
Protection and Relocation Extension for RISC-V
Maja Malenko∗

malenko@student.tugraz.at
Graz University of Technology

Graz, Austria

Leandro Batista Ribeiro∗
lbatistaribeiro@tugraz.at

Graz University of Technology
Graz, Austria

Marcel Baunach
baunach@tugraz.at

Graz University of Technology
Graz, Austria

Abstract
The current trend of transforming static embedded systems
into open platforms (in which several software providers are
able to directly load their software) drives the need to design
and implement modular embedded software. Additionally,
a myriad of embedded devices are expected to operate and
provide services for years, or even decades, while remaining
correct and secure at all times. Therefore, one of the emerging
challenges for highly adaptive embedded computing plat-
forms is to offer dynamic software composition at runtime
and internal device housekeeping, which in conjunction im-
prove device maintainability. With our hardware/software
co-designed concept, the software can be dynamically up-
dated at module granularity for application and middleware
layers, while maintaining dependencies through loose cou-
pling. At the hardware layer, a RISC-V extension enables
the loose coupling by implementing effective runtime relo-
cation and protection. This allows modules to freely move
in memory without invalidating references.

Keywords: hardware/software co-design, modular software
design, risc-v, partial software updates

1 Introduction
The advent of the Internet of Things (IoT) and the smarti-
zation of Cyber Physical Systems (CPS) has led to a drastic
increase in the number of connected devices [1, 2]. A myriad
of these connected embedded devices are expected to operate
for years, or even decades (e.g., automotive, environmental
monitoring, aerospace, industrial IoT). This long-term oper-
ation requires the capacity to add new software features, fix
security vulnerabilities and bugs, adapt to changing legisla-
tion, etc. In order to provide these capabilities, reliable and
convenient software updates are necessary.

While today’s embedded systems are commonly updated
by full image replacement, where the monolithic firmware
image contains the entire software, for open systems, where
the software composition develops over the year, this be-
comes especially complex. Partial updates must be supported
while guaranteeing continued system correctness after each
modification. With the trend of creating open embedded sys-
tems [7, 8] in which multiple parties are allowed to directly
load their software into the device [9], support for modu-
lar (partial) updates becomes crucial. Parts of the system

∗Both authors contributed equally to this research.

can be independently modified, while the rest of the system
continues with its normal operation.

The support of modular updates brings an inherent over-
head in comparison with the classical full image replacement,
mainly due to dependency resolution. While monolithic sys-
tems solve all dependency issues at linking time, modular
systems must do it at runtime, during the update process.
Figure 1 shows three common strategies to handle depen-
dencies updates. Strategy (a) must modify the references in
all dependant modules, which can be very expensive. Strat-
egy (b) uses an old version of the dependency to redirect
references to the new version. Strategy (c) uses a dedicated
indirection table that must be adapted upon updates.
Systems which are frequently updated and operate long-

term exhibit memory fragmentation problems. Our approach
eases the the relocation of memory segments without any
additional effort for resolving dependencies. Two necessary
mechanism that we provide are logical addresses and run-
time relocation. Another paramount aspect of modular em-
bedded systems is their maintainability. After a sequence of
modular updates, the device memory potentially becomes
fragmented, which leads to the waste of anyhow limited
resources. Therefore, memory defragmentation is highly
desirable. However, embedded systems are predominantly
relocated with physical addresses, and moving modules to
defragment the memory would require a further relocation
of all moved modules. Additionally, the dependants of such
modules would have to be relinked, in order to adapt their
references to the moved (dependency) modules.

We propose a concept which uses the indirection approach
from Figure 1 (c), enforced by hardware support for runtime
relocation, in order to provide modular systems that can be
dynamically updated and furthermore defragmented without
the aforementioned overhead.

2 Background
2.1 SmartOS
SmartOS [4] is a small, modular, real-time OS designed for
embedded devices. It features a small-sized microkernel that
provides a minimal number of system services in privileged
mode, including preemptive multitasking, priority-driven
scheduling, task synchronization, dynamic resource manage-
ment as well as centralized interrupt and system call han-
dling. In SmartOS, a task is an independent and preemptive
execution unit with its own code, data (including stack), and
priority. The memory space is linear and shared between the



Malenko, Batista Ribeiro, and Baunach

Dependant
 Module

Dependency
Module V1

Dependency
Module V2

Dependant
Module

Dependency
Module V1

Dependency
Module V2

Indirection

Dependency
Module V1

Dependency
Module V2

Dependant
Module

(a) (b)
(c)

Figure 1. Strategies to keep references to dependencies consistent after an update.

OS and the tasks, including middleware code (e.g., drivers,
libraries) executed in task context.

2.1.1 Modules. We define a module as software that is
independently developed and utilizes the system’s interfaces.
While application modules contain one or more tasks, mid-
dleware modules implement library or driver routines and
contain no tasks. The memory layout and the structure of
modules is shown in Figure 2.

...




IF
 ID
 EX/MEM








WB








Extension Extension

...




APP_N
Application Layer


...
APP_1

DRV_LED
...

LIB_DSP

Middleware Layer


OS Layer

RW Initialized Data

ROM


Code
Read-only Data

RW Initialized Data
...Code

Read-only Data

...
Function Ptr 1

RAM


BSS
RW Initialized Data

BSS
RW Initialized Data

...
Task 1 Stack

Task T Stack

Function Ptr M
Indirection Table


Hardware Layer


Figure 2. Memory Layout in SmartOS.

2.1.2 Partial Updates. Likemost embedded operating sys-
tems, the original version of SmartOS is modular at compile-
time but not at runtime and supports updates only through
a full image replacement. An image is a monolithic software
statically built by integrating the OS and the modules.

Initial support for partial runtime updates on module gran-
ularity was added to SmartOS in [3]. The client-server up-
date protocol distributes the update operations between the
embedded device and the high-performance update servers
which act as software repositories. Compiling and linking
the module is performed on the server. The device is only re-
sponsible for installing and loading themodule, subsequently
creating the necessary data structures required for its execu-
tion. Figure 3 illustrates a simplified version of the update
process. Eventhough secure binary transfer is a crucial step
in over-the-air updates, and it comprises of cryptographically
signing and verifying modules, it is out of our scope.

Module Code

ROM

RAM

Module Data

Module Loader

Control Blocks

Module
Source
Code

Module
Relocatable

Binary

Update Server Device

Link

Module
Executable 

Binary

Compile

Base
Addresses

Figure 3. Simplified update process from [3].

2.1.3 The Effect of Using Physical Addresses. To link
the module, the update server needs detailed information
about the current memory layout of the device. The device
must, therefore, provide the base addresses where themodule
will be stored and loaded and the addresses of the module’s
dependencies (e.g., middleware module functions). However,
in [3] the exchanged addresses are physical, and modules
are built with references to Physical Addresses (PAs). In sys-
tems with partial runtime updates, the downside of using
PAs is obvious. Once a module has been loaded into the
device’s memory, it cannot be moved (e.g., during memory
defragmentation), and if any of its dependencies change,
its references become invalid. As a result, updating a mod-
ule may also require adapting other modules (without any
functional modifications).

2.2 RISC-V
We use an MCU based on RI5CY, now known as CV32E40P, a
32-bit single-issue, four stage pipeline implementation of the
RISC-V ISA. It is directly connected to data and instruction
memories with a single-cycle access and contains several
memory-mapped on-chip peripherals. As per RISC-V privi-
leged specification [6], RI5CY supports machine (M) and user
(U) modes as well as a Physical Memory Protection (PMP)
unit, necessary for developing secure embedded systems.
The PMP grants permissions and protects up to 16 mem-
ory regions. This standard PMP specification does not meet
our system’s requirements and as described in Section 3.2,
our approach implements a modified and extended version



Protection and Relocation Extension for RISC-V

which facilitates not only protection, but runtime relocation
as well.

3 Design
Our system facilitates dynamic partial updates by providing
Runtime Relocation (RTR) of modules. At the same time it
isolates modules while allowing for limited and well defined
interactions.

3.1 Software Design
We divide the system in three logical layers: application,
middleware, and OS, as illustrated in Figure 2. The OS layer
is monolithic and self contained, while the other two layers
are modular. Modules can be added, removed, or updated
at runtime. Applications can use middleware modules and
the OS, but not other applications. Middleware modules can
use the OS and other middleware modules. Moreover, the
accesses betweenmodulesmust happen throughwell defined
interfaces.

3.1.1 Logical Addresses. To support modular updates, we
leverage the concept from [3] as a base. As mentioned before,
using this concept a dependant module M is linked against
the Physical Addresses (PAs) of its dependency module EM
(we will call this module external). If the dependencies in EM
are updated and receive new PAs, the references in M become
invalid. Moreover, if M or EM are relocated (e.g., during mem-
ory defragmentation), internal and external references (e.g.,
local variables, external function calls, etc.) become invalid
again.
To overcome these challenges and ease RTR, we build

modules using Logical Addresses (LAs). Since application
modules are not directly used by any other module, all ap-
plication modules are compiled to the same LA. However,
middleware modules can be accessed by other modules and
are executed in the context of the running task. Therefore,
we assign them different and unique LAs. As a fortunate
by-product, this strategy facilitates memory defragmention
(on module granularity), since the RTR allows modules to
freely move along the memory space.

3.1.2 Inline Tagging. The assignment of LAs to different
types of modules is done using inline address tagging. The
logical address space is partitioned as shown in Table 1. We
embed metadata in the upper unused bits of the LA. In our
current configuration by using 5 bits (i.e.,Module Tag [29:25])
of the 32 bit LA, we support up to 31 tagged middleware
modules and one Module Tag is reserved for all application
modules. To be able to relocate module’s code and data sec-
tions separately, we compile them with different Memory
bit (bit 30). We set the Privilege bit (bit 31) when compiling
modules. The remaining 25 bits represent the address offset,
and they limit the maximum size of a module to 32 MB.

Table 1. Address patterns of a 32-bit logical address space.

Privilege Memory Module Tag Offset Access Type[31] [30] [29:25] [24:0]

0 x xxxxx xx...x Kernel
1 x xxxxx xx...x User

x 0 xxxxx xx...x ROM
x 1 xxxxx xx...x RAM

1 x 00000 xx...x APP Mod
1 x 00001 xx...x MW Mod 1
...
1 x 11111 xx...x MW Mod 31

3.1.3 Indirection Tables. By using LAs in conjunction
with RTR, a module M can be easily relocated and its internal
data and code references will stay consistent. However, this
does not solve all the issues when M is accessing an external
module EM. If M is tightly coupled to its dependencies (e.g.,
functions in EM) and those dependencies within EM change,
M’s references become invalid. This can happen in case the
functions in EM grow or shrink and change their offsets (i.e.,
LAs within the module).
By decoupling a module from its dependencies a module

is not required to be changed in case any of its dependencies
are updated. Therefore, we provide loose coupling by using
the concept of indirection. We build an indirection table into
every middleware module, which consists of function point-
ers to the implemented functions in that module, as shown in
Listing 1. At build time, we ensure that the indirection table
is always located at offset zero, i.e., at the beginning of the
module. The indirection table is the only valid entry point
into the middleware module. More than a simple interface, it
allowsmodules and their functions to grow and shrink at will
between versions, since it always stores references to their
appropriate positions within the module. The only require-
ment is to keep the indirection table consistent throughout
versions. For example, in Listing 1, _LEDConfigure is in the
first slot in the indirection table of the LED middleware mod-
ule. For backward compatibility, future versions must also
have _LEDConfigure in the first slot. Adding new functions
to a module is allowed. However, incompatibilities arise if
the position of the addresses of existing functions within the
indirection table changes. We see version control orthogonal
to our concept, and therefore do not address in this work.

1

2 // led.c

3 static Res_t _LEDconfig(led_t led){ ... }

4 static Res_t _LEDtoggle(led_t led){ ... }

5 static Res_t _LEDsetState(led_t led , ledSt_t st)

{... }

6 const void* _SECTION_(".IT") IT_DRV_LED[] =

7 {& _LEDconfigure , &_LEDtoggle , &_LEDsetState };



Malenko, Batista Ribeiro, and Baunach

8 // led.h

9 #define LEDconfig ((Res_t (*)(led_t ))(IT_DRV_LED[0]))

10 #define LEDtoggle ((Res_t (*)(led_t))(IT_DRV_LED[1]))

11 #define LEDsetState ((Res_t (*)(led_t led , ledSt_t

st)(IT_DRV_LED[2]))

Listing 1. Indirection table (IT) for a LED middleware
module. IT_DRV_LED is the interface, and it contains pointers
to all offered functions.

3.2 Hardware Design
The software design decisions described in Section 3.1 can
only function correctly with a tailored hardware support.
Therefore, we design and implement a hardware extension
which is responsible for two main mechanisms, memory
protection and Runtime Relocation (RTR) of modules. It also
facilitates the loose coupling concept of middleware modules.
The hardware extension is designed as a separate hard-

ware component and attached to the RI5CY pipeline as
shown in Figure 2. The data for configuring the protection
and relocation registers is transferred via the CSR module.
It implements the relocation logic and generates exceptions
when the module’s boundaries are not respected. Upon ex-
ception, the current execution is aborted and the execution
flow is redirected to the kernel’s exception handling routine.

3.2.1 Memory Protection. Complementary to the core’s
vertical isolation between kernel and user mode, our system
leverages the hardware extension for horizontal isolation
between modules. To enforce the memory boundaries of a
module the hardware uses a set of start and end Protection
Registers (PRs), a concept used in Memory Protection Units
(MPUs) to define the address range of the module’s memory
regions. Each memory access initiated by the module is in-
tercepted and checked against the allowed ranges in these
registers (i.e., if no address range is defined, it can not be
accessed). The kernel is accessed only through re-entrant sys-
tem call wrappers which are always open for access. These
checks are only performed when the system is running in
user mode, inherently allowing full memory access to the
kernel.

3.2.2 Relocation Logic. To allow modules to freely move
along the physical memory space, we add a complementary
RTR logic to the range protection checks using Relocation
Registers (RRs). The CPU fetches instructions and accesses
data using the module’s Logical Address (LA). The hardware
subsequently, after checking the range permissions, calcu-
lates the correct PA by adding the LA to the corresponding
RR, as shown in Figure 4.

3.2.3 Number of registers. PRs and RRs of middleware
modules are only (re-)configured by the kernel every time
when modules are updated, deleted, or installed for the first
time. In contrast, PRs and RRs of application modules are

...




APP_PRs

Range
Checker

EN

APP_RRs

DRV_PRs

...


DRV_RRs Relocator

In
di

re
ct

io
n 

Ta
bl

e
C

he
ck

s 

P
M

O
ffs

et

Lo
gi

ca
l A

dd
re

ss



M
od

ul
e

Ta
g

31
30

29
25

0

PC

LA

Ph
ys

ic
al

 A
dd

re
ss

excep

instr

Zeropriv

Figure 4. Relocation and Protection Logic.

populated with the information stored in the Module Control
Block (MCB) upon context switch.

As modules have fixed LAs, we eliminate the need for the
start PR, saving hardware resources. According to Figure 2,
the code and data sections of modules are continuous. There-
fore, our architecture requires only two memory regions
per module, which are protected (2 PRs) and relocated (2
RRs). While all application modules share the same PRs and
RRs, the middleware modules have dedicated ones. Thus, the
number of registers is defined as:
PR𝑠 = RR𝑠 = 2 ∗ (1 + 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑀𝑖𝑑𝑑𝑙𝑒𝑤𝑎𝑟𝑒 𝑀𝑜𝑑𝑢𝑙𝑒𝑠)
If middlewaremodules also had shared registers, wewould

need to reconfigure them every time an application or mid-
dleware module interacts with different middleware modules.
Since PRs and RRs must be configured in kernel mode (for
security reasons), that would require a context switch upon
every middleware interaction, which would add consider-
able execution overhead. Hence, we pay for faster software
execution with extra hardware registers.

3.2.4 Manipulation of Tag Bits. In Section 3.1, we have
explained how we partition the logical address space for
relocatable modules. Figure 4 illustrates how the hardware
extension uses this information to perform the LA to PA
conversion. On each memory access, the hardware extracts
the inline address tag bits from the LA and controls the
memory access permissions. As shown in Figure 4, based on
the Module Tag bits the hardware distinguishes whether an
application or any of the middleware modules is currently
running, and accesses the correct set of registers to protect
(Range Checker) and relocate (Relocator) accordingly. Fur-
thermore, depending on the Memory (bit M), the data or
code protection and relocation are chosen. The most signifi-
cant bit in the LA (bit P) identifies its address space (kernel
or user). While protection is active only in user mode, the
relocation happens continuously on every memory access.
Having in mind that our OS is monolithic and not relocatable,
the content of the RRs has no effect in kernel mode.
The hardware extension also ensures that middleware

modules are accessed only through the indirection table, as
a single valid entry point. Namely, the indirection table of a
middlewaremodule is accessed only through load data access
instructions (i.e., lw) which retrieve the function pointer



Protection and Relocation Extension for RISC-V

from the respective slot. Any load data access outside the
indirection table of a called middleware module will generate
an exception. The nature of data accesses is identified by
comparing the Module Tag bits between the caller and the
callee. If the data LA and the current PC have same tags, the
access is intra-module and is always allowed. If they are
different, the access is inter-module, and it is allowed only
within the indirection table of the called module.

4 Evaluation
We analyzed the memory overhead, hardware logic over-
head, and execution time overhead in our modular version
and compared it with the monolithic version with the same
software configuration.
The system prototype is implemented on a Basys3 Artix-

7 evaluation board, running at 50 MHz clock speed. The
prototype consists of a RI5CY -based (RV32IM) MCU [5] with
several on-chip peripherals (e.g., UART, GPIO) and SmartOS
running on top.
Simulation. To evaluate the Runtime Relocation (RTR) logic,
we check if the application module M shown in Listing 2
works as expected, even after updating and moving its de-
pendency, the LED driver. The LAs of both modules before
the update are summarized in Table 2.
The simulation waveform in Figure 5 shows all relevant

signals to evaluate the RTR. The value of PC_PA is the sum of
PC_LA and APP_RR or MW_RR. The first data access (Data_LA =
0xBA000008) reads _LEDsetState’ LA (0xBA00000C) from
the LED driver’s indirection table. Upon the function call
(PC_LA = 0x80000088), the PC jumps to _LEDsetState,
whose PA is 0x00002F44. On the second function call (PC_LA
= 0x800000a8), the PC jumps to the updated _LEDsetState,
whose new LA (0xBA00008C) and its corresponding PA
(0x00003068), were affected by updateLEDDriver. Finally,
after moveLEDDriverCode, _LEDsetState is again called
with the same LA (0xBA00008C), but with a different PA
(0x0000311C), since moving a module affects its PA, but not
the LA.

1 OS_TASKENTRY(M){

2 LEDsetState(LED_01 , LED_ON);

3 updateLEDDriver();

4 LEDsetState(LED_02 , LED_ON);

5 moveLEDDriverCode();

6 LEDsetState(LED_03 , LED_ON);

7 }

Listing 2. Triggering problematic actions.

Table 3 shows the memory overhead of the system. The
modular version is larger because it requires extra function-
alities, such as management of modules and memory. These
functionalities keep track of the installed modules and the
available memory.

Table 4 shows the execution time overhead of both ver-
sions. The focus is on the comparison of local (within the

Module Start LA End LA

taskModuleM Code 0x80000000 0x80000110

LED Driver IIT 0xBA000000 0xBA000008
Code 0xBA00000C 0xBA0000A0

Table 2. Logical Addresses (LAs) of application and LED
middleware modules analyzed in Figure 5

module, no indirection) and external (in another module,
with indirections) function calls, as shown in Listing 3. In
the modular version, local function calls have virtually the
same performance as the monolithic one. On the other hand,
the indirection on function calls introduces a considerable
overhead. However, the more cycles the external function
requires, the smaller the relative overhead, since the indirec-
tion always needs a fix amount of cycles. Our test issues a
result very close to the worst case.

1 OS_TASKENTRY(taskModuleM){

2 // Local function calls

3 for (int i=0; i < REPEAT; i++) localFunc ();

4 // External function calls

5 for (int i=0; i < REPEAT; i++) externalFunc ();

6 }

Listing 3. Benchmarking the overhead of local and external
function calls.

Table 3. Comparison of memory overhead (in bytes).

.text .data .bss Total

Monolithic 10784 200 76 11060
Modular 12159 216 84 12459

+13% +8% +11% +16%

Table 4. Execution Time [𝜇s] of the monolithic and modular
software from Listing 3, with REPEAT = 100.

Operation Monolithic Modular

Local Function Call 59.36 59.47 (+ 0.19 %)
External Function Call 52.64 64.62 (+ 22.76 %)

We do not analyze the processing time required for trans-
ferring, installing, and loading of modules, nor we measure
the amount of exchanged data. These evaluation are pre-
sented in [3].

To evaluate the additional hardware logic, we measured
the utilization of logic cells on FPGA as reported after syn-
thesis and shown in Table 5. In the evaluation are included
2 on-chip peripherals, BRAM-based data and instruction
memories, and the Baseline RI5CY implementation, which



Malenko, Batista Ribeiro, and Baunach

Figure 5. The simulation waveform of the code in Listing 2.

Table 5. Resource consumption on FPGA.

LUTs (Util%) FFs (Util%) BRAM

Baseline 4879 (23.46%) 2246 (5.4%) 16 (32%)
+Extensions 6306 (30.32%) 4718 (11.34%) 16 (32%)

is optimized to only include modules which are part of the
RV32IM specification. We have evaluated the configuration
with protection and relocation registers for a big number of
middleware modules (i.e., 31).

5 Conclusion
Future embedded systems will have to go through a signifi-
cant transition from static and monolithic towards dynamic
and compositional systems, with security on mind.

n this work, we discussed the importance of embedded sys-
tems that can be partially updated at runtime. We reasoned
about inherent problems of current modular embedded sys-
tems, such as the potential memory fragmentation after a
sequence of updates, the difficulty to maintain modules con-
sistent when their dependencies are updated or moved, and
security issues due to buggy or malicious modules.
We argued that all mentioned aspects can only be effi-

ciently solved with hardware support, and we presented a
hardware/software co-designed approach to improve main-
tainability and security of embedded devices.
On the software side, we extended SmartOS by adding

loose coupling between the application and the middleware
layers, as well as within the middleware layer, by using the
indirection tables. On the hardware side, we leverage a cus-
tom RISC-V extension features (memory protection, logical
addressing, and runtime relocation) to ensure that dynam-
ically loaded modules do not corrupt each other, and that
modules do not need to be modified when their dependencies
are updated or moved, avoiding extra linking and relocation.
Although only SmartOS was used in this work, the concept
can also be implemented with other modular OSes, with sim-
ple changes in the code of middleware modules, in the linker

scripts, and in the context switch. Nomodification is required
in the application layer. The concept is fully transparent to
applications, and legacy code can be reused directly.

As a future work we will analyze the hardware footprint
and the memory overhead in a more detailed manner. It is
interesting to know how the memory overhead is distributed
along the different software layers, so that more appropriate
measures are taken to reduce it. We will also evaluate the exe-
cution overhead of other scenarios, such as context switches
of tasks in the same and in different modules. Lastly, we will
analyze the potential security issues which arise from this
concept in more details and propose respective countermea-
sures

References
[1] CISCO. Cisco and sas edge-to-enterprise iot analytics plat-

form, https://www.cisco.com/c/dam/global/fr_fr/solutions/data-center-
virtualization/big-data/solution-cisco-sas-edge-to-entreprise-iot.pdf.

[2] Christopher Greer, Martin Burns, David Wollman, and Edward Griffor.
Cyber-physical systems and internet of things, 2019-03-07 2019.

[3] Leandro Batista Ribeiro, Fabian Schlager, and Marcel Baunach. To-
wards Automatic SW Integration in Dependable Embedded Systems. In
Proceedings of the 17𝑡ℎ International Conference on Embedded Wireless
Systems and Networks (EWSN). Junction Publishing, February 2020.

[4] Tobias Scheipel, Leandro Batista Ribeiro, Tim Sagaster, and Marcel
Baunach. SmartOS: An OS Architecture for Sustainable Embedded
Systems. In Tagungsband des FG-BS Frühjahrstreffens 2022, Bonn, 2022.
Gesellschaft für Informatik e.V.

[5] A. Traber. Ri5cy core: Datasheet, 2019.
[6] Asanović Waterman, Andrew and Krste. The risc-v instruction set

manual volume ii: Privileged architecture, document version 20190608-
priv-msu-ratified. Technical report, RISC-V Foundation, June 2019.

[7] Wang Yi. Design and dynamic update of real-time systems. In 2019
IEEE Real-Time Systems Symposium (RTSS), pages 1–3. IEEE Computer
Society, 2019.

[8] Wang Yi, MortezaMohaqeqi, and Susanne Graf. Mimos: A deterministic
model for the design and update of real-time systems. arXiv preprint
arXiv:2011.13234, 2020.

[9] Detlef Zerfowski and Darren Buttle. Paradigm shift in the market for
automotive software. ATZ worldwide, 121(9):28–33, 2019.


	Abstract
	1 Introduction
	2 Background
	2.1 SmartOS
	2.2 RISC-V

	3 Design
	3.1 Software Design
	3.2 Hardware Design

	4 Evaluation
	5 Conclusion
	References

