
AOS-RISC-V: Towards Always-On Heap Memory Safety
Yonghae Kim

yonhae@gatech.edu
Georgia Institute of Technology

USA

Anurag Kar
anurag.kar@gatech.edu

Georgia Institute of Technology
USA

Siddant Singh
ssingh484@gatech.edu

Georgia Institute of Technology
USA

Ammar A. Ratnani
aratnani7@gatech.edu

Georgia Institute of Technology
USA

Jaekyu Lee
jaekyu.lee@arm.com

Arm Research
USA

Hyesoon Kim
hyesoon@cc.gatech.edu

Georgia Institute of Technology
USA

ABSTRACT
Despite its notoriety for a long time, achieving robust yet practical
memory safety remains challenging. In a plethora of memory-safety
proposals, we observe that many recent proposals adopted the idea
of pointer tagging, which places a pointer tag in the unused upper
bits of a pointer and utilizes the pointer tag for a security purpose.
With their promising results, such methods give us hope for the
end of the eternal war in memory safety.

In this paper, we revisit one of the first pointer-tagging methods
and examine its feasibility as a runtime solution. To this end, we
prototype AOS-RISC-V, a RISC-V-based full-system framework that
ensures heap memory safety. For realistic evaluation, we base our
design on the open-source RISC-V BOOM core, one of the most
sophisticated RISC-V out-of-order processors. We then implement
lightweight hardware extensions for new ISA support and bounds-
checking mechanisms. To enable AOS-RISC-V in a real system, we
further design new compiler passes in the LLVM compiler frame-
work and add operating system support in the Linux kernel, both
of which are compatible with RISC-V. All together, we demonstrate
our prototype running under Linux on FPGAs and conduct a full-
system-level evaluation. Our evaluation results report a 20% average
slowdown for the selected SPEC 2006 workloads.

1 INTRODUCTION
Despite the long-term notoriety, memory safety vulnerabilities are
still problematic, accounting for almost 70% of vulnerabilities found
in wild [6, 13]. Memory safety problems occur when a spatially or
temporally illegal memory access is performed. Buffer overflows
and out-of-bounds accesses are well-known examples of spatial
memory safety problems. Temporal safety problems include use-
after-free (UAF) and uninitialized use.

To protect against such vulnerabilities, numerous defense mecha-
nisms have been proposed, including both software- and hardware-
based approaches. However, their runtime deployment in commod-
ity systems is still questionable because of performance, security,
or compatibility issues. Even with their proficiency, software so-
lutions [1, 4, 5, 14, 15, 17] typically incur significant performance
overhead, and such overhead has limited their applicability only
to debugging and testing purposes. On the other hand, hardware-
based mechanisms [8, 10, 12, 16, 20–24] achieve moderate runtime
overhead but tend to offer partial security guarantees or lose com-
patibility with legacy code.

Meanwhile, we observe that pointer-tagging methods [8, 10, 12,
16, 24] attract a great attention from research communities. Given

1 int main(void) {
2 char *buf = (char *) malloc(10);
3 scanf("%s", buf);
4 printf("buf: %s\n", buf);
5 ... }

Figure 1: A simple buffer overflow example.

that the effective virtual memory address size is less than 64 bits
under typical virtual address schemes, pointer-tagging methods
utilize the unused high-order bits of a pointer to store a pointer
tag and use the pointer tag to look up security metadata associated
with the pointer. Among the prior work, AOS [10] proposes an
efficient bounds-checking mechanism that implements lightweight
hardware extensions for heap memory safety. Using Arm pointer
authentication (PA) primitives, AOS generates a pointer authenti-
cation code (PAC) and embeds it into a pointer address, i.e., signs a
pointer. AOS then uses the PAC as a pointer tag to look up bounds
information upon memory accesses by the signed pointer.

While AOS exhibits its potential of low overhead (an 8.4% average
slowdown), we see that its evaluation is conducted based on system
emulation (SE) mode in the gem5 simulator [3] and does not execute
whole programs for the sake of reasonable simulation time. Given
that memory allocation and memory access behavior can vary over
time during program execution, a full-system level evaluation with
the entire program execution might produce more realistic results.

The nature of open-source RISC-V instruction set architecture
(ISA) allows researchers in both academia and industry to easily
prototype new architecture or system designs [19]. In addition, the
advancement of the RISC-V technology enables full-system evalua-
tion in a real system, e.g., executing benchmarks under the Linux
kernel running on FPGAs, bridging the gap between evaluation
results from simulation and real products.

Motivated by the maturity of the RISC-V ecosystem, we investi-
gate the feasibility of AOS as a runtime solution through full-system
evaluation. To this end, we present AOS-RISC-V, a full-system level
framework for memory safety. Based on the RISC-V BOOM core,
one of the most sophisticated open-source out-of-order processors,
we implement lightweight hardware extensions for new ISA sup-
port and bounds-checking mechanisms proposed in AOS. To enable
AOS-RISC-V in a real system, we design new compiler passes in the
LLVM compiler framework and add necessary operating system
(OS) support in the Linux kernel, both of which are compatible
with RISC-V. Finally, we prototype AOS-RISC-V running under the

Yonghae Kim, Anurag Kar, Siddant Singh, Ammar A. Ratnani, Jaekyu Lee, and Hyesoon Kim

ptr

tweak

PA Key

P PAC

PAC VA
VA_SIZE-1 063

pacma ptr, ptr, tweak

Figure 2: pacma instruction using QARMA to generate a PAC.

Linux kernel on FPGAs and conduct performance evaluation. Our
results show a 20% average slowdown across selected SPEC 2006
workloads. To contribute to research communities, we open-source
AOS-RISC-V.1

2 BACKGROUND
2.1 Memory Safety
In computer systems, memory safety vulnerabilities have been per-
sistent over a long period of time. Memory safety problems are
generally classified into two types. Spatial memory safety errors
occur when a memory instruction accesses outside of its designated
boundary, e.g., buffer overflows and out-of-bounds accesses. Tem-
poral safety errors occur when a memory access is performed to a
memory region that has been freed, e.g., use-after-free (UAF).

Figure 1 shows a simple heap buffer overflow example where
a user provides an input string via scanf(). In this example, an
attacker can simply inject a long input sequence whose size exceeds
the size of the target buffer (buf) to invoke a buffer overflow. Since
the unsafe scanf() has no knowledge of the array size, it will just
store the given input to the target memory address and end up
overwriting the adjacent memory space.

2.2 Open-source RISC-V CPU Cores
Open-source RISC-V CPU cores [2, 18, 25] have gained traction
lately in academia and industry. Since the basic RISC-V ISA is
barebones and provides only essential functionality, researchers
can add their own ISA extensions and integrate bespoke hardware
units to the design, making it highly modular and extensible.

RISC-V also inherits the power efficiency and performance of
the RISC architecture, making it an excellent choice for low-power
computing with good performance. Moreover, the open-source na-
ture of RISC-V helps make it accessible to a larger audience. For this
reason, we choose the RISC-V architecture as our evaluation plat-
form, provide hardware security features to the RISC-V ecosystem,
and make it available to a wider audience.

3 AOS-RISC-V
While various proposals have been proposed to achieve memory
safety, we choose the prior work, AOS [10], as our target mechanism
to implement because of its lightweight hardware extensions as

1https://github.com/yonghaekim/AOS-RISC-V

1 ptr = malloc(size);
2 pacma ptr, ptr, sp;

3 bndstr ptr, ptr, size;

(a) AOS-malloc.

1 bndclr ptr, ptr;

2 xpacm ptr, ptr;

3 free(ptr);

(b) AOS-free.

Figure 3: Data-pointer signing proposed in AOS [10].

well as efficient metadata management methods. As a hardware-
based bounds-checking mechanism, as can be seen in Figure 2, AOS
utilizes Arm pointer authentication (PA) primitives to generate a
pointer authentication code (PAC). AOS then places the PAC into a
pointer address, i.e., signs a pointer, and uses the PAC as a pointer
tag dedicated to the corresponding pointer. Since AOS recognizes
the heap memory vulnerabilities as the most critical attack vector,
it signs and protects data pointers returned by dynamic memory
allocations, e.g., malloc() and new, as shown in Figure 3. To handle
possible PAC collisions due to the limited PAC size available in a
pointer address, AOS maintains a hashed bounds table (HBT) in
memory, which accommodates multiple bounds for each PAC and
performs an iterative bounds search when necessary.

3.1 ISA Extensions
To enable pointer-signing and bounds management operations, new
instructions are introduced. Since AOS is originally based on the
AArch64 architecture, we newly find unused instruction encod-
ing reserved for custom instructions in the RISC-V base opcode
map [19] and use it to define the following new instructions.
• pacma rd, rs1, rs2: computes a PAC using QARMA that takes

a pointer address (rs1) as a plaintext, a tweak (rs2), and PA
key.2 Then, it returns a signed pointer address (rd) where the
computed PAC is embedded into its high-order bits.

• xpacm rd, rs1: strips a signed pointer address (rs1) by masking
its high-order bits and returns the resulting address (rd).

• bndstr rd, rs1, rs2: encodes 8-byte bounds information using
a base address (rs1) and a size (rs2), stores the computed bounds
in the HBT, and returns the pointer address (rd).

• bndclr rd, rs1: clears the bounds information associated with
a pointer address (rs1) by storing an 8-byte zero value in the
HBT and returns the pointer address (rd).
While the pacma instruction is originally proposed to take three

source operands in AOS, including additional size information for
address hashing code (AHC) generation, only floating-point instruc-
tions are supposed to take a third source operand in the RISC-V
architecture. As such, we drop the third operand of the pacma as
well as the use of AHCs in our design and check the signess of a
pointer by looking for a nonzero PAC in a pointer address.

2Arm PA provides PA keys stored in hardware registers and invisible to a user process.

AOS-RISC-V: Towards Always-On Heap Memory Safety

!= 0? Perform
bounds checking

No bounds checking

PAC Pointer Addr
VA_SIZE-1 063

Load-Store
Unit (LSU)

Memory
Check Unit

(MCU)

L1 Cache

Load/store bndstr/bndclr

Figure 4: Memory check unit (MCU) structure.

3.2 Memory Check Unit (MCU)
To process new instructions, AOS adds a memory check unit (MCU)
responsible for bounds checking and metadata management. Being
located next to a load-store unit (LSU), the MCU takes all memory
instructions, i.e., loads and stores, as well as bounds instructions,
i.e., bndstr and bndclr. Depending on the instruction type, the
MCU generates memory requests to load or store bounds from the
HBT in memory. Since the HBT is indexed by PACs (embedded in
memory addresses), the locations of bounds are calculated using
the base address of the HBT and PACs, i.e., HBT[PAC].

To adapt the MCU design to a real processor design, we decide
to break it into two separate queues, namely memory check queue
(MCQ) and bounds queue (BDQ). This design choice is based on the
following two observations: 1) only bounds instructions require the
bounds metadata field and 2) the number of bounds instructions is
much less than the number of memory instructions, so the MCU
mostly gets full with memory instructions, causing backpressure
to the issue stage. For better resource utilization and performance,
we choose to size the MCQ sufficiently large such that it can hold
as many inflight memory instructions as possible and size the BDQ
reasonably small.

3.3 Compiler Support
Since the LLVM 9.0.0 release, the RISC-V target became no-long ex-
perimental, and the backend started to support full codegen for the
RV32I and RV64I base RISC-V instruction set variants. As such, we
design new compiler passes to the optimizer and the RISC-V back-
end in the LLVM 9.0.1 [11]. First, the aos-riscv-opt optimizer pass
is designed to detect dynamic memory allocation and deallocation
calls and insert new intrinsic functions at the LLVM intermediate
representation (IR) level. The inserted intrinsic functions are de-
tected at the aos-riscv backend pass and are replaced with new
instructions, as shown in Table 1. Additionally, the aos-riscv-opt
pass inserts a custom system call to a program entry, which enables
the AOS mode and configures hardware registers. We introduce
more details of the custom system call in Section 3.4.

3.4 OS Support
Along with the hardware modification and the compiler support,
we provide kernel support for the hardware configuration.
Configuration. In the user-mode (U-mode) of the standard RISC-V
ISA [19], we define the new control and status registers (CSRs)
(see Table 2). Specifically, the enableAOS CSR is used to enable the
hardware-based memory checks by AOS-RISC-V. The base address

Table 1: Code examples in C, LLVM IR, and assembly code.

Code Examples

C code char *ptr = (char *) malloc(10);

LLVM IR code %3 = call noalias i8* @malloc(i64 10) #3
(frontend) %4 = call i8* @llvm.aos.pacma.p0i8(i8* %3, i64 0)

%5 = call i8* @llvm.aos.bndstr.p0i8(i8* %4, i64 10)

Assembly Code call malloc@plt
(backend) pacma a0, a0, a1

bndstr a0, a0, a1

Table 2: New control and status registers in AOS-RISC-V.

CSR Name Permission Description

enableAOS R/W Switch to enable AOS-RISC-V
baseAddrOfHBT R/W Base address of an HBT
numWaysOfHBT R/W Number of ways of an HBT

numBndstrFails R/W Number of bounds-store failures
numBndclrFails R/W Number of bounds-clear failures
numBndchkFails R/W Number of bounds-check failures

of an HBT is stored in the baseAddrOfHBT CSR, and the number
of ways of an HBT is configured via the numWaysOfHBT CSR. To
interface with such CSRs, we provide a custom system call, namely
__aos_set(), that is inserted into the entry of a user program at
compilation and sets the CSRs with given argument values. Be-
sides to those CSRs for configuration, we also add extra CSRs to
count the number of failures of bounds operations; numBndstrFails,
numBndclrFails, and numBndchkFails. After a program is termi-
nated, the kernel reads and prints those CSRs to let a user know
whether any bounds operation has failed during program execution.
Processmanagement.Besides the hardware configurations through
our system call, the kernel needs to keep track of the information of
each user process. To do so, we add new fields to the process struc-
ture in the linux kernel, i.e., task_struct. Those fields are initialized
upon process creation and are properly set by our custom system
call. During a context switch, if the current process is enabled with
AOS-RISC-V, the kernel saves its configuration information in the
process structure, including the base address and the number of
ways of an HBT assigned to the process. Then, the kernel checks if
the next process to execute is also enabled with AOS-RISC-V. If so,
the kernel overwrites the CSRs with the configuration information
of the next process before it begins its execution. Otherwise, the
kernel initializes the CSRs with zero to disable AOS features for the
next process.

4 METHODOLOGY
We prototype AOS-RISC-V on top of the RISC-V BOOM core [25],
which is one of the most sophisticated open-source processors. We
then evaluate our design on Amazon EC2 F1 using FireSim [9], an
open-source FPGA-accelerated hardware platform for full-system
simulation. To create instrumented binaries running on AOS-RISC-
V, we design custom passes in LLVM-9.0.1 [11]. For our kernel

Yonghae Kim, Anurag Kar, Siddant Singh, Ammar A. Ratnani, Jaekyu Lee, and Hyesoon Kim

Table 3: BOOM core configurations for evaluation.

Clock 75 MHz L1-I cache 32KB, 8-way
LLC 4MB L1-D cache 64KB, 16-way
DRAM 16 GB DDR3 L2 cache 512KB, 8-way

Front-end 8-wide fetch
16 RAS & 512 BTB entries
gshare branch predictor

Execution 3-wide decode/dispatch
96 ROB entries
100 int & 96 floating point registers

Load-store unit 24 load & 24 store queue entries

Memory check unit 36 memory check & 8 bounds queue entries

support, we modify the Linux distribution (Linux 5.7-rc3) pro-
vided by FireSim. For performance evaluation, we instrument and
compile SPEC 2006 workloads [7] and run instrumented binaries
using test inputs.

5 EVALUATION
Figure 5 illustrates the normalized execution time of AOS-RISC-V
across the SPEC 2006 workloads. Most benchmarks show moderate
runtime overhead (20% on average) in our evaluation. Our analysis
reveals that the performance overhead is mainly derived from 1) in-
creased cache port contentions due to additional memory accesses
for bounds checking and 2) the cache pollution due to the extra
bounds metadata. As the number of memory accesses requiring
bounds checking increases, the increased cache port contentions
can delay regular memory accesses, slowing down normal program
execution. In addition, as the memory footprint of bounds metadata
increases, useful cache lines that could have been accessed by regu-
lar memory accesses in the near future can be evicted from caches,
leading to increased memory latency for subsequent accesses.

Notably, we observe that sjeng has near-zero runtime overhead.
As shown in Figure 6, the ratio of signed loads and stores over the
total memory accesses is only 1%. This result indicates that only 1%
of the entire memory accesses require bounds checking, and 99% of
memory accesses do not cause extra overhead. In contrast, bzip2
and hmmer exhibit the high ratios of signed memory accesses close
to 95% and 56%, respectively. Table 4 shows the number of sign-
ing and bounds instructions executed. Note that we insert a pacma
and a bndstr after eachmalloc() and a bndclr and xpacm before
each free(), as shown in Figure 3. While most applications exe-
cute a marginal number of additional instructions, hmmer is shown
to be the most malloc-intensive application among the evaluated
applications.

6 DISCUSSION
In our current design, we observe a higher runtime overhead than
that of AOS. This discrepancy seems to be caused by the limited
data fetch width supported in the BOOM core. AOS assumes the
data fetch width of 64 bytes supported in modern processors, and
therefore up to eight sets of bounds metadata can be brought into
the CPU pipeline with a single memory request. However, our
baseline BOOM core supports at most 8-byte data fetch width, so

bzip2
gobmk

hmmer
sjeng

libquantum
Geomean

0.8
1.0
1.2
1.4
1.6
1.8
2.0

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e

AOS-RISC-V

Figure 5: Execution time of AOS-RISC-V across SPEC 2006
workloads, normalized to the baseline.

bzip2 gobmk hmmer sjeng libquantum
0

20

40

60

80

100

Ra
tio

 (%
)

Signed Mem Accesses # Unsigned Mem Accesses

Figure 6: The ratio of signed loads and stores requiring
bounds checking over the total memory accesses.

more bounds access requests need to be generated during iterative
bounds search in the HBT.

7 FUTUREWORK
AOS-RISC-V is currently under active development, and we leave
several tasks as future work.
Dynamic bounds-table resizing. In AOS, the set-associative HBT
structure is introduced to handle possible PAC collisions and to
accommodate multiple bounds metadata for each PAC. Neverthe-
less, the HBT can still overflow when a certain application creates
numerous bounds metadata at runtime. AOS addresses this con-
cern by adopting the dynamic bounds-table resizing method. In
our current design, we only allocate a fixed-size HBT and leave the
implementation of dynamic bounds-table resizing as future work.
Exception handling for bounds-operation failure. To support
precise debugging or promptly prevent malicious attacks at runtime,
a new class of exception would need to be defined to alert the user
of a memory safety violation case. Currently, we only count the
number of bounds-operation failures and report the number after a
user process is terminated.
Enhancing security guarantees. As mentioned, AOS considers
the heap exploitation as the most prevalent and problematic attack
vector and focus on heap memory safety. To achieve complete
memory safety, more sophisticated compiler techniques could be

AOS-RISC-V: Towards Always-On Heap Memory Safety

Table 4: Number of additional signing and bounds instruc-
tions executed.

Name pacma xpacm bndstr bdclr

bzip2 28 24 24 24
gobmk 4181 4172 4181 4172
hmmer 90138 90138 90138 90138
sjeng 4 0 4 0
libquantum 95 95 95 95

developed to extend the security coverage to other memory types,
such as stack and global memory.

8 CONCLUSIONS
In this paper, we presented AOS-RISC-V, a full-stack memory safety
framework. Based on the open-source RISC-V BOOMcore, we proto-
typed AOS-RISC-V, a full-system level framework for heap memory
safety, with our modifications encompassing architecture, compiler,
and OS support. Under the Linux kernel running on Amazon EC2 F1
instances, we conducted performance evaluation and showed that
AOS-RISC-V incurred a 20% average slowdown across the selected
SPEC 2006 workloads.

REFERENCES
[1] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy

Bounds Checking: An Efficient and Backwards-Compatible Defense against
out-of-Bounds Errors. In Proceedings of the 18th USENIX Security Symposium
(Security) (Montreal, Canada). USENIX Association, USA, 51–66.

[2] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Computer
Architecture News 39, 2 (Aug. 2011), 1–7.

[4] Baozeng Ding, YepingHe, YanjunWu, AlexMiller, and John Criswell. 2012. Baggy
Bounds with Accurate Checking. In 2012 IEEE 23rd International Symposium on
Software Reliability Engineering Workshops. IEEE, 195–200. https://doi.org/
10.1109/ISSREW.2012.24

[5] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type and Memory
Error Detection Using Dynamically Typed C/C++. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (Philadelphia, PA, USA). Association for Computing Machinery, New York,
NY, USA, 181–195.

[6] Google. 2017. Google Queue Hardening. https://security.googleblog.com/2019/
05/queue-hardening-enhancements.html.

[7] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Computer Architecture News 34, 4 (Sept. 2006), 1–17.

[8] Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, Ryan Piersma,
and Simha Sethumadhavan. 2021. No-FAT: Architectural Support for Low Over-
head Memory Safety Checks. In Proceedings of the 48th Annual International
Symposium on Computer Architecture (ISCA) (Virtual Event, Spain). IEEE Press,
Piscataway, NJ, USA, 916–929. https://doi.org/10.1109/ISCA52012.2021.00076

[9] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan
Bachrach, and Krste Asanović. 2018. FireSim: FPGA-accelerated Cycle-exact
Scale-out System Simulation in the Public Cloud. In Proceedings of the 45th An-
nual International Symposium on Computer Architecture (ISCA) (Los Angeles,
California). IEEE Press, Piscataway, NJ, USA, 29–42. https://doi.org/10.1109/
ISCA.2018.00014

[10] Yonghae Kim, Jaekyu Lee, and Hyesoon Kim. 2020. Hardware-based Always-on
Heap Memory Safety. In Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE Computer Society, Los Alamitos,
CA, 1153–1166.

[11] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO): Feedback-Directed and
Runtime Optimization (Palo Alto, California). IEEE Computer Society, USA, 75–
86.

[12] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh
Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir Gre-
wal, and Sreenivas Subramoney. 2021. Cryptographic Capability Computing. In
Proceedings of the 54th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (Virtual Event, Greece). Association for Computing Machinery,
New York, NY, USA, 253–267. https://doi.org/10.1145/3466752.3480076

[13] Matt Miller. 2019. Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape. https://github.com/microsoft/MSRC-
Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-
%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%
20software%20vulnerability%20mitigation.pdf.

[14] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety
for c. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (Dublin, Ireland). Association for
Computing Machinery, New York, NY, USA, 245–258. https://doi.org/10.1145/
1542476.1542504

[15] J. Newsome and D. Song. 2005. Dynamic Taint Analysis for Automatic Detection,
Analysis, and SignatureGeneration of Exploits on Commodity Software. In NDSS.
The Internet Society, USA.

[16] Hiroshi Sasaki, Miguel A. Arroyo, M. Tarek Ibn Ziad, Koustubha Bhat, Kanad
Sinha, and Simha Sethumadhavan. 2019. Practical Byte-Granular Memory
Blacklisting Using Califorms. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO) (Columbus, OH, USA).
Association for Computing Machinery, New York, NY, USA, 558–571. https:
//doi.org/10.1145/3352460.3358299

[17] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings
of the 2012 USENIX Conference on Annual Technical Conference (ATC). USENIX,
309–318.

[18] Blaise Tine, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon.
2021. Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics. InMICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual
Event, Greece) (MICRO ’21). Association for Computing Machinery, New York,
NY, USA, 754–766. https://doi.org/10.1145/3466752.3480128

[19] AndrewWaterman and Krste Asanović. 2019. The RISC-V Instruction Set Manual.
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf.

[20] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth,
Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, David Chisnall, Jessica Clarke, Khilan
Gudka, Alexandre Joannou, A. TheodoreMarkettos, AlfredoMazzinghi, RobertM.
Norton, Michael Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W.
Moore, Peter G. Neumann, and Robert N. M. Watson. 2020. Cornucopia: Tempo-
ral Safety for CHERI Heaps. In 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, Piscataway, NJ, USA, 608–625. https://doi.org/10.1109/SP40000.2020.00098

[21] J. Woodruff, A. Joannou, H. Xia, A. Fox, R. M. Norton, D. Chisnall, B. Davis, K.
Gudka, N. W. Filardo, A. T. Markettos, M. Roe, P. G. Neumann, R. N. M. Watson,
and S. W. Moore. 2019. CHERI Concentrate: Practical Compressed Capabilities.
IEEE Transactions on Computers (TC) 68, 10 (2019), 1455–1469.

[22] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in an Age
of Risk. In Proceedings of the 41st Annual International Symposium on Computer
Architecture (ISCA) (Minneapolis, Minnesota, USA). IEEE Press, Piscataway, NJ,
USA, 457–468.

[23] Hongyan Xia, JonathanWoodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael
Roe, Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon W. Moore,
Robert N. M. Watson, and Timothy M. Jones. 2019. CHERIvoke: Characterising
Pointer Revocation Using CHERI Capabilities for Temporal Memory Safety. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (Columbus, OH, USA). Association for Computing Machinery,
New York, NY, USA, 545–557.

[24] Shengjie Xu, Wei Huang, and D. Lie. 2021. In-fat pointer: hardware-assisted
tagged-pointer spatial memory safety defense with subobject granularity pro-
tection. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). Associa-
tion for Computing Machinery, New York, NY, USA, 224–240.

[25] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1109/ISSREW.2012.24
https://doi.org/10.1109/ISSREW.2012.24
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://doi.org/10.1109/ISCA52012.2021.00076
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/3466752.3480076
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/3352460.3358299
https://doi.org/10.1145/3352460.3358299
https://doi.org/10.1145/3466752.3480128
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://doi.org/10.1109/SP40000.2020.00098

	Abstract
	1 introduction
	2 Background
	2.1 Memory Safety
	2.2 Open-source RISC-V CPU Cores

	3 AOS-RISC-V
	3.1 ISA Extensions
	3.2 Memory Check Unit (MCU)
	3.3 Compiler Support
	3.4 OS Support

	4 Methodology
	5 Evaluation
	6 Discussion
	7 Future Work
	8 Conclusions
	References

