RISC-V Instruction Set Extension for
Graph Applications

Mehmetali Semi Yenimol
semi.yenimol@bilkent.edu.tr
Bilkent University
Ankara, Turkey

Abstract

Graph applications are employed in many fields but show
poor performance on general-purpose computing systems
due to heavy, irregular, and data-driven memory access pat-
terns. The diverse topology of real-life graphs also affects the
performance. Even though many hardware accelerators are
proposed to mitigate performance issues and provide energy
efficiency, programmability and flexibility are not addressed
well. A domain-specific processor design based on extending
the RISC-V Instruction Set Architecture (ISA) is proposed.
The design uses new instructions that are supported by the
compiler and software library.

Keywords: RISC-V, instruction set, iterative, graph parallel,
ISA, extension

ACM Reference Format:

Mehmetali Semi Yenimol, Giilce Pulat, and Ozcan Ozturk. 2022.
RISC-V Instruction Set Extension for Graph Applications. In Pro-
ceedings of Sixth Workshop on Computer Architecture Research with
RISC-V (CARRV’22). ACM, New York, NY, USA, 5 pages. https:
//doi.org/XXXXXXXXXXXXXX

1 Introduction

Applications centered around graph data structure are em-
ployed in many fields. These fields include but are not lim-
ited to data science, computational science, databases, social
networks, genomics, healthcare, traffic control, telecommu-
nication, security, and supply chain optimization. Execution
time and power usage of graph applications increase when
data size and application complexity increase.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CARRV’22, June 19, 2022, New York, NY

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Giilce Pulat
gulce.pulat@cs.bilkent.edu.tr
Bilkent University
Ankara, Turkey

Ozcan Ozturk
ozturk@cs.bilkent.edu.tr
Bilkent University
Ankara, Turkey

The main challenges in improving the performance and
power usage of graph applications are [1, 6, 7]:

e graph applications have high data access to computa-
tion ratio,

e the computations are mostly data-driven and unstruc-
tured,

e memory access patterns are irregular, which cause
poor locality on modern cache systems, and

o the topology of real-life graphs are diverse.

Gui et al. show that hardware acceleration for graph do-
main is needed rather than general-purpose processors (i.e.,
software solutions on CPUs and GPUs) since they are not
good at load balancing, memory divergence, and superflu-
ous memory access [1]. Furthermore, they have high energy
consumption. They evaluate 37 such hardware solutions in
terms of design techniques, hardware platform, performance,
and energy efficiency. They point out programmability as
a major challenge in existing accelerators, in addition to in-
creasing graph sizes, dynamic graph processing, graphs with
more complex vertex/edge attributes, and practical issues in
adapting the new technologies.

Application-Specific Instruction Set Processor (ASIP) method-

ologies have emerged as an alternative in developing special-
ized hardware to mitigate design and manufacturing costs,
and to provide flexible design by programmability [3, 4]. Due
to the programmability advantage, we propose a custom
architecture based on RISC-V instruction set architecture
(ISA) for iterative graph applications domain. Our initinal
study shows that blocking memory accesses are reduced
by up to 70%, with sufficient software support and a novel
micro-architectural design. Our main motivation follows
the ASIP methodology to handle programmability issues on
high-performance graph analytics architectures, especially
considering the increased complexity in graph algorithms.
Our main contributions are:
e Proposing a novel micro-architectural design that uses
extensions to the instruction set,
e Providing software support through compiler exten-
sions, compiler optimizations and software library, and
e Evaluation of architectural parameters for achieving
the best performance with the minimal cost.
The rest of the paper is organized as follows: In Section 2,
we give some background and describe the general behavior
of graph applications, then show the main challenges that are

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CARRV’22, June 19, 2022, New York, NY

(@.
(2—(0)

=

Figure 1. Sample graph with 8 vertices and 16 edges.

needed to be addressed. Section 3 elaborates on the design
and the custom instruction set architecture. In Section 4, we
explain the micro-architectural design of our system. The
paper is concluded in Section 5.

2 Nature of Graph Applications

A graph is a data structure to show relations between a set
of objects. The objects are often called vertices and relations
between the vertices are referred to as edges. If the set of
vertices are V and the set of edges are E, then we define a
graph G as G = (V, E). Algorithms running on a graph need
to have the representation of the graph structure. Vertices of
a graph are usually indexed and identified by an integer i in
the open interval [0, |V|). The simplest way to represent a
graph is using an edge-list format that holds a list of vertex
pairs (not necessarily ordered), where each pair represents
an edge e € E. The edge-list format is useful for edge-centric
computation models that iteratively process the stream of
edges. Even though it provides a good cache locality for
edge accesses, vertex accesses become random and it limits
scheduling potential for parallel systems [1].

Another common way to represent graphs is using an
adjacency list, where an array of the size of vertices is used
for the graph. Each element of this array corresponds to a
vertex v € V and holds a pointer to an adjacency list, each
adjacency list of v holds all the vertices u such that (v, u) € E.
An example graph is shown in Figure 1 where its edge-list
and adjacency list representations are shown in Figure 2.

In practice, adjacency-list representation is often used in
compressed structures. The most used compact representa-
tion is Compressed Sparse Row (CSR), introduced in [2] as
a sparse matrix representation which is suitable for graphs
due to matrix-graph duality. Accordingly, we can represent a
graph as an adjacency matrix A of size |V| X |V|. An element
at row i and column j of matrix A, A;;, gives a non-zero
value if edge (i, j) € E and 0 otherwise. In CSR representa-
tion, there are two arrays: rows for storing rows (vertices)
and columns for storing non-zero column entries (edges) of
a sparse matrix. An index i in rows array point to the loca-
tion of its non-zero column entries in adjacency Matrix A

Yenimol and Ozturk

Figure 2. Edge-list and Adjacency-list representations of the
sample graph given in Figure 1.

until the next pointer in the rows array. As an example, CSR
representation of the graph in Figure 1 is given in Figure 2.

Letoff1=rows[i]andof f2 = rows[i+1] for index i that
represent vertex i. The values in the range of columns[of f1]
and columns[of f2] are the out-neighbors for the vertex i.
For example, vertex 0 has of f1 = 0 and of f2 = 4 such
that elements from columns[0] to columns[4] gives the out-
neighbors of vertex 0, which are vertices 0, 2, 3, and 6. Note
that, if of f1 = of f2 as in the case for vertex 1, it means
that there is no outgoing edge from vertex 1. Also note that,
although there are only 8 vertices (indexed from 0 to 7), an
extra index in the rows array is used to point to the one plus
last index of columns array. The symmetric of CSR is called
Compressed Sparse Column (CSC) which is used when we
are concerned with incoming edges of vertices. For practi-
cality reasons, we choose CSR to represent graphs in this
work. A third array (values) which is similar to columns is
mostly used for non-zero values of the matrix A. The non-
zero values are often referred to weights or edge attributes
in the graph context. Moreover, a fourth array (data) similar
to rows is also often used for vertex attributes in the graph.

Even though CSR representation itself is cache-friendly,
random accesses that result with poor cache locality still
occur due to the irregular and data-driven nature of graph
applications. The algorithms used in graph applications can
be roughly described in a vertex-centric manner as it is also
expedient for CSR representation. Accordingly, we process
vertices in an order that is given by, a possibly dynamic,
working list. For each vertex v being processed, we may
access the neighboring vertices of v and run a function on
v, its neighboring vertex, and edge attributes. We may also
apply another function on directly vertex v. The work-list
can be a simple list of all vertices as in some of the iterative
algorithms such as PageRank. Similarly, it can be a queue
for a breadth-first search, a stack for a depth-first search,
or a priority queue for Dijkstra’s shortest path algorithm,
etc. On the other hand, function f is used in representing

RISC-V Instruction Set Extension for
Graph Applications

the operation on the vertex and/or edge. It depends on the
algorithm and can interact with the work-Iist. Even though
such abstraction potentially might not always cover all graph
algorithms, most of them show a similar behavior.

3 Custom Architecture and Instruction Set

Our design is based on an implementation which uses scratch-
pad memories (SPM). We use an SPM, referred as Edge
Scratch-Pad (ESP), to keep read-only edge data (columns
array in the CSR representation). The design also divides
the cache memory into two parts. One part functions as
a general-purpose cache called Global Scratch-Pad (GSP).
The other part is called Vertex Scratch-Pad (VSP) for storing
vertex-related data. The division is based on the load of mem-
ory traffic in the graph applications. Accordingly, a small
address range of vertex-related data accesses dominates the
total memory requests in graph applications. Moreover, the
memory accesses in this range are responsible for most of
the cache misses due to the nature of graph applications.

ESP is mainly managed by software through custom in-
structions. On the other hand, Management of VSP and GSP
is hardwired in the architecture and only an initial configu-
ration is needed through custom instruction calls. The con-
figuration gives an address range for VSP such that when
CPU requests for an address, if the address lies on the given
range, data is to be located in VSP, otherwise in GSP. The
internal workings of VSP and GSP are like a modern-cache
system.

The instruction set of the architecture is defined by ex-
tending the RISC-V ISA [8]. The 4 new custom instructions
are added to RISC-V instruction set, namely, spmcon, mem-
spm, spmreg, and delspm. spmcon instruction is related to
configuration of SPMs in the architecture. On the other hand,
memspm, spmreg, and delspm instructions are defined to man-
age ESP. The micro-architecture uses a single non-blocking
cache with a prefetch buffer instead of GSP and VSP struc-
tures. The prefetch buffer is employed for the same reason
VSP is employed. A small prefetch buffer is found to be
suitable rather than dividing the cache into two parts, thus
providing more space for the cache. The micro-architectural
design is explained in Section 4.

At the ISA level, functionalities of custom instructions
are modified to reflect the changes in micro-architecture.
Graph data is assumed to be represented in CSR format
and elements of rows and columns are assumed to be 4 byte
integer values. The descriptions of these instructions and
their functionality are listed below:

e spmcon

— Description: Used for configuration of ESP memory
at the start of program execution.

— Function: Called three times at the start of a pro-

gram. The first call to spmcon marks the start address

of edge-related data array (columns or values array

CARRV’22, June 19, 2022, New York, NY

at CSR representation) given as an argument. The
second call marks the start address of vertex-related
data array given as an argument. It could be rows
or data arrays in CSR representation or any other
array depending on the application. The last call to
spmcon gives the size of a single data element of the
vertex-related data array in bytes whose address was
given in the second spmcon call.
e memspm

— Description: Used to place edge array data from
external memory to ESP memory.

— Function: The address of the element of rows array
in CSR representation is given as an argument to the
instruction to indicate the edges of the given vertex
index. The edge data is to be placed on ESP. To fetch
the edge data from the memory, the vertex index is
fetched first from the memory as given in memspm
argument. The given index is multiplied by 4 and
added to the start address of the edge array that
is previously marked by spmcon to get the starting
location (offset) of the given vertex index. The chunk
of edges is retrieved from the memory accordingly
irrespective of the number of edges that the vertex
has.

e spmreg

— Description: Used to read edge array data values
from ESP to registers in the CPU core.

— Function: The usage is the same as a load instruc-
tion, that we give the address of data we request.
The address is expected to be an address in the edge
array. The address is searched on ESP, the data is
sent to the register file if found in ESP. If not found,
a memory request is issued as if it is an ordinary
load instruction.

o delspm

— Description: Used to remove edge array data from
ESP memory.

— Function: Address of an offset at edge-related data
array is given as an argument to delspm instruction,
which is then searched in the chunks of ESP. If the
offset of a chunk of edge data is previously fetched
from memory by a memspm instruction matches
with the given argument of delspm, the chunk can
become free to be replaced by another chunk of edge
data.

Spmcon marks the start address of columns and data arrays.
It also marks the size of a single element of data array. Ver-
tices 1 and 7 are given as subjects for memspm instruction so
that their edge data are placed on ESP. Note that vertex 1 has
no edges but the chunk of edges pointed by its rows[1] value
are still placed on ESP. delspm marks the chunks of edge
data that are in ESP memory to be free such that they can be
replaced by another memspm request. For example, after we

CARRV’22, June 19, 2022, New York, NY

Instruction
Cache

A

cpu_data_req———— |

Yenimol and Ozturk

Non-blocking Cache

cpu_data_addr-
pu_data_

Y VY

Ibex Core CPU

cpu_data_wdata———p|

data_req—>]
Tag E—— Data
[€——data_res —
CPU Result l€—cache_line
Queue
(€——mem_resp-:

[€———cpu_data_gnt
|[€——cpu_data_rvalid
|€———cpu_data_rdata

memspm, spmreg,
delspm, spmcon
core_rd_addr core_hit

core_data

ESP Controller

p_data_req

Free

Read Index p_di

esp_data_addr——— |

3

Buffer Buffer

esp_prefetch_req——|

Request Arbiter

MSHR Controller

MSHR
Buffer

RAM Bus

req | | wdlata * T

write
a

rvalid
ESP Result ddr l rdata

Queue

< p_data_gnt.
SPM |€———esp_data_rvalid
< p_mem_data:

RAM Memory

Figure 4. Overall System with the interactions of its 6 components: CPU with its Instruction Cache, ESP Controller, Request
Arbiter, Non-blocking Cache, Miss Status Holding Registers(MSHR) Controller, and RAM Memory

call delspm on columns[rows[3] (edges of the vertex 3), a later
memspm request can purge the edge data associated with
this free chunk and place its own related edge data. spmreg
is used to get edge data of a vertex. Usage of it also gives
clues on prefetching-scheme. In the figure, if we want to get
the first edge of vertex 7 by giving columns[rows[7] + 0]] as
an argument to spmreg, we get the 4 as the index of outgo-
ing neighbor. While getting this information, we can also
make a prefetching request for the next outgoing neighbor
data, which is 6 according to the Figure. Thus, data[6] can
be prefetched from external memory that is likely to be used
in later execution of the program. The prefetching scheme
is explained in Section 4 with detail.

4 Micro-architectural Design

The micro-architecture of the system is explained in this
section. The main challenge in developing the architecture
is to have a design that allows making multiple memory
requests without blocking the execution of the CPU. To ad-
dress this challenge, two major components are designed:
ESP Controller and Non-blocking Cache. ESP Controller is a
hardware unit that runs asynchronously with the CPU and
manages ESP. CPU communicates with the ESP Controller
when custom instructions are to be executed. ESP Controller

can issue memory requests along with CPU. Since both CPU
and ESP Controller can issue memory requests simultane-
ously, a non-blocking cache structure is designed so that
multiple outstanding memory requests can be handled.
The overall system consist of 6 hardware components:
CPU with its Instruction Cache, ESP Controller, Request Ar-
biter, Non-blocking Cache, Miss Status Holding Registers (MSHR)
Controller, and RAM Memory. The interactions between these
components are illustrated in Figure 4. Core CPU interacts
with ESP Controller when executing the custom instructions
defined earlier in Section 3. The spmcon, memspm, and del-
spm instructions does not cause a stall in CPU and executed
immediately by directing the proper signals to ESP Con-
troller. ESP Controller uses a queue (Read Buffer) to keep
the signals from the CPU and executes these instructions.
On the other hand, the spmreg instruction causes a stall on
the CPU as if it is a load instruction. CPU waits until ESP
Controller responds with the requested data for the spmreg
instruction. The waiting time depends on the availability of
data in ESP (we also refer to ESP as SPM, as we only have
a single scratch-pad memory structure in the design). Both
CPU and ESP Controller can send multiple data requests
to memory. Request Arbiter stands as an interface to the
memory for CPU and ESP Controller. It keeps the order of

RISC-V Instruction Set Extension for
Graph Applications

requests for CPU and ESP separately in queues (CPU Re-
sult Queue and ESP Result Queue). It directs the memory
requests to the Non-blocking Cache and the Non-blocking
cache responds as a miss or hit depending on the availability.
The results of requests are kept in Request Arbiter queues.
When the head of queues holds "ready" data (cache hit or a
later memory response on cache misses), Request Arbiter di-
rects the result to CPU or ESP Controller. The non-blocking
cache has its tag and data memories that keep the local data.
When data is available for a memory request coming from
Request Arbiter, it immediately returns the result as a hit.
When the data is not available, it allocates space and issues
memory request(s) through MSHR Controller. Since it uses
write-back policy for dirty lines, it can issue more than one
memory request for a data request coming from Request
Arbiter. The non-blocking cache also holds a Prefetch Buffer
that keeps the result of predictable future memory requests.
MSHR Controller issues the actual memory requests com-
ing from the Non-blocking Cache. It utilizes the Miss Status
Holding Registers (MSHR) structure proposed by Kroft [5]
to handle multiple outstanding misses in the cache. When a
memory response is received, MSHR Controller will direct
the response to Non-blocking Cache and Request Arbiter.

The components in the design keep tables for storing data
during the execution. These tables are mostly implemented
as buffers that work in FIFO (First In First Out) manner.

5 Conclusion

This study describes the micro-architecture of a single-core
RISC-V CPU extended with custom instructions for the do-
main of graph applications. The software support of the
architecture is expected to be provided by LLVM compiler
optimization in addition to the Gather-Apply-Scatter(GAS)
library.

The custom instructions are designed for controlling mul-
tiple SPMs that are tailored for graph applications. Analyzing
the graph applications, we illustrated their computational ir-
regularities and data-driven random memory access patterns.
After the analysis, we made small changes to the behaviors of
defined instructions for better performance and better adapt-
ability for software support. Along with the behavioral mod-
ifications on custom instructions, a novel micro-architecture
that relies on a non-blocking cache and a prefetching mech-
anism is designed.

CARRV’22, June 19, 2022, New York, NY

References
[

—

Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen,
Xiao-Fei Liao, and Hai Jin. 2019. A Survey on Graph Processing Accel-
erators: Challenges and Opportunities. Journal of Computer Science and
Technology 34, 2 (2019), 339-371.
[2] Fred G. Gustavson. 1972. Some Basic Techniques for Solving Sparse
Systems of Linear Equations. Springer US, Boston, MA, 41-52. https:
//doi.org/10.1007/978-1-4615-8675-3_4
MK. Jain, M. Balakrishnan, and A. Kumar. 2001. ASIP Design Method-
ologies: Survey and Issues. In VLSI Design 2001. Fourteenth International
Conference on VLSI Design. 76-81. https://doi.org/10.1109/ICVD.2001.
902643
K. Keutzer, S. Malik, and A. R. Newton. 2002. From ASIC to ASIP: the
Next Design Discontinuity. In Proceedings. IEEE International Conference
on Computer Design: VLSI in Computers and Processors. 84-90. https:
//doi.org/10.1109/1CCD.2002.1106752
David Kroft. 1981. Lockup-Free Instruction Fetch/Prefetch Cache Or-
ganization. In Proceedings of the 8th Annual Symposium on Computer
Architecture (Minneapolis, Minnesota, USA) (ISCA ’81). IEEE Computer
Society Press, Washington, DC, USA, 81-87.
Andrew Lenharth, Donald Nguyen, and Keshav Pingali. 2016. Parallel
Graph Analytics. Commun. ACM 59, 5 (April 2016), 78-87. https:
//doi.org/10.1145/2901919
[7] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan
Berry. 2007. Challenges in Parallel Graph Processing. Parallel Processing
Letters 17, 01 (2007), 5-20.
[8] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovi¢.
2014. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version
2.0. Technical Report UCB/EECS-2014-54. EECS Department, University
of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-54.html

3

=

[4

flan)

[5

—

G

—

https://doi.org/10.1007/978-1-4615-8675-3_4
https://doi.org/10.1007/978-1-4615-8675-3_4
https://doi.org/10.1109/ICVD.2001.902643
https://doi.org/10.1109/ICVD.2001.902643
https://doi.org/10.1109/ICCD.2002.1106752
https://doi.org/10.1109/ICCD.2002.1106752
https://doi.org/10.1145/2901919
https://doi.org/10.1145/2901919
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

	Abstract
	1 Introduction
	2 Nature of Graph Applications
	3 Custom Architecture and Instruction Set
	4 Micro-architectural Design
	5 Conclusion
	References

