
Automating Generation and Maintenance of a High-Quality
Architectural Test Suite for RISC-V

S Pawan Kumar
pawan.kumar@incoresemi.com

InCore Semiconductors

Shrreya Singh
singh.shrreya@iitgn.ac.in

IIT Gandhinagar

Neel Gala
neelgala@incoresemi.com
InCore Semiconductors

Allen Baum
allen.baum@esperantotech.com

Esperanto Technologies

ABSTRACT
Considering the modularity of RISC-V, proving the compatibility
of implementations against the ISA has become critical to prevent
fragmentation and ensure its success. The test suite needed to
achieve this should cater to all legal enumerations of the ISA and
determine with high confidence, the ISA compatibility of the target.
This paper proposes open-source tools(RISCV-ISAC and RISCV-
CTG) which significantly automate building and maintenance of a
high quality and scalable test suite. RISCV-ISAC collects coverage
from execution logs and checks for data propagation to signature.
RISCV-CTG is a coverage driven test generator, which generates
minimal tests for maximum coverage with RISCV-ISAC.

KEYWORDS
Compliance Testing, RISC-V, Test Generators, Coverage

1 INTRODUCTION
RISC-V [7, 8], an ISA (Instruction Set Architecture) maintained by
a non-profit organisation, has gained rapid interest and adoption
globally by both academia and industry due to its open-source and
royalty-free nature. But, it faces the threat of fragmentation – the
existence of numerous significantly varying implementations of
the same ISA.

The success of RISC-V, therefore, lies in the fact that each of the
varied implementations are indeed compatible with the ISA. The
testing for compatibility of an implementation against an ISA spec-
ification is called Compliance Testing or as referred to in the RISC-V
community, Architectural Testing (AT). One should not confuse AT
with the classical definition of design verification (DV). AT deals
with verification of the details specified in the ISA specification; any
implementation specific details are ignored in this context. AT is
merely a tiny subset of DV and aims at validating that the designer
has correctly interpreted and implemented the ISA specification.
AT does not indicate that the implementation is bug free; DV is
required to make such a claim. Henceforth, for simplicity, we shall
use the term target to refer to an implementation or the design
under test (DUT) for which AT needs to be performed.

The RISC-V specification is incredibly permissive i.e it allows
the use of encodings from the reserved space, op-code space of
unimplemented extensions and any unreserved encodings to define
custom instructions. Due to this nature, AT should only test/verify
the parts of the specification which have been implemented (pos-
itive testing) as opposed to testing all possible behaviors. This is
one of the major differences between AT and DV.

Considering the numerous possible implementation choices of
the RISC-V spec, the task of building an architectural test suite is
imaginably daunting. The test suite should include tests to check all
possible legal enumerations and yet declare with high confidence
whether the target is ISA compatible or not. Some of the major
requirements and challenges associated with designing such a test
suite are:

(1) The tests must follow a standard format to maintain unifor-
mity and enable maintenance as the ISA specification grows
and the scope of testing increases.

(2) An ISA coverage specification format, which provides a stan-
dard way of indicating the quality of the tests present in the
suite and identifying possible holes or gaps in the tests.

(3) A coverage extraction tool is required to capture the actual
coverage of the tests based on the above mentioned specifi-
cation.

(4) As the spec and the testing scope grow, the task of writing
these tests manually will no longer be a viable choice. Thus,
an efficient, directed and accurate test generator is required
to generate the test cases.

Recently, the RISC-V Architectural Test SIG has released a Test
Format Specification [3] which provides a standard scheme and
macros for writing architectural tests, thereby addressing the first
requirement above. This specification introduces convenient assem-
bly macros like RVTEST_CASE and RVTEST_ISA which provide the
necessary infrastructure for selecting and filtering tests based on
the target specification. The spec further mandates that the tests be
signature based - i.e. each test must maintain a specific region of
memory called signature where various computational results and
other characteristic outputs of the test are stored. This signature
generated by the execution of a test on a target must match the
signature generated using an approved reference model, to declare
the test as PASS on the target. This approach is preferred over other
prevalent approaches in DV (like Formal or Lock-Step verification)
because, AT doesn’t verify the entire architectural state at all points
in the test. It is enough to test the changes to architectural state as
seen by the running software. This approach also lowers the effort
required to perform AT and is generic enough to cater to any target,
irrespective of implementation details and technologies used. The
spec also defines certain target specific macros (like boot-macros,
exit macros, interrupt-macros, etc) which are defined by the target
and seamlessly integrated with the tests. This ensures that the tests
can be run on any target, accounting for the non-ISA variability
that is allowed and the implementation specific behaviours, in the
context of AT.

S Pawan Kumar, Shrreya Singh, Neel Gala, and Allen Baum

In this paper, we introduce two different open-source tools which
address challenges 2 3, and 4 mentioned above:

• RISCV-ISAC: enables expressing ISA-level coverpoints in a
very intuitive format. It also provides a mechanism to check
if a test execution hits the necessary coverpoints without
depending on any licensed tools or modifications to the mod-
els. The tool also dumps a data-propagation report which
indicates if the test was faithfully executed as per expecta-
tions.

• RISCV-CTG: is an automated, CSP (Constraint Satisfaction
Problem) based test generator, with a focus on generating
minimal tests which can achieve maximum ISA coverage.

2 RISCV-ISAC

Figure 1: Tool flow for RISCV-ISAC

The primary factor to consider while building a test-suite for AT
is the quality of the tests. While it is crucial that each test assesses
a specific aspect of the ISA specification, it is equally important
to ensure that those aspects of the ISA were indeed covered by
executing the test on the target. Deriving concepts from the DV
world to address the above concern, one would attempt to create a
test-plan followed by defining a set of covergroups and coverpoints
whose coverage would provide a qualitative measure of the test-
suite. Classically, these coverpoints would typically be written in a
language like SV-UVM for a given RTL model. This poses two major
challenges : using SV-UVM would entail depending on commercial
simulators thereby, increasing the barrier of community contri-
butions. Secondly, the RTL model adopted must be configurable
to mimic all possible choices of the ISA - which is not feasible to
build and/or maintain by the community, especially when the ISA
continues to evolve and grow.

To address these issues, we propose RISCV-ISAC (RISC-V ISA
Coverage). ISAC is a pure-python tool that allows the user to define
ISA level coverpoints in a simple and intuitive format using archi-
tecturally known variables like rs1, rs2, rd, imm, rs1_val, rs2_val, etc.
We refer to this custom format as Cover-Group-Format (CGF) hence-
forth. An example and more details about the CGF are provided in
the next subsection.

Once the coverpoints are defined in CGF, we need a mechanism
to check which coverpoints are hit upon the execution of a partic-
ular test. To achieve this, we exploit the fact that simulators like
SAIL [5] and Spike [6] (which are treated as golden/pseudo-golden
models of the ISA) have the capability of generating an instruction
execution trace which captures all architectural state-changes oc-
curring due to an instruction execution. ISAC parses these logs at

an instruction granularity, checks for coverpoint hits in the CGF
and thereafter provides a coverage report of the test or test suite as
a whole. Figure-1 shows the tool flow adopted by ISAC.

2.1 CGF
The CGF is a dictionary (a collection of key-value pairs) where
each node is a collection of coverpoints called covergroup. Each
covergroup follows a template similar to the example defined in
Listing-1.

In Listing-1, add_cov is referred to as the covergroup label or
name. The config node represents a list of ISA configurations un-
der which the particular covergroup is applicable. The conditions
expressed in this list are usually checked against the target speci-
fication yaml expressed in the riscv-config [4] format. If none of
the conditions in the list evaluates to True, then the coverage node
is skipped during extraction by ISAC. This feature automatically
disables covergroups (and their reporting) for targets that do not im-
plement a particular option that the covergroup is aimed for. Thus,
a single CGF file can be shared across targets, avoiding duplication.

Listing 1: Example for covergroups in CGF
1add_cov :
2c on f i g : [check ISA := regex (. ∗ I . ∗)]
3opcode : { add : 0 }
4r s 1 : { x1 : 0 , x3 : 0 }
5r s 2 : { x2 : 0 , x4 : 0 }
6op_comb : { ' r s 1 == r s 2 != rd ' : 0 }
7val_comb :
8' r s 1 _ v a l > 0 and r s 2 _ v a l > 0 ' : 0
9' r s 1 _ v a l > 0 and r s 2 _ v a l < 0 ' : 0
10ab s t r a c t _ comb :
11' wa lk ing_ones (" r s 1 _ v a l " , 6 4) ' : 0
12' wa l k ing_ze ro s (" r s 1 _ v a l " , 6 4) ' : 0
13csr_comb : { ' mtva l == 0 xdeadbee f ' : 0 }
14c r o s s _ c o v e r a g e :
15# <> imp l i e s a l i s t i n the format
16# < i n s t −opcode > : : <var − a s s i gn > : : <va l − r u l e s >
17# ? imp l i e s don ' t c a r e
18' [(add) : (sw)] : : [a= rd : ?] : : [? : r s 2 ==a or r s 1 ==a] ' : 0

The opcode node indicates a dictionary of opcodes for which the
coverpoints in this covergroup are applicable. This allows the user
to merge coverpoints across multiple opcodes. The nodes rs1 and
rs2 contain coverpoints which expect the respective registers to be
observed in the rs1 and rs2 fields of the instruction at least once.
The same format can be used for defining coverpoints for the rd
field and other register fields of the instruction. Note the ": 0" at
the end of each coverpoint. This indicates the number of times the
coverpoint was hit during test execution. The initial CGF should
have these values set to 0.

The op_comb node defines coverpoints which indicate register
combinations of interest. Line-6 above shows the coverpoint where
the source operands are read from the same register while the
destination register is different.

Similarly, the coverpoints under val_comb indicate the register
value and immediate value based combinations. The coverpoints
expressed under these nodes are evaluated as python expressions in
ISAC. Each coverpoint must evaluate to a boolean value and can use
a number of different operators (boolean, arithmetic, etc) to express
the coverpoint accurately. For example, to check if the value in rs1

Automating Generation and Maintenance of a High-Quality Architectural Test Suite for RISC-V

register is an even positive integer we can use the following expres-
sion: ’𝑟𝑠1_𝑣𝑎𝑙 > 0 𝑎𝑛𝑑 𝑟𝑠1_𝑣𝑎𝑙%2 == 0’ . Coverpoints related to the
outcome of an instruction are currently handled by projecting them
onto the inputs or by expressing the mathematical equation of the
operation. For example, the coverpoint ’𝑟𝑒𝑠𝑢𝑙𝑡 == 3’ for the add
instruction can be expressed as ’𝑟𝑠1_𝑣𝑎𝑙 == 1 𝑎𝑛𝑑 𝑟𝑠2_𝑣𝑎𝑙 == 2’
or ’𝑟𝑠1_𝑣𝑎𝑙 + 𝑟𝑠2_𝑣𝑎𝑙 == 3’. Having the constraint directly on the
result of an operation would necessitate modelling it in software
and then establishing that it is also compliant with the ISA spec-
ification. This creates a circular dependency in the methodology.
Under the val_comb is the abstract_comb node, which is used to
express coverpoints in an abstract fashion using python functions.
These abstract functions are used to generate the low level cover-
points defined earlier, during the normalization phase at the start of
coverage collection. These abstract functions are defined internally
within ISAC’s library. For example, line-11 of Listing-1 describes
a walking_ones function which would unroll to 64 coverpoints for
rs1_val assigning all patterns of a 64-bit walking-one. This allows
users to define the CGF succinctly and also leverage python features
which can automate coverpoint generation to a vast extent.

The csr_comb node is used to describe the coverpoints for Control
and Status Registers(CSRs) defined as per the privileged specifica-
tion [8]. These coverpoints can be written similar to the ones in
val_comb node by using the respective names of CSRs to refer to
their values. CSRs, the architectural state of each hardware thread,
are sometimes omitted from the instruction trace. The accuracy of
coverage reporting for these types of coverpoints depends on the
presence and correctness of CSR value changes in the instruction
trace. In case a covergroup contains both : non-empty opcode and
csr_comb nodes , the coverpoints in the latter are checked for a hit
only if the instruction opcode has been executed, otherwise they
are updated for every instruction in the execution stream processed
by ISAC.

The cross_coverage node is used to define cross-coverpoints across
instructions in an arbitrarily large instruction window. Lines 15-
17 in Listing-1 depict the general format. Lists are indicated by :
separated elements. The length of all the lists in a coverpoint should
be equal to the size of the instructionwindow for the coverpoint. For
each element in the inst-opcode and val-rules lists, the corresponding
instruction in the window must match the opcode and satisfy the
condition in val-rules to be considered a hit. The statements in
the var-assign list are used to pass the values of instruction fields
downstream i.e the assignment is performed after checking and on
a match, using custom variables(like a in line 18). Line 18 depicts a
coverpoint corresponding to a Read-After-Write hazard between
an add and a subsequent sw instruction.

The coverpoints in CGF are maintained as a python dictionary,
hence duplicate coverpoints cannot exist. This is advantageous
when there are multiple abstract functions which may generate an
overlapping set of coverpoints.

2.2 Coverage Analyser
As mentioned earlier, ISAC extracts ISA coverage from the execu-
tion trace files generated by simulators like SAIL and Spike. ISAC
uses a plugin based architecture to support instruction execution
trace formats of different simulators. The plugin for each simulator
should include a file parser which can create a data stream on a

per-instruction execution basis which includes the following in-
formation: pc of the instruction, instruction encoding in hex, and
any architectural state changes that may have occurred due to exe-
cution of that instruction. This data stream is passed to a decoder
plugin which decodes the instruction to obtain all the necessary
information about the fields in the instruction. This decoded data
stream is used by the ISAC’s coverage analyser utility to measure
the coverage of the test.

The coverage analyser utility maintains a minimal architectural
state internally, which includes integer and floating register files
and CSRs. These states are updated each time an instruction that
causes any architectural change is observed. This architectural state
is also used to assign values to the *_val variables of the val_comb
coverpoints, thus enabling value-based coverpoint support. ISAC
takes care of converting the data stored in the architectural registers
to appropriate types (signed, unsigned, float, etc) before evaluating
the coverpoints. The instruction stream is also captured in a queue
whose size is provided at run-time via the CLI (Command Line In-
terface). The instruction window for cross-coverpoint evaluations
starts at the head of this queue and the length of the window de-
pends on the requirements of the coverpoint. Hence all coverpoints
should span over instruction windows less than or equal to the
size of the queue. Since the coverpoints are expressed as boolean
expressions, ISAC uses the default eval() function offered by python,
to evaluate each coverpoint. An expression evaluating to True is
considered a hit for that coverpoint.

2.3 Data Propagation
ISAC also generates a data propagation report (DPR) from an ex-
ecution trace file. This report is particularly useful for signature
based tests (as employed by the RISC-V AT), where one would like
additional guarantees that the result of certain operations have a
direct correlation to the contents in the signature regions. Thus,
this report includes the following statistics:

(1) number of instructions that hit unique coverpoints
(2) number of coverpoints hit by multiple instructions
(3) number of signature/memory region overwrites
(4) number of updates to multiple memory regions with the

result of a single instruction
(5) number of coverpoint hits without update to signature/mem-

ory region
The DPR, ultimately determines if the test meets the expectation
and if there are scopes of optimizing it.

3 RISCV-CTG

Figure 2: Tool flow for RISCV-CTG

With the help of ISAC’s CGF format, one can very easily and
accurately define the expectations of each test included in the AT
suite. Thus, what is required now are assembly tests which can

S Pawan Kumar, Shrreya Singh, Neel Gala, and Allen Baum

meet all the coverpoints defined in the CGF. We propose RISCV-
CTG (RISC-V Coverage Driven Test Generator) to address this
requirement. It is a python based tool which takes the CGF file as
input, with an elementary goal of generating minimal assembly
tests which canmeet as many of the coverpoints as possible, thereby
producing a high quality test for AT. Figure- 2 shows the tool flow
adopted by CTG.

3.1 Generating Solutions for Coverpoints
Once the CTG receives a CGF file, it iterates over each coverpoint
to find an appropriate solution. Each coverpoint is effectively a set
of values assigned to the opcode and its associated variables (rs1,
rs1_val, rd, etc.). Therefore, CTG maintains a finite sized domain
(finite list of possible values) for the associated variables. Note, a test
developer can further constraint or expand the size of this domain
as per requirements of the test. The objective, however, is to obtain a
solution from the associated domains of the variables which leads to
the evaluation of the coverpoint to be true (recall from the previous
section, that coverpoints are defined as boolean expressions in CGF).
CTGmodels this as a classical Constraint Satisfaction Problem (CSP)
over finite domains, and uses the constraint solver from [1] to obtain
the appropriate values for the variables. Once a solution to a single
coverpoint is found, CTG checks if the same solution satisfies any
of other pending coverpoints. All such coverpoints are disregarded
in further iterations. This methodology allows CTG to generate a
smaller subset of solutions which can satisfy as many coverpoints as
possible, thereby reducing the final test size. This process is repeated
for the next unsatisfied coverpoint in the CGF. The solutions for
the register names and the values of the operands are solved for
independent of each other i.e the register operand nodes(𝑟𝑠1, 𝑟𝑠2 etc)
and the 𝑜𝑝_𝑐𝑜𝑚𝑏 node are solved for independent of the 𝑣𝑎𝑙_𝑐𝑜𝑚𝑏

node. The output of this stage is two lists of tuples, where each
tuple includes the values assigned to the variables(register name or
value).

The speed of the constraint solver depends on the size of the do-
mains. Larger domains lead to longer times for obtaining a solution.
Thus in CTG, it is necessary to restrict the domain size of the vari-
ables to a small subset to have realistic execution times. To achieve
this, we ensure that the domains of the variables include a range of
general values and other specific values which represent patterns
of interest. To further improve execution time, CTG also provides a
choice in the algorithm to use for solving the CSP - Min-Conflict
or Backtracking. The Min-Conflict algorithm picks a random set of
values (from the domains) as the starting point and heuristically
finds a solution. This results in an increase in execution time as
compared to backtracking and a variation in the size of the tests
generated. Experimental results show that the difference is very
low and can be ignored for all practical purposes.

It is possible that the CTG encounters an illegal or faulty cov-
erpoint, such as ’rs1_val <0 and rs1_val >0’. In such a case, the
python-constraint solver is not able to find a solution and CTG sim-
ply skips the coverpoint with a warning indicating that a solution
could not be found for this coverpoint.

Under special circumstances, a coverpoint may express a com-
plete solution in itself. For eg. ’rs1_val == 2 and rs2_val == 5’. In

such cases the coverpoint is expected to be post-fixed with a spe-
cial string "#nosat" which is recognised by CTG and the solution
is extracted from the coverpoint itself rather than employing the
constraint solver. This reduces the effort and time spent by the
solver. This feature is particularly useful when the domain size of
the variables are quite large (like floating point operands) or when
the values of all the variables is fixed and known.

3.2 Test Generation
Once all the solutions are generated, multiple solution tuples from
the two lists are merged together to provide a single test instance
object which contains all the necessary fields. Any missing fields
are assigned default values which are guaranteed to not interfere
with the intent of the test. This is used to minimise the size of a test
without compromising test quality. The assembly tests generated by
CTG are always compliant with the Test Format Spec [3]. As per the
spec, the output of each test-case must propagate to a unique region
of memory denoted as the signature. Thus, once CTG completes
evaluation of all coverpoints within a covergroup, it also assigns
a signature pointer register (which is not being used by the other
register fields) to each object.

In order to generate the assembly tests, CTGmaintains a database
of assembly macros. These macros are responsible for resource
initialisation (using inline assembly pseudo instruction li or load
values from memory) and other necessary elements to test the
particular opcode. Hence CTG is impervious to any optimisations
in this regard. For eg, to test an add operation, the macro would
first initialize the 2 registers with the required values, perform the
add operation and then store the result in the region using the
signature pointer. These macros have parameterized arguments
which match the values in the cover object. For each test instance
object generated, CTG will simply replace the arguments of the
macro with the relevant values from the solution and create an
instance of the macro in the output assembly file.

Listing-2 shows the pseudo-code of a macro for an instruction
with 2 register operands. This macro uses an in-lined pseudo-
instruction li to initialize the source registers with their respective
values. An instance of the macro for the add instruction is shown
on line 7.

Listing 2: Assembly Macro pseudo-code
1# d e f i n e RR_OP (op , rd , r s1 , r s2 , v1 , v2 , p t r , o f f s e t) \
2l i r s1 , v1 ; \
3l i r s2 , v2 ; \
4op rd , r s1 , r s 2 ; \
5sw rd , o f f s e t (p t r) ;
6/ / I n s t a n c e o f the macro in an add t e s t
7RR_OP (add , x2 , x1 , x2 , 0 x03 , 0 x2 , x3 , 0)

CTG, as of today, supports creating a test for all formats of cov-
erpoints defined in the CGF, except for the csr and cross-coverage
based coverpoints, both of which are a work-in-progress.

4 EXPERIMENTAL RESULTS
All experiments in this section were performed on a system with
an Intel i7-8750H processor and 16GB of memory. The tools used
are RISCV-CTG (v0.5.3), RISCV-ISAC (v0.7.3), RISCV-CONFIG [4]
(v2.10.0), RISCV-ISA-SIM [6] (Commit id a31184c) and SAIL RISCV
Model [5] (Commit id f66d0fb). All the proposed tools have been

Automating Generation and Maintenance of a High-Quality Architectural Test Suite for RISC-V

Table 1: Experimental Results

Coverpoints
(LOC)

CGF
Normalization

Time(s)

Generation
Time(s)

Average Generation
time per test(s)

Test Cases
generated

Coverage Collection
Time (s)Suite

(ISA) Cfg1 Cfg2 Cfg3 Cfg4 Cfg1 Cfg2 Cfg1 Cfg2 Cfg1 Cfg2

RV32I 16068 (1285) 7.91 293.56 87.87 2005.40 528.52 39.32 10.36 12638 13150 189.07 227.43
RV32M 6302 (524) 3.43 136.24 35.536 751.70 199.94 93.96 24.99 5165 5386 59.21 65.90
RV32C 5431 (833) 2.56 80.13 23.80 549.61 113.37 21.14 4.36 4633 4822 49.07 99.43
RV64I 23052 (1576) 11.65 864.29 215.88 4395.42 1298.43 66.60 19.67 17825 19113 348.82 292.70
RV64M 11884 (619) 7.17 575.89 128.55 3121.25 822.27 240.10 63.25 9571 10393 121.23 112.92
RV64C 9219 (942) 4.61 319.96 84.24 2280.61 338.60 71.27 10.58 7843 8409 116.42 136.44

Table 2: Comparison of Existing Tests with CTG generated
tests.

Suite
(ISA)

Coverage of Tests ImprovementExisting CTG Generated
RV32I 3308 [20.59%] 16068 [100%] 79.41%
RV32M 735 [11.66%] 6302 [100%] 88.34%
RV32C 481 [8.86%] 5431 [100%] 91.14%
RV64I 724 [3.24%] 23052 [100%] 96.86%
RV64M 0 [0%] 11884 [100%] 100%
RV64C 0 [0%] 9219 [100%] 100%

implemented in python-3.6 and released as open source software
under the BSD 3-clause license.

Within the scope of this paper, coverpoints and tests for the
base(I), compressed(C) and multiply(M) extensions for both the
64 and 32 bit versions of RISC-V ISA have been generated. These
coverpoints only cover the register combinations, different corner
cases depending on the operation and misaligned effective/target
address exceptions. Negative testing(testing for illegal instructions)
is not considered, in conjunction to AT requirements. The number of
coverpoints for each test-suite generated are captured in Column-
2 of Table-1. These coverpoints were expressed using the CGF
format described in section-2.1. Column-2 of Table-1 also shows the
number of lines(LOC) required to specify each CGF using abstract
python functions, indicating a 10× reduction in size. Column-3 of
Table-1 indicates the amount of time taken (in seconds) by ISAC
to normalize a CGF containing abstract coverpoints of a suite to a
CGF which contains only low level coverpoints.

The coverpoints defined above are fed to CTG to generate the
required set of tests. The CTG however, has two different configu-
ration parameters namely:

• The number of parallel processes to spawn during generation.
Each process generates a test corresponding to a single node
in the CGF.

• Using either the Min-Conflict Algorithm or the Backtracking
Algorithm for solving CSPs.

Due to space limitations, we provide and compare results for the
following configurations of CTG

• Cfg1: Eight processes using the Min-Conflict algorithm
• Cfg2: Eight processes using the Backtracking algorithm
• Cfg3: Single process using the Min-Conflict algorithm

• Cfg4: Single process using the Backtracking algorithm

The amount of time to generate tests for each suite for the above
combinations is captured in columns 4 to 7 of Table-1. We ob-
serve that the generation time is always higher when using the
Min-Conflict algorithm due to its heuristic nature(the algorithm
terminates only after a fixed number of iterations and not oppor-
tunistically). Comparing columns 4,6 and 5,7 of the same table, we
see that by using eight parallel processes we get 3× to 4× speed
up. Columns 8 and 9 of Table 1 similarly capture the average time
taken to generate a single test of each suite. The ’M’ extension
show higher average time per test because all the instructions in
the M-extension are 2 operand instructions with significantly large
domains. Though similar instructions exist in the base extension,
their impact is offset by the presence of other instructions with
smaller domains and fewer operands.

Columns 10 and 11 of Table-1 show that the number of test-cases
required to meet all the coverpoints of the respective input CGF is
lower when using the Min-Conflict algorithm as compared to the
Backtracking algorithm. This outcome is a side-effect of the inher-
ent randomness and heuristic approach adopted in the Min-Conflict
algorithm. Using a random starting point provides a solution which
is more likely to satisfy multiple unsolved coverpoints as opposed
to choosing the first possible solution due to the nature of cover-
points in the covergroups. As the number of test-cases increases,
the number of instructions in the execution trace also increases,
thereby increasing the time taken by ISAC to collect coverage for a
suite. This observation is clear from Columns 12 and 13 of Table-1.

The generated tests were then executed on the SAIL [5] and
spike [6] models; the signatures generated were compared against
each other to prove compatibility. The coverage for the tests were
then measured using ISAC based on the CGFs defined initially and
the execution trace generated by SAIL. These tests were used to
update the official Architectural Test Suite of RISC-V. Table-2 cap-
tures the improvement in coverage achieved by the CTG generated
tests as compared to the existing tests on the RISC-V architectural
test-suite repository.

Bugs Found using proposed AT: During testing it was found that
on the SAIL [5] model compressed hint instructions raised an illegal
instruction exception due to a decode error, resulting in a signature
mismatch. The bug was reported and subsequently fixed in the
model.

The behaviour of themtval CSR on an ebreak instruction was am-
biguous in the ISA specification which resulted in both (Spike and

S Pawan Kumar, Shrreya Singh, Neel Gala, and Allen Baum

SAIL) the models implementing different behaviours. The spike [6]
model updated the mtval register with a value of 0 whereas the
SAIL [5] model left the register unmodified i.e. to a previous written
value. This ambiguity was reported and resolved to indicate that
the address(virtual) of the faulting instruction should be used to
update the register in the event of a breakpoint exception. The
models were also subsequently fixed to reflect this behaviour.

5 RELATEDWORK
Architectural Testing for RISC-V has only recently gained traction
with a handful of research papers [11–13] specifically addressing
this problem. Authors of [13] use a similar approach to that of CTG,
to generate the tests using a SMT solver. However, the format of
specification of constraints is complex and the coverage calcula-
tion is based on the coverage reported by grift [2]. The coverage
metric defined by grift is quite rudimentary and insufficient for a
qualitative architectural compatibility testing. The CGF coverpoint
specification format proposed in this paper allows defining more
complex coverpoints which are clearly a super-set of those defined
by grift. Moreover, the proposed tools in this paper use the cov-
erpoints for coverage as constraints for test-generation, thereby
reducing the maintenance and synchronization overheads.

The mutation based approach used in [12] is effective in identi-
fying gaps in a previous version of the test suite for the base ISA
hosted at [3] v1.0(commit id 2636302). However, the RISC-V ISA is
an evolving specification with myriad extensions. Modifying the
instruction set simulator(ISS) for producing tests and expressing
mutants in the source code of the ISS is a skill intensive and a time
consuming task. Comparatively, the ISAC and CTG offer a very
low barrier on skills and use intuitive methodologies to achieve
higher quality tests for AT. Furthermore, the nine mutations ex-
pressed in [12] can quite conveniently be expressed in the proposed
CGF format and the CTG can generate the required tests, such that
the mutations are killed without the overheads of long simulation
times.

The negative testing approach of [11] aims to complement the
compatibility testing by ensuring that no functionality other than
the ones defined by the specification are present in the implementa-
tion. However, this kind of an approach is infeasible for AT due to
the permissive nature of RISC-V. The behaviour of any instruction
in the unimplemented encoding space is unknown and cannot be
accounted for in the tests.

The methodologies proposed in [11, 12] also rely on an ISS to
drive the test generation and measure coverage. However, both
the works have used a custom ISS which is not a community ap-
proved/adopted golden model. This leads to overheads of proving
compatibility of the custom ISS to the RISC-V ISA. More impor-
tantly, certain golden simulators are written in domain specific
languages (like SAIL) which may not be amenable to support muta-
tion like syntax. Additionally, in-lining the mutation code within
the ISS will impair the readability of the model, thereby further
affecting its adoption and maintenance. The work proposed in this
paper does not expect any modifications to existing simulators and
neither adds a new simulator to the mix.

The authors of [9] describe a rather basic coveragemetric namely:
register and instruction coverage. The metric merely tests whether

the test suite contains all instructions specified by the ISA. The
authors measure the number of register (GPR) accesses in the entire
test suite. This metric in itself is vague and insufficient for archi-
tectural testing. The proposed CGF format supports expression of
much fine grained coverpoints (including cross products across
instructions and dependency hazards) as compared to those defined
in [9].

The authors would like to point out that, none of the existing
works in literature test whether the test cases actually influence
the signature in the intended way. This is necessary in signature
based tests like the ones employed in RISC-V AT. Consider a test-
case which is intended to find a fault in the target for a certain
opcode. If the test does not propagate the appropriate result to
the signature region or the target stores a different value in the
signature instead, it can lead to a signature match, thereby causing
a false positive (where a faulty target is declared ISA compatible).
The Data Propagation Reports generated by ISAC help provide
confidence in the test by looking for proof of propagation of the
results to the signature.

6 CONCLUSION AND FUTUREWORK
In this paper we proposed two tools which help generate and main-
tain test suites for RISC-V Architectural Testing. We have generated
and released tests for the RV64IMC and RV32IMC configurations.
The bugs found out in reference models during the process were
reported to the maintainers and fixed subsequently. The tools pro-
posed in this paper are being actively adopted by the community
to support the upcoming extensions of the ISA like the floating
point, bit manipulation and packed SIMD. Future work in these
tools includes exploring generation of tests and coverpoints for the
privileged architecture and tests for various micro-architectural
hazards. The coverage collection time in ISAC can also be reduced
by considering a boolean hit/miss for each coverpoint instead of
counting the number of hits.

REFERENCES
[1] 2021. Constraint Solving Problem resolver for Python. https://github.com/

python-constraint/python-constraint
[2] 2021. Galois RISC-V ISA Formal Tools. https://github.com/GaloisInc/grift
[3] 2021. RISC-V Architectural Tests. https://github.com/riscv/riscv-arch-test
[4] 2021. RISCV-CONFIG: RISC-V Configuration Validator. https://github.com/

riscv/riscv-config
[5] 2021. Sail RISC-V model. https://github.com/rems-project/sail-riscv
[6] 2021. Spike, a RISC-V ISA Simulator. https://github.com/riscv/riscv-isa-sim
[7] 2021. Volume 1, Unprivileged Spec v.20191213. https://github.com/riscv/riscv-

isa-manual/
[8] 2021. Volume 2, Privileged Spec v.20190608. https://github.com/riscv/riscv-isa-

manual
[9] Peer Adelt et al. 2021. Register and Instruction Coverage Analysis for Different

RISC-V ISA Modules. In MBMV 2021; 24th Workshop. 1–8.
[10] Vladimir Herdt et al. 2020. Adaptive Simulation with Virtual Prototypes for

RISC-V: Switching Between Fast and Accurate at Runtime. In 2020 IEEE 38th
ICCD. IEEE, Hartford, CT, USA. https://doi.org/10.1109/ICCD50377.2020.00059

[11] Vladimir Herdt et al. 2020. Closing the RISC-V Compliance Gap: Looking from
the Negative Testing Side * . In 2020 57th ACM/IEEE DAC. https://doi.org/10.1109/
DAC18072.2020.9218629

[12] Vladimir Herdt et al. 2021. Mutation-based Compliance Testing for RISC-V. In
Proceedings of the 26th ASPDAC Conference. ACM, Tokyo Japan. https://doi.org/
10.1145/3394885.3431584

[13] Vladimir Herdt, Daniel Große, and Rolf Drechsler. 2020. Towards Specification
and Testing of RISC-V ISA Compliance*. In 2020 DATE. 995–998. https://doi.org/
10.23919/DATE48585.2020.9116193

https://github.com/python-constraint/python-constraint
https://github.com/python-constraint/python-constraint
https://github.com/GaloisInc/grift
https://github.com/riscv/riscv-arch-test
https://github.com/riscv/riscv-config
https://github.com/riscv/riscv-config
https://github.com/rems-project/sail-riscv
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-manual/
https://github.com/riscv/riscv-isa-manual/
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://doi.org/10.1109/ICCD50377.2020.00059
https://doi.org/10.1109/DAC18072.2020.9218629
https://doi.org/10.1109/DAC18072.2020.9218629
https://doi.org/10.1145/3394885.3431584
https://doi.org/10.1145/3394885.3431584
https://doi.org/10.23919/DATE48585.2020.9116193
https://doi.org/10.23919/DATE48585.2020.9116193

	Abstract
	1 Introduction
	2 RISCV-ISAC
	2.1 CGF
	2.2 Coverage Analyser
	2.3 Data Propagation

	3 RISCV-CTG
	3.1 Generating Solutions for Coverpoints
	3.2 Test Generation

	4 Experimental Results
	5 Related Work
	6 conclusion and Future Work
	References

