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Motivation — Heterogeneity in SoC Design

heterogeneous SoC

* SoCs are increasingly heterogeneous
* Heterogeneity increases engineering effort sl

* OSH mitigates this by promoting
collaboration and design reuse
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Motivation — Multicore Architectures

* Diminishing returns of parallel architectures
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
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= Need a platform that enables the
seamless design of multicore $SoC
architectures with heterogeneous IP blocks



Contributions

* We augment to support SoCs with up to 4 CVA6 RISC-V cores

* Capable of booting Linux SMP and running multithreaded applications on
FPGA

* Our modifications rely on standardized interfaces
* Simplifies the integration of new cores

* ESP distinguishes itself from other open-source
multicore-capable RISC-V SoC platforms by:

* adopting a system-centric rather than a processor-centric
mindset

* relying on standardized interfaces and bus protocols
BlackParrot
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* vtilizing an architecture that scales well to large SoC designs




=SSP Qverview



ESP Architecture

* Multi-Plane NoC

* Many-Accelerator

* Distributed Memory
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The ESP architecture implements a
distributed system, which is scalable,
modular and heterogeneous,
giving processors and accelerators
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£SP Architecture: Processor Tile

* Processor off-the-shelf
« RISC-V CVA6b6-Ariane (64 bit)
« SPARC V8 Leon3 (32 bit)

« RISC-V IBEX (32 bit)
« L1 private cache

* L2 private cache
« Configurable size
« MESI protocol

*10/IRQ channel
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* Un-cached NoC | coherence IO /IRQ
planes plane

« Accelerator config. registers,
interrupts, flush, UART, ...



Architecture: Memory Tile

* LLC and directory partition
« Configurable size
« Extended MESI protocol
« Supports coherent-DMA

for accelerators

* DMA channels
*IO/IRQ channel
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Architecture: Accelerator Tile

« Direct-memory-access

 Run-time selection of

coherence model

« Fully coherent
« LLC coherent

« Non coherent

« User-defined registers

« Distributed interrupt

ESP accelerator r;n;lf?_—ggr:{(
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Architecture: Coherence Protocol

* Directory-based MESI protocol

adapted to work over NoC

« Adds a Valid state
* Handles LLC-coherent DMA from

accelerators

* Private L2 cache can be instantiated

in acc or proc tiles

« Handles atomic operations

* Designed to support SPARC LEON3
core
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Methodology

* Embraces the design of new e SoC Configuration
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Enabling Multicore RISC-V



CVA6 Integration

* Prior work integrated the CVA6 (Ariane)
core with ESP

* AHB Bus = AXI crossbar in processor tile
* New AXI wrapper for L2 cache

e Handle little-endian writes in the L2
* LLC unchanged

* Key challenges to enable multicore:
* L1 Invalidation

* RISC-V atomic instructions
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https://github.com/openhwgroup/cva6

L1 Invalidation of CVAb

* CVA6 does not natively accept
invalidation on its AXI interface

* Prior work integrated CVA6 in the
OpenPiton architecture, but relied
on a custom interface

*  We leverage the AXI Coherency
Extensions to send invalidation

* L2 drives the Snoop Address (AC) channel
with a MakeInvalid command

* Also sends the protection bits to route
between the |-cache and D-cache

* New dcache inval unit performs lookup
in cache memory and invalidates on a hit

* L1-Flush signal exposed for accelerator
invocations
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RISC-V AMOs

RISC-V
CVA6
* Handle RISC-V atomic memory operations by instantiating .
AX| Adapter for RISC-V atomics from PULP
e Converts AMO request from one write transaction to a downstream
read and write AXIS | ACE
* Small ALU performs computation RISC-V
« lock field on AXI bus signals to L2 that the read and write are part AMOs
of an AMO cpu l
. . : . : req Inval
* Atomicity enforced by L2, leveraging prior implementation
for handling SPARC atomics 2 i
* Forward requests for a cache line with an ongoing atomic are stalled req | deT !
* Minor changes to determine when an atomic is “over” Iz
ESP NoC
planes




RISC-V LR /SC

CVA6
e Uses same infrastructure as AMOs, but some changes because L1
SC is not guaranteed to succeed
* L2 must reply with success or failure on the write response AXI5 | ACE
channel —
* Forwards are served to a cache line with an ongoing LR/SC AMOs
* “atomic” is marked as ended, and the SC will fail upon arrival cpu .
. req { Invad
* |nstruction reads must be served between LR/SC E
* |SA prohibits data loads/stores between LR/SC )
* Tricky because SPARC implementation was not designed to handle any req | fwdT rsp |
memory accesses during an ongoing atomic 1 2 3
* LR/SC are distinguished from AMO using the atop field ESP NoC
* Forwarded over the user field of the AR channel planes




Evaluation
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CRONO Multithreaded Benchmark Svuite

Aux
Tile

[17] Ahmad, ISWC ‘15 18

* Implementation of L1 invalidation and RISC-V
AMOs took a few weeks each

* Shortly thereafter, ran first multicore
baremetal programs and booted Linux SMP
for first time

* ~2 additional months for minor bug fixes

* Used the CRONO suite [17] for debugging
and evaluation purposes

* Multithreaded graph algorithms
* Path planning
* Search
* Graph Processing

* Ran on top of Linux SMP on FPGA with 1, 2,
and 4 cores on evaluation SoC



normalized execution time

Experimental Results
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* Near-linear performance scaling with core count
* 2-cores 58% execution time
* 4-cores 34% execution time
* Roughly matches evaluation by CRONO authors 17,

[17] Ahmad, ISWC ‘15
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Thank you from the ESP team!
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