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Relative to other architectural options, multi-core processor designs often
represent an efficient, flexible solution for general-purpose workloads. Based
on the premise that multi-core processors are generally viable as an im-
plementation platform for cryptography, this paper investigates specific
instances which harness the concept of Composable Lightweight Processors
(CLPs). We first identify several cryptographically useful composition modes,
then implement and evaluate support for them in a RISC-V based proof-of-
concept dubbed HYDRA: while retaining characteristics which stem from a
generic multi-core design, HYDRA can also operate in modes specifically
designed to address domain-specific challenges relating to efficiency and
security.
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1 INTRODUCTION

From single- toward multi-core processor designs. The term multi-
core! can be applied to concrete processor designs which vary, for
example, in terms of 1) the number of cores, 2) the type of cores,
i.e., whether they exhibit general- or special-purpose capabilities,
and/or form a homogeneous (or symmetric) or heterogeneous (or
asymmetric) whole, and 3) how cores are interconnected, either via
dedicated communication fabric and/or shared resources such as
caches. Set within a broad, diverse design space for parallel com-
puting technologies more generally, the trend from single- toward
multi-core [BDMO09] processors can be rationalised by two points;
both relate to the challenge of scaling instruction throughput in the
face of Moore’s Law. First, single-core designs are typically limited
by Instruction Level Parallelism (ILP): the effectiveness of a super-
scalar pipeline, for example, is limited by ILP, irrespective of any
increased transistor budget stemming from a decrease in feature

! We immediately face, and largely ignore, an issue around this terminology: an n-core
processor might be termed single-core if n = 1, multi-core if 2 < n < 8, or many-core
if n > 10, noting the thresholds involved are somewhat arbitrary.

Author’s address: Ben Marshall, Dan Page, Thinh Pham, Max Whale, {ben.marshall,
daniel.page, th.pham, mw17440}@bristol.ac.uk, Department of Computer Science, Uni-
versity of Bristol, Merchant Venturers Building, Woodland Road, Bristol, UK, BS8 1UB.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

XXXX-XXXX/2022/5-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

size. In contrast, multi-core designs “spend” that budget on support
for Thread Level Parallelism (TLP) which often matches demand so
can be effectively harnessed at an application level. Second, and in
part as a result of their reliance of ILP, single-core designs often rely
on incremental improvements, e.g., to clock frequency, which are
not sustainable from a physical perspective. In contrast, multi-core
designs adopt a more radical architectural reorganisation which is,
therefore, less reliant on such improvements.

Implementation options for cryptographic workloads. Implemen-
tations of cryptography often have a central role to play within
any use-case deemed security-critical, e.g., those which involve
the computation, storage, or communication of identity-, location-,
or finance-related data. The task of producing such an implemen-
tation can be challenging, however, in the sense it will often 1)
involve computationally intensive, somewhat niche functionality,
2) need to satisfy a range of efficiency-related quality metrics such
as high-throughput, low-latency, low-footprint, power-efficiency,
and high-assurance, and, at the same time, 3) form a central target
in what is a complex, evolving attack surface. A rich body of litera-
ture, capturing the field of cryptographic engineering, has explored
techniques which attempt to address such challenges; as one may
expect, selection from the large design space of options depends on
making appropriate trade-offs based on the use-case (versus there
being a single “best” option for all use-cases).

Particularly within embedded use-cases, some form of System
on Chip (SoC) is common. The idea is to combine a single general-
purpose processor core with multiple special-purpose (cryptographic)
IP cores: doing so represents a trade-off which maximises efficiency
and security in the IP cores, as a result of their domain specificity.
A multi-core processor could be seen as representing the oppo-
site trade-off, namely one which maximises flexibility (and thus
generality), so represents a viable alternative to SoCs for crypto-
graphic workloads. At least two forms of argumentation? support
this claim. First, flexibility can help mitigate challenges related to
utilisation. Whenever cryptographic functionality is invoked, perti-
nent efficiency- and security-related quality metrics must be satis-
fied, but, depending on the use-case, the frequency of invocation
(resp. the period of execution) may be limited. For example, net-
worked communication using TLS [Res18] means invocation of
AES [fip01] or RSA [RSA78] at all will depend on use of an associ-
ated cipher suite, but, even then, could on a per-packet (for AES) or
even per-session (for RSA) basis. An IP core for AES or RSA is likely
to be far from fully utilised; a multi-core processor can support
other workloads when unused for AES or RSA. Second, flexibility

2We note that similar points support the use of multi-core processors within Digital
Signal Processing (DSP), where, e.g., utilisation of and agility with respect to media
codecs is often important.
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can help mitigate challenges related to agility. Specifically, any de-
sign, standardisation, and implementation decision may have a long
life-span, implying a need to cater for future (and so unknown)
capabilities with respect to the attack landscape. An IP core for AES
or RSA is likely to be fixed-function; a multi-core processor permits
agility, since an implementation can more easily refined (e.g., with
a suitable countermeasure) or replaced (e.g., with an alternative
underlying primitive).

Remit and organisation. Based on the premise that multi-core
processors are generally viable as an implementation platform for
cryptography, this paper investigates specific instances which har-
ness the concept of Composable Lightweight Processors (CLPs) due
to Kim et al. [KSG*07]. At a high level, CLPs offer architectural flex-
ibility in the sense that the resources associated with p processor
cores can be operate in either a conventional (i.e., segregated) or
composed (i.e., aggregated) manner. Crucially, this configuration can
be selected dynamically, e.g., to support the workload at hand. We
use the term composition mode to describe the high level functional-
ity offered by the composed cores; support for a given composition
mode requires a lower level design that specifies, e.g., how micro-
architectural resources are structured and managed. In [KSG*07],
and also in related work prior to it, the majority of composition
modes considered are motivated by parallel computation. We aim
to extend this remit by identifying several cryptographically useful
composition modes, then implementing and evaluating support for
them in a RISC-V based proof-of-concept dubbed HYDRA3.

2 DESIGN
2.1 Concept

Consider a set P = {Py, P1,...,Pp—1} of p atomic processor cores.
In a standard multi-core processor, each P; € P operates in a con-
ventional manner; this implies |P| system cores are available.

However, a composition configuration C for that multi-core pro-
cessor will partition P.If |C(P);| = 1, then the atomic core P; € C(P);
operates in a conventional manner. If |C(P);| > 1, however, then
each atomic core Pj e C(P); operates in a composed manner, i.e., as
a single composed system core. Exactly one atomic core, denoted
IT]-, has a distinguished role as the “controller” or primary (versus
secondary) core within said composed core. Put together, use of
C will imply |C(P)| system cores are available: the number of sys-
tem cores is now equal to the number of conventional cores plus
the number of composed cores. For example, and without loss of
generality, consider a set

P ={Py, P1, Py, P3}
and a composition configuration

C(P) = {{Po, P1}, {P2}, {P3}}.
In this case, |C(P)| = 3 < 4 = |P| system cores are available: C(P)y =
{Pg, Py} operates in a composed manner, i.e., as a single composed
system core formed from Py and P; (noting Py is the primary core
in this case), whereas C(P); = {P2} and C(P); = {Ps} each operate
in a conventional manner.

3 The implementation is available, under an open-source license, via https://github.
com/scarv/hydra.
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Each composed system core (independently) operates in a crypto-
graphically useful composition mode, which is also selected using C:
we outline the rationale for and high-level semantics of each such
mode in the following sub-sections.

2.1.1 Mode 1: wide data-path mode. Consider an ISA with a b-
bit word size, meaning, e.g., it includes 1) a b-bit general-purpose
register file, and 2) instructions which naively support operations
using b-bit operands. Lee et al. [LYS04] observe that cryptographic
workloads often involve operations which can be described as hav-
ing Multi-word Operands, Multi-word Results (MOMR): this means
the operands of a given operation are some n > b bits, and are there-
fore represented using w = [n/b] words. Such operations are not
supported naively in the ISA, meaning they must be implemented
using a higher-level algorithm; the (asymptotic) efficiency of such
algorithms often depends strongly on w. For example, typical al-
gorithms for multiple-precision addition [MvOV96, Algorithm 14.7
] have an O(w) execution time, for example, whereas typical algo-
rithms for multiple-precision multiplication [MvOV96, Algorithm
14.12] or modular multiplication [MvOV96, Algorithm 14.36] have
an O(w?) execution time. Put simply then, support for a larger b
and thus smaller w will render such operations more efficient.

RISC-V can be viewed as supporting a statically scalable word size,
in the sense that 32-bit (RV32), 64-bit (RV64), and 128-bit (RV128)
variants of the ISA exist. In this composition mode, HYDRA supports
a dynamically scalable word size: in essence, the b-bit data-paths
within ¢ atomic cores used to form a composed core are combined to
form a single (c- b)-bit data-path. Consider, for example, a composed
core formed from ¢ = 2 atomic cores, each of which supports RV32
meaning b = 32. RV32 instructions executed by this composed
core are overloaded such that they support ¢ -b = 2 - 32 = 64 bit
operands, via the resulting wider data-path. It is vital to note that
the composed core does not support RV64, however; the overloading
is not suggestive of multi-ISA [CHC™"20] functionality, for example.

2.1.2 Mode 2: SIMD compute mode. In this composition mode,
HYDRA supports a Single Instruction, Multiple Data (SIMD) ex-
ecution model. That is, in a given execution cycle, each of the ¢
atomic cores used to form a composed core will execute the same
instruction; they do so using data read from and written to different
(i.e., their own, local) register files. If each atomic core has a b-bit
data-path, then the composed core can be viewed as processing
c-element, or (¢ - b)-bit vectors comprised of b-bit sub-words. On
one hand, this suggests the composed core does not naively support
sub-words of less than b bits: if b = 32, for example, 8- or 16-bit
sub-words often are support by more traditional, dedicated SIMD
extensions. On the other hand, however, it has a somewhat scalable
number of sub-words depending on ¢ (the value of which is upper-
bounded by the total number of atomic cores); although clearly
not analogous to the standard RISC-V vector extension, it could be
viewed as a light-weight alternative for (very) specific use-cases.

Within the context of cryptography, the composition mode is
intended to support (at least) two use-cases. First, it can represent
a performance-enhancing mechanism. For example, it supports a
cryptographic implementation technique termed word-slicing (see,
e.g., [BKP21, Section 2.2.2]). Second, it can represent a security-
enhancing mechanism. For example, it can be harnessed to realise


https://github.com/scarv/hydra
https://github.com/scarv/hydra

HYDRA: a multi-core RISC-V with cryptographically useful modes of operation « :3

Memory

1 1L

Core #3 Core #2

1L

Core #1

Core #0

from #0 — : ready  ready : ready : ready

: exec in : exec in

 ready - ready

\4

: ready ready

from #3

A

from #0 T——)\ right_carry_in  right_carry_out
t0#0 {1 left_carry_out left_carry_in

right_carry in  right_carry out
left_carry_out left_carry_in

mcompose

mcompose_in mcompose_in

redundant in regin  instr_in redundant in  reg in instr in

mcompose

, exec in , exec

right_carry in  right_carry_out right_carry_in  right_carry_out to#3

left_carry_out left_carry_in left_carry_out left_carry_in from #3

mcompose

 in

redundant in  reg_in instr_in instr_out reg out redundant out

mcompose_instr

I mcompose_reg

mcompose redundant

Fig. 1. The architecture diagram of the composed mode, showing an example 4-core system.

“balanced” forms of execution which act to mitigate certain forms
of side-channel attack (see, e.g., [API08]).

2.1.3  Mode 3: SIMD redundant mode. In this composition mode,
HYDRA supports a redundant or “lock step” execution model. That
is, in a given execution cycle, each of the ¢ atomic cores used to form
a composed core will execute the same instruction. Although they
do so using data read from and written to different (i.e., their own,
local) register files, the data and therefore computational behaviour
across all atomic cores is expected to be the same; a per-cycle test
of that fact is performed, and, if it fails an exception is raised. This
is a well established approach within the context of both safety and
security, as a means of detecting transient faults.

Within the context of cryptography, the composition mode is
intended as a countermeasure against intentional, i.e., are adver-
sarially injected, faults and therefore fault attacks (see, e.g., [JT12,
BBKN12, KSV13]); once a fault is detected, we expect the resulting
exception to be handled via an suitable, security-conscious response
mechanism (see, e.g., [YGD* 16, YDG*19)). Intuitively, the goal is to
raise the difficult of mounting a successful attack (simultaneously
injecting faults with the same effect in multiple cores, i.e., a faults
which are undetected by the test, is significantly more difficult for
the attacker) using a mechanism which composes with other, e.g.,
algorithmic countermeasures.

2.2 Realisation

Following the design concept above, a realisation approach for a
CLPs system is presented in this subsection. Figure 1 depicts the
architecture diagram of a CLPs system. Generally, the CLPs system
can be built based on a conventional multi-core system, in which
each core having its ID (i.e., mhartid) can possibly run independently
with its own or sharing data to exploit the advantages of thread-
level parallelism. To provide the enhanced features of the HYDRA
composed modes, the CLPs system adds a required interface between
cores, and corresponding additional logic and states, e.g., Control
Status Registers (CSR), in each core. Basically, the additional parts
form two main supporting mechanisms: composable configuration
and composed computations.

The composable configuration is to configure, enter and exist
from a specific composed mode. It adds two custom CSRs specifying
the composed mode and the number of composed cores. These CSR

are configured by the primary core, Core#0 (see Figure 1), and the
configured information is passed to the secondary cores through
the mcompose bus. if the core number is set greater than one, the
primary core enters to a composed mode and the secondary cores, of
which ID is less than the core number are asked to join the composed
mode, otherwise, the cores exist from a composed mode.

The composed computations basically require the composed cores
executing the same instruction. To do so in a composed mode, the
primary core fetches an instruction in memory and broadcasts it on
the mcompose_instr bus, allowing the secondary cores to decode this
instruction instead of fetching their own from memory. In addition,
the primary core will orchestrate the composed execution using
mcompose_exec and ready signals. mcompose_exec synchronously
triggers the secondary cores to begin decoding the instruction, and
mcompose_ready ensures that all cores are ready before an instruc-
tion begins execution. The instruction executes the computations on
composed words possibly stored in each core’s architectural states
(i-e., general-purpose registers). Depending on a specific composed
mode, the composed computation is handled accordingly;

In SIMD compute mode, the composed words are viewed as vectors
of independent elements, each of which is handled by a composed
core. To load and store a vector in memory, the primary core needs
to broadcast the address storing the vector to the secondary cores
via the mcompose_reg bus.

In wide data-path mode, the composed words are viewed as vec-
tors of dependent elements. The dependency presents the order of
element bits in a n-word-wide value. The composed computation
requires passing the carry flags of each partial computation across
the composed cores. That can be done by using the left_carry and
the right_carry signals.

In SIMD redundant mode, the composed words are viewed as vec-
tors of the same value elements. That allows the same operation
independently to compute the same values on each composed core.
So computational behaviour across the cores is assumed to be the
same. To detect a fault occurred, a per-cycle test of that fact is per-
formed, and, if it fails an exception is raised. An exhausted test on
every state in the cores would ideally detect any fault that happened.
But that results in a highly increased area overhead due to a large
number of comparisons and connections across the cores. For a
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lightweight solution, we adopt an efficient fault test. We consider
a fault can be a control-flow fault or a data fault. For the former,
we check the program counter value of the cores, and for the lat-
ter, we check the write-back value at each core. These values are
broadcasted on the mcompose_redundant bus for the fault detection.

3 IMPLEMENTATION
3.1 Hardware

In this section, a composable 4-core system implemented on a FPGA
platform is presented as the proof of concept. We choose the Pi-
coRV32* core as the target core for the composable system. The
PicoRV32 is a lightweight open-source RISC-V core and also highly
configurable, optionally supporting multiplication (M) instruction
extension. The original PicoRV32 is modified to support running in
a multi-core system with composition ability. Particularly, we add 1)
the mhartid CSR to provide an ID number to identify a core in the
multi-core system, 2) necessary interface signals and corresponding
functional logics to support composed executions, mentioned in the
above Section. We also implement an interconnection and a sim-
ple bus arbitration, based on a round-robin fashion, which allows
the cores to possibly access the same memory. Sharing memory
between cores is necessary to perform composed operations.

To produce an experimental platform which permits evaluation
of, e.g., hardware overhead and cycle-accurate execution latency, we
make use of the SASEBO-GIII [HKSS12]: this includes two FPGAs,
namely a Xilinx Kintex-7 (model xc7k160tfbg676) target FPGA,
and a Xilinx Spartan-6 (model xc6s1x45) support FPGA. We use
the former exclusively, synthesising the composable system for it
using Xilinx Vivado 2018.2; default synthesis settings are used, with
no effort adopted in synthesis or post-implementation optimisation.
The FPGA uses a 200 MHz external clock input, which is adjusted
into a 50 MHz internal clock signal for use by the host core itself.

We also implement a baseline (conventional) 4-core system em-
ploying the original PicoRV32 for the hardware overhead com-
parison. Table 1 reports the number of Lookup-Tables (LUTs) and
FlipFlops (FFs) of the two multi-core systems and theirs based cores.
In addition, their longest delay path (in ns) is also reported. To make
the PicoRV32 core composable, an raised overhead of 32% and 15%
(resp. 32% and 15%) in LUTs and FFS, respectively, in a primary
core (resp. secondary cores) versus the orignial core is required.
That leads to the total overhead of the composable system increases
by 14% and 8% of the LUTs and FFs, respectively, compared to the
conventional system. Additionally, we notice that the longest delay
path of the composable system is longer by 32% compared to the
conventional system. The delay is caused by passing the carry bit
between the cores. Considering the PicoRV32 is a size-optimised
core, the increased overheads seem reasonable, and suggests com-
posed functionality could be considered as a lightweight solution
for embedded systems.

3.2 Adapting software

One of the main benefits of composed modes is that it is generally
simple to adapt software to make use of the composed modes in an
ad-hoc manner. The model used for composed functions assumes

“https://github.com/cliffordwolf/picorv32
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Table 1. Comparision of hardware overheads of conventional 4-core system
vs composable alternative.

LUTs FFs Longest delay
Original core 1425 (1.00x) 968 (1.00x - -
Primary core 1881 (1.32x) 1109 (1.15% - -

Secondary core 1897 (1.33X%)

10964 (1.00x) 4181 (1.00x
12522 (1.14x) 4517 (1.08%

5324 (1.00x)
7.096 (1.33x)

Conventional system

)
)
1059 (1.09x) - -
)
Composable system )

//input: int *a_addr, int *b_addr,
// int n_bytes, int n_cores
//output: int *r_addr
mp_add_com:
csrwi mcompose_mode, mcompose_wide
csrw mcompose_reg, n_cores
slli bytes_per_word, n_cores, 2

1i carry, @

add addr_end, n_bytes, a_addr
mp_add_comp_loop:

beq a_addr, addr_end, mp_add_end

1w a_value, @(a_addr)

1w b_value, @(b_addr)

add r_value, a_value, carry

sltu carry, r_value, a_value
add r_value, r_value, b_value
sltu t_carry, r_value, b_value
or carry, carry, t_carry

sw r_value, @(r_addr)

add a_addr, a_addr,

add b_addr, b_addr,

add r_addr, r_addr,

j mp_add_comp_loop
mp_add_end:

bytes_per_word
bytes_per_word
bytes_per_word

csrw mcompose_reg, zero
ret

Fig. 2. The composed versions of multi-precision addition implementation.

that the primary core was not composed before entering the function
and ensured it was not composed upon exit, and the secondary cores
are ready for composition. The required adaptation can basically be
viewed as three main changes in the code: a) using csrw instructions
to enter and to exit from a composed mode with a specific required
number of cores, b) changes relating to the fact that the effective
word size is varied according to number of composed cores rather
than fixed to 4-byte words of a single core, and c) changes relating to
memory access that each memory access instruction will invoke an
memory operation for each composed core with increased memory
address. For example, Figure 2 shows the composed versions of a
multi-precision addition function. The fist two instructions config-
ure for the wide data-path mode and number of cores required for
the composed mode. The third instruction derives the effective word
size for the composed mode. The main body and loop code of the
function is mostly the same code as the function for single core,
except for the increment of pointers (i.e., a_addr) accordingly to the
effective computed word size. That reduces the required number of
iterations in the loop, hence increases the speed of the computation.
Finally, before returning from the function, an csrw instruction is
used to exit from the composed mode.
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Table 2. Cycle and instruction counts compared across the single core, 2-core and 4-core systems (plus overhead versus baseline in parentheses).

1024-bit Operations Metric Single Core Composed Systems
2 Cores 4 Cores
i 4 1.00X 22 .89% 12 .48%
Addition Instructions 31 (1.00x) 8 (1.89x) 4 (13.48x)
Cycles 2023 (1.00x) 1225 (1.65x) 843 ( 2.40X)
o Instructions 15822 (1.00x) 4083 (3.88x) 1091 (14.50x)
Multiplication
Cycles 179395 (1.00x) 72490 (2.47X) 32086 ( 5.59X)
ModEyp  Imstructions 57395054 (1.00x) 15019653 (3.82x) 4144180 (13.85%)
P Cycles 594838395 (1.00x) 238293765 (2.50X) 106391562 ( 5.59x)

Table 3. Comparison of ChaCha20 encryption performance for different message sizes (plus overhead versus baseline in parentheses).

Message size Metric OpenSSL Single Core Composed Systems 128 bit Vector
2 Cores 4 Cores

64 bytes Instructions 2825 (1.00x) 1765 (1.60x) 1199 (2.36X) 659 (4.29%) 607 (4.65x)
Cycles 25073 (1.00x) 17603 (1.42x) 11905 (2.11X) 7609 (3.30)

128 bytes Instructions 5555 (1.00x) 3483 (1.59x) 2345 (2.37x) 1285 (4.32x) 1182 (4.67x)
Cycles 49705 (1.00x) 34910 (1.42x) 23415 (2.12x) 14959 (3.32X)

256 bytes Instructions 11015 (1.00x) 6919 (1.59x) 4637 (2.38X) 2537 (4.34x) 2332 (4.72x)
Cycles 98969 (1.00x) 69524 (1.42x) 46435 (2.13X) 29659 (3.34x)

512 bytes Instructions 21935 (1.00x) 13791 (1.59x) 9221 (2.38x) 5041 (4.35X) 4632 (4.74X)
Cycles 197497 (1.00x) 138752 (1.42x) 92475 (2.14x) 59059 (3.34x)

1024 bytes Instructions 43775 (1.00x) 27535 (1.59x) 18389 (2.38X) 10049 (4.36X) 9232 (4.74X)
Cycles 394553 (1.00x) 277208 (1.42x) 184555 (2.14x) 117859 (3.35X)

Table 4. Comparison of results of unprotected and protected AES encryption against control flow and data fault injections.

Control flow fault case

Data fault case

Implementations | Passed Failed Broken Detected | Passed Failed Broken Detected
Unprotected AES 30 62 8 - 42 29 29 -
Protected AES 12 0 2 87 46 0 0 54

4 EVALUATION
4.1

To evaluate the effectiveness of the HYDRA composed modes for
cryptographic workloads, our benchmarks include primitive func-
tions of widely used cryptographic algorithms:

Benchmarks

(1) A set of three multi-precision algorithms, namely, addition, multi-
plication, and modular exponentiation (modExp), which are widely
used in asymmetric cryptosystems (like RSA), were considered. A
number size of 1024-bits was used for these operations throughout
the experiments. We apply the Coarsely Integrated Operand Scan-
ning (CIOS) Montgomery algorithm [KAK96] (i.e. Montgomery
reduction and multiplication) for the modExp function.

(2) ChaCha20, an ARX based stream cipher, is deployed in many
application domains [Ber08]. The performance of Chacha20 block
function can be typically accelerated by using vector instructions
[MPP21]. We use this function to evaluate the SIMD compute
mode of HYDRA.

(3) AES-128, referring to a 128-bit key variant, is known vulnerable
to fault-injection attacks (see, e.g., [TMA11]). The AES encryption
function is implemented and executed in the redundant mode to
evaluate the mitigation against fault attacks.

4.2 Evalation results

Table 2 and Table 3 present the performance evaluation of the muti-
precision algorithm set running in the wide data-path mode and
the ChaCha20 encryption running in the SIMD compute mode,
respectively, in terms of retired instruction and clock cycle counts.
The system is flexibly configured to compose two and four cores in
the composed modes for the performance comparison to the single
core execution. One could note that the cycle counts are considerably
larger than the instruction counts. That is mainly because PicoRV32
has three non-pipelined stages of execution, of which stage requiring
at least one clock cycle, which results in the minimum cycles per
instruction of 3 cycles. Memory operations and taken branches will
take longer cycle counts depending on memory access latency.

As can seen in Table 2, the instruction reduction ratios gained
by using the wide data-path mode in the modExp and the multi-
plication are significantly better than that in the addition. This is
because the addition performs one operation per word, requiring
O(n) operations for n-word-wide values, while the multiplication
requires O(n?) operations. So the number of multiplication (resp.
addition) operations requires with N composed cores N times (resp.
N times) lesser than with a single core. However, the cycle count
reduction from using the composed systems versus the single core
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is not good as the instruction reduction in the modExp and multi-
plication algorithms. We recognise that the contention of memory
access between cores when executing the memory instructions in
the algorithms increases the latency of the instructions, hence, lim-
iting the cycle count reduction. On the other hand, Table 3 shows
the SIMD compute mode of the composed system also gains consid-
erable better performance versus the single core system. It speeds
up the ChaCha20 encryption more than 2x and 3X compared to the
baseline OpenSSL implementation. The instruction reduction in the
composed system of 4 cores is comparable to the results of using
128 bit RISC-V vector extension reported in [MPP21].

To evaluate fault-attack mitigation, we model that the fault at-
tacks can inject a fault in the data flow and the control flow of
functions. We use the simulation-based evaluation to simulate the
fault injections causing a wrong value in the used registers (resp.,
the program counter) in the data fault attacks (resp., the control
flow fault attacks). For each experiment, we repeat 100 times of the
AES encryption. And after each encryption, the encrypted data is
compared to the reference value to check if the function returns the
correct result. During the encryption duration, a fault is randomly
injected, which can possibly cause the following results: a) Passed
means the injected fault does not affect encrypted data; b) Failed
means wrong encrypted data due to the injected fault is returned.
This is a critical case because it can be exploited by an adversary
for a successful fault attack; c) Broken means the function is broken
and can not return encrypted data; d) Detected means the occurring
fault is detected in the HYDRA redundant mode. Table 4 reports
fault rates for the AES encryption executing in the unprotected sin-
gle core and in the protected HYDRA redundant mode. Interestingly,
we can see that even if a fault is injected every time of the 100 AES
encryptions, only 62 times (resp. 29 times) of control flow faults
(resp. data faults) return wrong encrypted data, which is needed by
a fault-injection attack. Remarkably, with the protection by using
the HYDRA redundant mode, no wrong encrypted data is returned.
All the possible faults inducing wrong encrypted data is detected.

5 CONCLUSION

In this paper, we have presented HYDRA, a proof-of-concept multi-
core processor. Harnessing the concept of CLPs to support crypto-
graphically composition modes, the design and implementation of
HYDRA emphasises flexibility. For example, our preliminary results
suggest that HYDRA can offer the general-purpose benefits of a
multi-core processor; at the same time, it can allow specialisation,
when needed, to address pertinent efficiency or security challenges.

As a proof-of-concept, a wide range of future work seems inter-
esting. A non-exhaustive list of examples includes:

o We have largely ignored system-level challenges, e.g., how a HYDRA-
like architecture is managed by or interacts with a kernel; this and
similar challenges need to be explored and addressed, in part to
evaluate any result with respect to more realistic workloads.

e An obvious drawback of the wide data-path mode is the increased
critical path, which may necessitate a slower clock frequency.
It makes sense to explore whether/how this can be addressed
(e.g., using a dynamic clock frequency scaling), to minimise or
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avoid impact on other modes (i.e., execute wide data-path at clock
frequency x and all others at some y > x).

o By default, and aligning with the area-optimised remit, PicoRV32
uses a bit-serial hardware multiplier. If a combinatorial alterna-
tive were used instead, Karatsuba-like [KO63] techniques seem
compelling: intuitively, additional control logic could combine the
multiple, smaller per-core products into one larger product.
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