simulated in
SPICE. These simulations need transistor-level netlists, which are
created from the cell-level netlists produced after physical design.
These transistor-level netlists can be created both with and without
parasitic extraction from the layout. Simulations with extracted par-
asitics are more accurate but increases simulation time. In addition,
access to the full layout is required to extract the parasitics. The
layout is available when using the custom library and transistor-
level netlists are, therefore, created both with and without parasitic
extraction.

To be able to compare the performance of the custom cell library
with the standard cell library, the cell-level netlist for PicoRV32 is
transformed into a new cell-level netlist by substituting all custom
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Figure 2: Clock Period. Log-scale

cells with the equivalent cells from the standard library. This is
then used to create the transistor-level netlist. Since we do not have
access to the full layout of the standard library, we cannot perform
parasitic extraction.

The transistor-level netlists are SPICE simulated using Cadence
Xcelium [6] with a testbench in Verilog. The testbench contains
the memory, which means that memory is excluded from all power
and energy numbers. The memory has a single cycle response
time. The testbench fills the memory with a small program. The
chosen test program is a CRC32 calculator, and the input given is
a single byte buffer containing the letter ’a’. CRC32 was chosen
because it is a well known and widely used algorithm, while at the
same time is simple enough to be SPICE simulated in reasonable
time. The testbench resets the core, and then waits until the core
runs through the program and writes the correct CRC32 result to
a specific memory address. From reset to the result is written, the
core executes in total 26 instructions.
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PicoRV32 (custom lib) PicoRV32 (standard lib) SERV (custom lib)
Area 0.23mm2 N/A 0.13mm2

Utilization 79.45% N/A 80.40%
Cells (synth) 7215 Same netlist as with custom 2973
Cells (final) 10643 Same netlist as with custom 4349
Transistors 54632 62212 27008

Table 2: Core statistics after full layout

Clock periods for various supply voltages have been determined
with a static timing analysis tool (Synopsys PrimeTime [16]) using
the custom cell library. This was done for both the PicoRV32 core
and the SERV core, and found to differ with less than 5%. The
shortest clock period that works for both cores was chosen for each
supply voltage. These periods are shown in Figure 2. The standard
cell library has not been characterized for near-threshold voltages,
so the clock frequencies found with the custom library are also
used when simulating with the standard cell library.

6 RESULTS
We now present our evaluation of the PicoRV32 and SERV cores in
which we consider the following configurations:

• pico: PicoRV32, custom library, no parasitic
• pico_pex: PicoRV32, custom library, with parasitic
• pico_std: PicoRV32, standard library, no parasitic
• serv: SERV, custom library, no parasitic
• serv_pex: SERV, custom library, with parasitic

6.1 Energy Optimal Supply Voltage
Figure 3a shows how the average power varies with supply voltage
on the two cores. As is expected, the power decreases as the sup-
ply voltage decreases. The lowest power is found with the lowest
possible supply voltage. However, as Figure 2 shows, the runtime
of the RISC-V program running on the core increases as the sup-
ply voltage decreases. Energy is average power multiplied with
runtime, and for many applications low energy usage is of higher
importance than power.

Figure 3b shows how the energy per instruction (EPI) varies with
supply voltage on the cores. It is evident from the figure that the
energy minimum for our custom library lies somewhere close to
300mV. In other words, the most energy efficient supply voltage
for our custom library is 300mV. This is the same for both cores.
This is in line with earlier findings by other researchers [12, 19];
the energy minimum typically lies below the absolute values of the
inherent threshold voltages.

6.2 Bit-Serial vs. Bit-Parallel Core Architecture
When comparing the PicoRV32 core to the SERV core, it is clear
from Figure 3a that the SERV core is more power efficient than the
PicoRV32 core. With the custom library, PicoRV32 has 2.2 times
the power consumption of SERV at 300mV. This is mostly due to
the lower area of the SERV core. The size differences between the
cores are visualized in Figure 1, but is also evident from Table 2
that gives an overview of the transistor counts of the cores. The
size difference more or less coincides with the difference in power.
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Figure 3: Comparing cores

The SERV core is, however, significantly less energy efficient
than the PicoRV32 core, which can be seen in Figure 3b. The EPI of
SERV is 5.1 times the EPI of PicoRV32 at 300mV. This shows that
the high CPI of the bit-serial SERV core makes the total energy
usage of the SERV core much higher than for the more conventional
designed PicoRV32 core, even though the average power is lower.
The transistors saved by going to a bit-serial architecture do not
weigh up for the increase in runtime.
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Figure 4: Comparing libraries

6.3 Custom Library vs Standard Library
Our custom library has been compared to the standard library
in Figure 4. Both power and energy numbers are smaller for the
PicoRV32 core using the custom library, mostly due to a larger
transistor count in the standard library. The difference is, however,
not very large and indicates that the custom library is a reason-
able substitute for the standard library, with the added benefit of
enabling parasitic extraction and subthreshold characterization.

In addition, transistor sizing for subthreshold might have made
the custom library more robust and better performing at subthresh-
old, but this can not be concluded without further investigations.

6.4 Subthreshold vs. Nominal Supply Voltage
As discussed in Section 6.1, the most energy optimal supply voltage
for our custom library is 300mV. Table 3 shows how a 300mV core
compares to a core running at 1.2V. As can be seen, the power
decreases by three orders of magnitude when going from 1.2V to
300mV , which is similar to results in [2]. Frequency decreases by

pico_std @ 300mV pico_std @ 1.2V
Power 2.99µW 5147.05µW
Runtime 66.26µs 0.47µs
Energy 198.38pJ 2409.17pJ
EPI 7.63pJ 92.65pJ
Frequency 1.77MHz 250.00MHz

Table 3: Subthreshold vs nominal Vdd
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Figure 5: EPI, comparing simulations with and without ex-
tracted parasitics

two orders of magnitude, and the result is that EPI decreases by
one order of magnitude, similar to what has been observed by other
researchers [2, 13].

6.5 Simulations with Extracted Parasitics
The simulations in Section 6.3 and Section 6.4 are done without
parasitic extraction. As mentioned in section 5, this leads to less
accurate results than when simulating a netlist where parasitics
from the layout are included. Since this is not possible with the
standard library, it was decided to exclude parasitic extraction for all
simulations in Section 6.3 and Section 6.4, such that the comparisons
are fair.

Figure 5 shows the effect of excluding parasitics. Both cores
(using the custom library) have been simulated, both with and
without extracted parasitics. As can be seen, the EPI increases
significantly (78% higher for both cores at 300mV) when simulated
with parasitics, but the trends are the same. This indicates that the
conclusions based on simulations without extracted parasitics are
correct, even though the absolute numbers are not.

7 RELATEDWORK
Several CPU cores have been implemented for subthreshold op-
eration. One example is found in [13] where they designed and
produced a 65nm chip containing two 32-bit RISC cores with SRAM
caches, running on a supply voltage as low as 200mV. Another ex-
ample is [15] where a subthreshold ARM Cortex M0 was designed
and built in a 65nm process, complete with chip prototype. They
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also found that some samples were operational down to 200mV.
[18] implemented a near-threshold RISC-V core in 28nm and suc-
cessfully ran a prototype chip on 250mV.

What separates the work in this paper from other published
papers on subthreshold CPU cores is that two subthreshold RISC-V
cores that are both tiny in size, but with widely different archi-
tectures, are compared with respect to EPI, giving insight into
architectural choices on low-energy cores.

8 CONCLUSION
This paper has investigated the energy efficiency of two cores
running at ultra-low voltages: PicoRV32 and SERV. PicoRV32 was
found to be the most energy efficient of the two cores, with an EPI
of 12.73pJ compared to an EPI of 64.81pJ for SERV when running
at the energy optimal supply voltage of 300mV.
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