Enabling Heterogeneous, Multicore
SoC Research with RISC-V and ESP

&2 COLUMBIA UNIVERSITY CS® - PUTER SCIENCE
IN THE CITY OF NEW YORK @C U

Motivation — Heterogeneity in SoC Design

heterogeneous SoC

* SoCs are increasingly heterogeneous
* Heterogeneity increases engineering effort sl

* OSH mitigates this by promoting
collaboration and design reuse

sea of

* Lots of open-source RISC-V cores e

g s GROUP

i OPENHW Berkeley Architecture Research

i

Bsi. @ «® CAES

Motivation — Multicore Architectures

* Diminishing returns of parallel architectures

dare d dl’ivel‘ TOWG I’dS heterogene“'y 50 Years of Microprocessor Trend Data
| | | A*A‘
* Yet, multicore is (clearly) still an important 10" | IV Sl i
108 | A&;:‘A _| (thousands
feature of modern systems ol B e e
Aﬁt“‘ ol Performance ,
° s 1-' |-|-° I H 10 b e "”’}' | (SpecINT x 10°)
upporting multiple cores imposes “ 1 ?:_c,.a e L LR
additional challenges for SoC design PP | o grog | Typical Povier
10° b & - aE e I o v
* Coherence O F L I Lt e e
* Synchronization 0O g s 3o Boees o st]
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

= Need a platform that enables the
seamless design of multicore $SoC
architectures with heterogeneous IP blocks

Contributions

* We augment to support SoCs with up to 4 CVA6 RISC-V cores

* Capable of booting Linux SMP and running multithreaded applications on
FPGA

* Our modifications rely on standardized interfaces
* Simplifies the integration of new cores

* ESP distinguishes itself from other open-source
multicore-capable RISC-V SoC platforms by:

* adopting a system-centric rather than a processor-centric
mindset

* relying on standardized interfaces and bus protocols
BlackParrot

4

* vtilizing an architecture that scales well to large SoC designs

=SSP Qverview

ESP Architecture

* Multi-Plane NoC

* Many-Accelerator

* Distributed Memory

4 h

The ESP architecture implements a
distributed system, which is scalable,
modular and heterogeneous,
giving processors and accelerators

.
D

multi-plane NoC

similar weight in the SoC [3] /

o

(o))

[3] Mantovani, ICCAD ‘20

£SP Architecture: Processor Tile

* Processor off-the-shelf
« RISC-V CVA6b6-Ariane (64 bit)
« SPARC V8 Leon3 (32 bit)

« RISC-V IBEX (32 bit)
« L1 private cache

* L2 private cache
« Configurable size
« MESI protocol

*10/IRQ channel

1T 2 3 6
* Un-cached NoC | coherence IO /IRQ
planes plane

« Accelerator config. registers,
interrupts, flush, UART, ...

Architecture: Memory Tile

* LLC and directory partition
« Configurable size
« Extended MESI protocol
« Supports coherent-DMA

for accelerators

* DMA channels
*IO/IRQ channel

DRAM
memotry
controller
- ¢ ¢A bus)
LLC & =
directory =— | 2
G-
(L A L
==E=E=s =
1 2 3 4 5 o)
NoC coherence DMA 10/IRQ
planes planes plane

Architecture: Accelerator Tile

« Direct-memory-access

 Run-time selection of

coherence model

« Fully coherent
« LLC coherent

« Non coherent

« User-defined registers

« Distributed interrupt

ESP accelerator r;n;lf?_—ggr:{(
HLS (C, SystemC, Tensorflow, A eyl
Pytorch), Chisel, Verilog, ... P

memory
read /write config done
private l T DMA cfg
cache = TB == (il regs IRQ
1T 2 3 4 5 6
coherence DMA IO/IRQ NoC
planes planes plane

Architecture: Coherence Protocol

* Directory-based MESI protocol

adapted to work over NoC

« Adds a Valid state
* Handles LLC-coherent DMA from

accelerators

* Private L2 cache can be instantiated

in acc or proc tiles

« Handles atomic operations

* Designed to support SPARC LEON3
core

NoC
routers
processor E
® °® ® °® L1 cache <
! S
- 7 >§
10 £
* ® ./.y L2 cache <
flush
proc |
o ® ® °® coherence IO/IRQ
planes plane
acc mem NoC
AL
accelerator PLM mem. ctrl
read /write port config port done - ¢I ! >
L DMA cf LLCc& T
cache < TIB =— 4 regs IRQ directory = = |1 fS
- ! | ¥ Al -

coherenge DMA IO/IRQ coherence DMA IO/IRQ
planes planes plane planes planes plane

1
)

Methodology

* Embraces the design of new e SoC Configuration
A H HH R —

Acc ¥ Acc ¥ Memw

Keras

accelerators from multiple levels eroren| sem o accelerators | SOC HW

- Integration
M e E Rt Memw| I/0 ¥ Acc W
of abstraction HLS /

SoC Generation

CPUWw Acc v CPUW

. : ik N
* Enables the integration of Flows —

C/C++] third-pa
Vivado HLS Balty

existing accelerators with the [stratue 108 e
Catapult HLS HW IP L|brary

M S t C/ //—\
third party flow 8 3 FPGA ASIC

Linux apps Prototyping Design

* Can be used to produce Chisel] RTL et e

3 Design device drivers L1l 111
- C
complex FPGA prototypes Verilog Flows | swaud) FreeaE Fasic

VHDL J third-party SW Build

. o accelerators’ SW
or real ASIC implementations — T ap
ibrary

Enabling Multicore RISC-V

CVA6 Integration

* Prior work integrated the CVA6 (Ariane)
core with ESP

* AHB Bus = AXI crossbar in processor tile
* New AXI wrapper for L2 cache

e Handle little-endian writes in the L2
* LLC unchanged

* Key challenges to enable multicore:
* L1 Invalidation

* RISC-V atomic instructions

processor

]

(RISC-V Ariane, ...) _
L1 cache g
| | 3
- ¢ AXI4 bus):q:_,
APBbus | =
L2 cache _:______: >
flush
Y
LIge g e = =
1 2 3 6
NoC | coherence IO/IRQ
planes plane

https://github.com/openhwgroup/cva6

L1 Invalidation of CVAb

* CVA6 does not natively accept
invalidation on its AXI interface

* Prior work integrated CVA6 in the
OpenPiton architecture, but relied
on a custom interface

* We leverage the AXI Coherency
Extensions to send invalidation

* L2 drives the Snoop Address (AC) channel
with a MakeInvalid command

* Also sends the protection bits to route
between the |-cache and D-cache

* New dcache inval unit performs lookup
in cache memory and invalidates on a hit

* L1-Flush signal exposed for accelerator
invocations

RISC-V
CVAé6

cacheline write (idx, vld, data)

L1

AXI5

ACE

RISC-V
AMOs

cpu
req

inval

LOAD Q@ MMU/PTW dcache_mem

=

A A

dcache_ctrl [<

req_port[0]/hit

<

STORE Q

I

req_port[1]/hit

dcache_wbuffer

req_port[2]/hit

A

miss_req
YyYvyy

req_port[3]/hit

L2

req

fwdT rsp ‘

1 2 3
ESP NoC

planes

— dcache_missunit

inv_req

dcache_inval

A

L1 l-cache

v

A

inval

L

y prot

axi_adapter

AXI5 I

ACE

RISC-V AMOs

RISC-V
CVA6
* Handle RISC-V atomic memory operations by instantiating .
AX| Adapter for RISC-V atomics from PULP
e Converts AMO request from one write transaction to a downstream
read and write AXIS | ACE
* Small ALU performs computation RISC-V
« lock field on AXI bus signals to L2 that the read and write are part AMOs
of an AMO cpu l
. . : . : req Inval
* Atomicity enforced by L2, leveraging prior implementation
for handling SPARC atomics 2 i
* Forward requests for a cache line with an ongoing atomic are stalled req | deT !
* Minor changes to determine when an atomic is “over” Iz
ESP NoC
planes

RISC-V LR /SC

CVA6
e Uses same infrastructure as AMOs, but some changes because L1
SC is not guaranteed to succeed
* L2 must reply with success or failure on the write response AXI5 | ACE
channel —
* Forwards are served to a cache line with an ongoing LR/SC AMOs
* “atomic” is marked as ended, and the SC will fail upon arrival cpu .
. req { Invad
* |nstruction reads must be served between LR/SC E
* |SA prohibits data loads/stores between LR/SC)
* Tricky because SPARC implementation was not designed to handle any req | fwdT rsp |
memory accesses during an ongoing atomic 1 2 3
* LR/SC are distinguished from AMO using the atop field ESP NoC
* Forwarded over the user field of the AR channel planes

Evaluation

17

CRONO Multithreaded Benchmark Svuite

Aux
Tile

[17] Ahmad, ISWC ‘15 18

* Implementation of L1 invalidation and RISC-V
AMOs took a few weeks each

* Shortly thereafter, ran first multicore
baremetal programs and booted Linux SMP
for first time

* ~2 additional months for minor bug fixes

* Used the CRONO suite [17] for debugging
and evaluation purposes

* Multithreaded graph algorithms
* Path planning
* Search
* Graph Processing

* Ran on top of Linux SMP on FPGA with 1, 2,
and 4 cores on evaluation SoC

normalized execution time

Experimental Results

[0 1 core [@ 2 cores [] 4 cores

.00

.75

.50

.25

.00

L LERRRRELL

apsp dfs sssp

benchmark

* Near-linear performance scaling with core count
* 2-cores 58% execution time
* 4-cores 34% execution time
* Roughly matches evaluation by CRONO authors 17,

[17] Ahmad, ISWC ‘15

geomean

19

Thank you from the ESP team!

1Y PaN
SLD sld.cs.columbia.edu yCqumbiaSId EEE esp.cs.columbia.edu O sld-columbia/esp u c/ESP-platform

4 N
Enabling Heterogeneous, Multicore SoC Research with RISC-V and ESP

Joseph Zuckerman, Paolo Mantovani, Davide Giri, Luca P. Carloni

Image Credits:

https://www.openhwgroup.org/
https://bar.eecs.berkeley.edu/

https://www.sifive.com/

https://www.t-head.cn/

https://pulp-platform.org/

https://www.gaisler.com/
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/ucb-bar/chipyard

https://github.com/PrincetonUniversity/openpiton CAR RV 202 2
https://github.com/black-parrot/black-parrot
P=aN
&2 COLUMBIA UNIVERSITY E,E!E CS® - PUTER SCIENCE
IN THE CITY OF NEW YORK . i ‘ @C U

https://sld.cs.columbia.edu/
https://www.esp.cs.columbia.edu/
https://github.com/sld-columbia/esp
https://twitter.com/ColumbiaSld
https://www.youtube.com/c/ESP-platform
https://www.gaisler.com/
https://www.openhwgroup.org/
https://bar.eecs.berkeley.edu/
https://www.sifive.com/
https://www.t-head.cn/
https://pulp-platform.org/
https://www.gaisler.com/
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/ucb-bar/chipyard
https://github.com/PrincetonUniversity/openpiton
https://github.com/black-parrot/black-parrot

