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Motivation – Heterogeneity in SoC Design

• SoCs are increasingly heterogeneous
• Heterogeneity increases engineering effort [1]

• OSH mitigates this by promoting 
collaboration and design reuse [2]

• Lots of open-source RISC-V cores

[1] Khailany, DAC ‘18
[2] Gupta, IEEE Computer ‘17
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Motivation – Multicore Architectures

• Diminishing returns of parallel architectures 
are a driver towards heterogeneity

• Yet, multicore is (clearly) still an important 
feature of modern systems
• Supporting multiple cores imposes 

additional challenges for SoC design
• Coherence
• Synchronization

à Need a platform that enables the 
seamless design of multicore SoC 
architectures with heterogeneous IP blocks
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Contributions

• ESP distinguishes itself from other open-source 
multicore-capable RISC-V SoC platforms by:
• adopting a system-centric rather than a processor-centric 

mindset
• relying on standardized interfaces and bus protocols
• utilizing an architecture that scales well to large SoC designs

• We augment ESP to support SoCs with up to 4 CVA6 RISC-V cores
• Capable of booting Linux SMP and running multithreaded applications on 

FPGA
• Our modifications rely on standardized interfaces
• Simplifies the integration of new cores 
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ESP Overview
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• Multi-Plane NoC

• Many-Accelerator

• Distributed Memory

The ESP architecture implements a 
distributed system, which is scalable, 

modular and heterogeneous,
giving processors and accelerators 

similar weight in the SoC [3]

ESP Architecture

[3] Mantovani, ICCAD ‘20 6



• Processor off-the-shelf 
• RISC-V CVA6-Ariane (64 bit)
• SPARC V8 Leon3 (32 bit)
• RISC-V IBEX (32 bit)
• L1 private cache

• L2 private cache
• Configurable size
• MESI protocol

• IO/IRQ channel
• Un-cached
• Accelerator config. registers, 

interrupts, flush, UART, …

ESP Architecture: Processor Tile
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•External Memory Channel

• LLC and directory partition
• Configurable size
• Extended MESI protocol 
• Supports coherent-DMA 

for accelerators

•DMA channels

• IO/IRQ channel

ESP Architecture: Memory Tile
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•Accelerator Socket 
w/ Platform Services

• Direct-memory-access

• Run-time selection of 
coherence model [5, 6] :

• Fully coherent

• LLC coherent

• Non coherent

• User-defined registers

• Distributed interrupt

ESP Architecture: Accelerator Tile

[4] Giri, ASPDAC ’19 [5] Zuckerman, MICRO ‘21 9



•Directory-based MESI protocol 
adapted to work over NoC [6]

• Adds a Valid state

•Handles LLC-coherent DMA from 
accelerators [6, 7]

• Private L2 cache can be instantiated  
in acc or proc tiles

• Handles atomic operations

• Designed to support SPARC LEON3 
core

ESP Architecture: Coherence Protocol

[6] Giri, NOCS ’18       [7] Giri, IEEE MICRO ‘18 10



ESP Methodology

• Embraces the design of new 
accelerators from multiple levels 
of abstraction [8]

• Enables the integration of 
existing accelerators with the 
third party flow [9]

• Can be used to produce 
complex FPGA prototypes [10] 

or real ASIC implementations [11]

[8] Giri, DATE ‘20 [10] Mantovani, DAC ‘16 
[9] Giri, IEEE MICRO ‘21 [11] Jia, ESSCIRC ‘22 11



Enabling Multicore RISC-V
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CVA6 Integration

• Prior work integrated the CVA6 (Ariane) [12,13]
core with ESP [14]

• AHB Bus à AXI crossbar in processor tile
• New AXI wrapper for L2 cache
• Handle little-endian writes in the L2
• LLC unchanged

• Key challenges to enable multicore:
• L1 Invalidation 
• RISC-V atomic instructions

[12] https://github.com/openhwgroup/cva6
[13] Zaruba, IEEE TVLSI ’19 [14] Giri, CARRV ‘20 13

https://github.com/openhwgroup/cva6


L1 Invalidation of CVA6
• CVA6 does not natively accept 

invalidation on its AXI interface
• Prior work integrated CVA6 in the 

OpenPiton architecture, but relied
on a custom interface [15]

• We leverage the AXI Coherency 
Extensions to send invalidation

• L2 drives the Snoop Address (AC) channel 
with a MakeInvalid command
• Also sends the protection bits to route 

between the I-cache and D-cache
• New dcache_inval unit performs lookup 

in cache memory and invalidates on a hit
• L1-Flush signal exposed for accelerator 

invocations
[15] Balkind, CARRV ‘19 14



RISC-V AMOs

• Handle RISC-V atomic memory operations by instantiating 
AXI Adapter for RISC-V atomics from PULP [16]
• Converts AMO request from one write transaction to a downstream 

read and write
• Small ALU performs computation
• lock field on AXI bus signals to L2 that the read and write are part 

of an AMO

• Atomicity enforced by L2, leveraging prior implementation 
for handling SPARC atomics 
• Forward requests for a cache line with an ongoing atomic are stalled
• Minor changes to determine when an atomic is “over”

[16] https://github.com/pulp-platform/axi_riscv_atomics 15



RISC-V LR/SC

• Uses same infrastructure as AMOs, but some changes because 
SC is not guaranteed to succeed
• L2 must reply with success or failure on the write response 

channel
• Forwards are served to a cache line with an ongoing LR/SC
• “atomic” is marked as ended, and the SC will fail upon arrival
• Instruction reads must be served between LR/SC
• ISA prohibits data loads/stores between LR/SC
• Tricky because SPARC implementation was not designed to handle any 

memory accesses during an ongoing atomic
• LR/SC are distinguished from AMO using the atop field
• Forwarded over the user field of the AR channel
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Evaluation
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CRONO Multithreaded Benchmark Suite

• Implementation of L1 invalidation and RISC-V 
AMOs took a few weeks each
• Shortly thereafter, ran first multicore 

baremetal programs and booted Linux SMP 
for first time
• ~2 additional months for minor bug fixes
• Used the CRONO suite [17] for debugging 

and evaluation purposes
• Multithreaded graph algorithms
• Path planning
• Search
• Graph Processing
• Ran on top of Linux SMP on FPGA with 1, 2, 

and 4 cores on evaluation SoC
[17] Ahmad, ISWC ‘15 18



Experimental Results

• Near-linear performance scaling with core count
• 2-cores 58% execution time
• 4-cores 34% execution time
• Roughly matches evaluation by CRONO authors [17]
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Thank you from the ESP team!
sld.cs.columbia.edu esp.cs.columbia.edu sld-columbia/espColumbiaSld c/ESP-platform
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