
Enabling Heterogeneous, Multicore
SoC Research with RISC-V and ESP

Joseph Zuckerman
Paolo Mantovani, Davide Giri, Luca P. Carloni

Motivation – Heterogeneity in SoC Design

• SoCs are increasingly heterogeneous
• Heterogeneity increases engineering effort [1]

• OSH mitigates this by promoting
collaboration and design reuse [2]

• Lots of open-source RISC-V cores

[1] Khailany, DAC ‘18
[2] Gupta, IEEE Computer ‘17

2

Motivation – Multicore Architectures

• Diminishing returns of parallel architectures
are a driver towards heterogeneity

• Yet, multicore is (clearly) still an important
feature of modern systems
• Supporting multiple cores imposes

additional challenges for SoC design
• Coherence
• Synchronization

à Need a platform that enables the
seamless design of multicore SoC
architectures with heterogeneous IP blocks

3

Contributions

• ESP distinguishes itself from other open-source
multicore-capable RISC-V SoC platforms by:
• adopting a system-centric rather than a processor-centric

mindset
• relying on standardized interfaces and bus protocols
• utilizing an architecture that scales well to large SoC designs

• We augment ESP to support SoCs with up to 4 CVA6 RISC-V cores
• Capable of booting Linux SMP and running multithreaded applications on

FPGA
• Our modifications rely on standardized interfaces
• Simplifies the integration of new cores

4

ESP Overview

5

• Multi-Plane NoC

• Many-Accelerator

• Distributed Memory

The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC [3]

ESP Architecture

[3] Mantovani, ICCAD ‘20 6

• Processor off-the-shelf
• RISC-V CVA6-Ariane (64 bit)
• SPARC V8 Leon3 (32 bit)
• RISC-V IBEX (32 bit)
• L1 private cache

• L2 private cache
• Configurable size
• MESI protocol

• IO/IRQ channel
• Un-cached
• Accelerator config. registers,

interrupts, flush, UART, …

ESP Architecture: Processor Tile

7

•External Memory Channel

• LLC and directory partition
• Configurable size
• Extended MESI protocol
• Supports coherent-DMA

for accelerators

•DMA channels

• IO/IRQ channel

ESP Architecture: Memory Tile

8

•Accelerator Socket
w/ Platform Services

• Direct-memory-access

• Run-time selection of
coherence model [5, 6] :

• Fully coherent

• LLC coherent

• Non coherent

• User-defined registers

• Distributed interrupt

ESP Architecture: Accelerator Tile

[4] Giri, ASPDAC ’19 [5] Zuckerman, MICRO ‘21 9

•Directory-based MESI protocol
adapted to work over NoC [6]

• Adds a Valid state

•Handles LLC-coherent DMA from
accelerators [6, 7]

• Private L2 cache can be instantiated
in acc or proc tiles

• Handles atomic operations

• Designed to support SPARC LEON3
core

ESP Architecture: Coherence Protocol

[6] Giri, NOCS ’18 [7] Giri, IEEE MICRO ‘18 10

ESP Methodology

• Embraces the design of new
accelerators from multiple levels
of abstraction [8]

• Enables the integration of
existing accelerators with the
third party flow [9]

• Can be used to produce
complex FPGA prototypes [10]

or real ASIC implementations [11]

[8] Giri, DATE ‘20 [10] Mantovani, DAC ‘16
[9] Giri, IEEE MICRO ‘21 [11] Jia, ESSCIRC ‘22 11

Enabling Multicore RISC-V

12

CVA6 Integration

• Prior work integrated the CVA6 (Ariane) [12,13]
core with ESP [14]

• AHB Bus à AXI crossbar in processor tile
• New AXI wrapper for L2 cache
• Handle little-endian writes in the L2
• LLC unchanged

• Key challenges to enable multicore:
• L1 Invalidation
• RISC-V atomic instructions

[12] https://github.com/openhwgroup/cva6
[13] Zaruba, IEEE TVLSI ’19 [14] Giri, CARRV ‘20 13

https://github.com/openhwgroup/cva6

L1 Invalidation of CVA6
• CVA6 does not natively accept

invalidation on its AXI interface
• Prior work integrated CVA6 in the

OpenPiton architecture, but relied
on a custom interface [15]

• We leverage the AXI Coherency
Extensions to send invalidation

• L2 drives the Snoop Address (AC) channel
with a MakeInvalid command
• Also sends the protection bits to route

between the I-cache and D-cache
• New dcache_inval unit performs lookup

in cache memory and invalidates on a hit
• L1-Flush signal exposed for accelerator

invocations
[15] Balkind, CARRV ‘19 14

RISC-V AMOs

• Handle RISC-V atomic memory operations by instantiating
AXI Adapter for RISC-V atomics from PULP [16]
• Converts AMO request from one write transaction to a downstream

read and write
• Small ALU performs computation
• lock field on AXI bus signals to L2 that the read and write are part

of an AMO

• Atomicity enforced by L2, leveraging prior implementation
for handling SPARC atomics
• Forward requests for a cache line with an ongoing atomic are stalled
• Minor changes to determine when an atomic is “over”

[16] https://github.com/pulp-platform/axi_riscv_atomics 15

RISC-V LR/SC

• Uses same infrastructure as AMOs, but some changes because
SC is not guaranteed to succeed
• L2 must reply with success or failure on the write response

channel
• Forwards are served to a cache line with an ongoing LR/SC
• “atomic” is marked as ended, and the SC will fail upon arrival
• Instruction reads must be served between LR/SC
• ISA prohibits data loads/stores between LR/SC
• Tricky because SPARC implementation was not designed to handle any

memory accesses during an ongoing atomic
• LR/SC are distinguished from AMO using the atop field
• Forwarded over the user field of the AR channel

16

Evaluation

17

CRONO Multithreaded Benchmark Suite

• Implementation of L1 invalidation and RISC-V
AMOs took a few weeks each
• Shortly thereafter, ran first multicore

baremetal programs and booted Linux SMP
for first time
• ~2 additional months for minor bug fixes
• Used the CRONO suite [17] for debugging

and evaluation purposes
• Multithreaded graph algorithms
• Path planning
• Search
• Graph Processing
• Ran on top of Linux SMP on FPGA with 1, 2,

and 4 cores on evaluation SoC
[17] Ahmad, ISWC ‘15 18

Experimental Results

• Near-linear performance scaling with core count
• 2-cores 58% execution time
• 4-cores 34% execution time
• Roughly matches evaluation by CRONO authors [17]

0.00

0.25

0.50

0.75

1.00

apsp bc bfs cd cc dfs pr sssp tc tsp geomean
benchmark

n
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

1 core 2 cores 4 cores

[17] Ahmad, ISWC ‘15
19

Thank you from the ESP team!
sld.cs.columbia.edu esp.cs.columbia.edu sld-columbia/espColumbiaSld c/ESP-platform

Enabling Heterogeneous, Multicore SoC Research with RISC-V and ESP

Joseph Zuckerman, Paolo Mantovani, Davide Giri, Luca P. Carloni

CARRV 2022

Image Credits:
https://www.openhwgroup.org/
https://bar.eecs.berkeley.edu/
https://www.sifive.com/
https://www.t-head.cn/
https://pulp-platform.org/
https://www.gaisler.com/
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/ucb-bar/chipyard
https://github.com/PrincetonUniversity/openpiton
https://github.com/black-parrot/black-parrot

https://sld.cs.columbia.edu/
https://www.esp.cs.columbia.edu/
https://github.com/sld-columbia/esp
https://twitter.com/ColumbiaSld
https://www.youtube.com/c/ESP-platform
https://www.gaisler.com/
https://www.openhwgroup.org/
https://bar.eecs.berkeley.edu/
https://www.sifive.com/
https://www.t-head.cn/
https://pulp-platform.org/
https://www.gaisler.com/
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/ucb-bar/chipyard
https://github.com/PrincetonUniversity/openpiton
https://github.com/black-parrot/black-parrot

