The Case for Using Guix to Enable
Reproducible RISC-V Software & Hardware

Christopher Batten!, Pjotr Prins?, Efraim Flashner?, Arun Isaac?
Jan Nieuwenhuizen®, Ekaitz Zarraga4, Tuan Ta!, Austin Rovinski!, Erik Garrison?®

1 School of Electrical and Computer Engineering, Cornell University, Ithaca, NY
2 The University of Tennessee Health Science Center, Memphis, TN
3 Joy of Source, The Netherlands, * ElenQ Technology, Spain

ABSTRACT

Reproducible research is a serious challenge in the field of computer
architecture. RISC-V can potentially help improve reproducibility
through the use of a standard, open instruction-set architecture
along with open-source RISC-V software stacks and open-source
RISC-V hardware models. But the diversity of the RISC-V ecosystem
can raise new issues complicating reproducible computer architec-
ture research. In this paper, we present our on-going work to use
the Guix package management system to help enable reproducible
RISC-V software and hardware. We describe our recent work on
porting RISC-V software stacks to Guix including bootstrapping
through GNU Mes and integrating modern C++ cross compilers
with RISC-V support. We also describe our recent work packaging
RISC-V hardware models in Guix including the Spike functional-
level model, gem5 cycle-level model, and Ariane RTL model. Finally,
we present a case study that illustrates a simple, reproducible ex-
periment to cross-compile a Smith-Waterman sequence alignment
workload for RISC-V and then run this workload on Spike, gem5,
and Ariane.

1 INTRODUCTION

The field of computer architecture has a research reproducibility
problem [3]. A specific computer architecture research project can
require complex software stacks including compilers, runtimes, and
workloads running on complex hardware models each targeting
different system components (i.e., processors, networks, memory
systems), abstraction levels (i.e., functional-, cycle-, or register-
transfer-level), and/or metrics (i.e., execution time, area, energy).
Different projects often use different hardware models and are
often based on different instruction set architectures (ISAs) with
bespoke ISA extensions. Software stacks and/or hardware models
might be widely used over decades or specially designed for a single
research project. Software stacks and/or hardware models can use
different abstractions and/or programming languages, complicating
their integration. Software stacks, hardware models, and/or ISAs
might be proprietary or closed-source. It is no wonder that artifact
evaluation still struggles to gain traction in computer architecture
conferences [4].

The growing adoption of RISC-V within the computer architec-
ture research community can help improve reproducibility through
the use of a standard, open ISA along with open-source RISC-V soft-
ware stacks and open-source RISC-V hardware models. However,
one of the key strengths of RISC-V is its ability to support a diverse
set of standard ISA variants in addition to bespoke instruction set

extensions, and this strength can also lead to a combinatorial explo-
sion of customized software stacks combined with hardware model
options. Targeting the RV32I, RV32E, or RV64I standard base ISAs
along with the M, A, F, D, Q, C standard extensions results in over
150 possible distinct ISAs not to mention the emerging L, V, B, T,
and P extensions along with every research group’s own bespoke
extensions. We believe that the software and hardware package
management system is critical to managing this diversity and thus
enabling reproducible RISC-V software and hardware.

The RISC-V Software Packaging Problem - Building RISC-V
software stacks can be challenging since native compilation on
RISC-V platforms is not widely available. RISC-V stacks usually
must be cross-compiled meaning researchers must build a com-
plete cross-compilation tool-chain for each target architecture. Re-
searchers might also need to build an emulator (e.g., QEMU) to test
these workloads before moving to a hardware model. Researchers
might need to ensure the workloads only use static libraries and
do not call any unsupported syscalls for bare metal execution. All
of these issues are complicated by the diversity in the RISC-V ISA.
Completely different cross compilers, compiler libraries, compiler
optimizations, and/or compiler back-ends can be required for each
ISA variant. This means building RISC-V software has complex
build-time dependencies on the compilation tool-flow. Given these
challenges, it is not surprising that the RISC-V community has set-
tled on a single RISC-V ISA variant (i.e., RV64GC) as the “standard”
for RISC-V software packaging across all major Linux distributions,
and then these Linux distributions are often used when building
containers for reproducible RISC-V software.

The RISC-V Hardware Packaging Problem - Building RISC-V
hardware models for simulation and eventual FPGA or ASIC imple-
mentation can be just as challenging as packaging RISC-V software
stacks. For example, the gem5 simulator [2] is a complex piece
of software with numerous build- and run-time dependencies in-
cluding a modern C++ compiler, SCons, Boost, and Python. The
gemb5 simulator has numerous compile-time options to experiment
with different ISAs, coherence protocols, and/or accelerators. As
another example, hardware RTL models for RISC-V processors of-
ten use complex RTL generators, and the actual process of building
hardware RTL for simulation is far less standardized than building
software. The specific subset of RTL supported by open-source sim-
ulators is constantly changing creating fragile build-dependencies
on open-source simulation frameworks such as Verilator and Icarus
Verilog, and then of course these simulation frameworks have their
own build-time dependencies on native compiler tool-chains. All of
these issues are again complicated by the diversity in the RISC-V

C. Batten, P. Prins, E. Flashner, A. Isaac, J. van Nieuwenhuizen, E. Zarraga, T. Ta, A. Rovinski, E. Garrison

ISA. A different hardware RTL configuration or even an alternative
implementation is required for each RISC-V ISA variant. Given
these challenges, it is again, not surprising that the RISC-V com-
munity has settled on a single RISC-V ISA variant (i.e., RV64GC) as
the “standard” for Linux-cable RISC-V cores [1, 8, 10], and usually
provide detailed step-by-step manual installation instructions that
try to capture all of the build- and run-time dependencies.
Current solutions to the RISC-V software and hardware pack-
aging problem essentially undermine one of the key strengths of
RISC-V which is its ability to facilitate transformative computer
architecture research through the use of diverse ISA extensions.
An ideal RISC-V software and hardware packaging solution could
potentially enable reproducible RISC-V research while at the same
time maintaining the diversity of the RISC-V software and hardware
ecosystem. Such an ideal packaging solution would be:

« Transparent - enable researchers to understand the entire devel-
opment environment for RISC-V software stacks and hardware
models including the exact source code and build configuration
for every dependency.

+ Lightweight — enable researchers to easily integrate RISC-V
software stacks and hardware models into standard development
environments and workflows without requiring cumbersome,
heavyweight binary containers.

« Flexible — enable researchers to easily switch between different
development environments to experiment with new version of
RISC-V software stacks, hardware models, and/or dependencies.

« Isolated — enable researchers to easily isolate the entire devel-
opment environment to prevent accidentally “leaking” a user’s
environment into an experiment and to enable creating binary
containers when necessary.

« Portable - enable researchers to easily build software stacks for
both native execution on traditional ISAs and RISC-V variants
and also easily enable cross compilation for RISC-V.

« Fast — enable researchers to easily use precompiled binary pack-
ages when one can prove the resulting package is bit-exact to
what would be produced when recompiling from source.

+ Distribution Agnostic — enable researchers to use the Linux
distribution of their choice.

« Extensible — enable researchers to extend the package man-
agement system by modifying existing packages, adding new
packages, or implementing new functionality using a general-
purpose programming language.

This paper makes the case for using Guix to enable reproducible
RISC-V software and hardware. Guix is a mature functional cross-
platform package manager that is transparent, lightweight, flexible,
isolated, portable, fast, distribution agnostic, and extensible. Sec-
tion 2 provides a brief description of the Guix package manager.
Section 3 describes our on-going efforts to port RISC-V software
stacks to Guix including bootstrapping through GNU Mes and in-
tegrating modern C++ cross compilers with RISC-V support, and
Section 4 describes our on-going efforts to package RISC-V hard-
ware models in Guix including the Spike functional-level model,
gemb5 cycle-level model, and Ariane RTL model. Section 5 describes

a case study that illustrates how our efforts enable: (1) easily in-
stalling QEMU, Spike, gem5, and Ariane; (2) easily cross compiling a
bioinformatics workload for RISC-V; and (3) running this workload
on all hardware models. Section 6 discusses related software and
hardware package management systems. Our goal is to introduce
the RISC-V computer architecture community to the Guix package
manager and hopefully spark interest in contributing to our efforts
to enable reproducible RISC-V software and hardware.

2 GUIX BACKGROUND

GNU Guix is a “functional” package management tool. Even though
it is used to distribute the GNU software system it can also be used
on its own on top of any common Linux distribution, including
Debian and CentOS. In fact Debian and derived distributions have
apt-get install guix.Guix makes it easy for unprivileged users
to install, upgrade, or remove software packages, to roll back to a
previous package set, to build packages from source, and generally
assists with the creation and maintenance of software environments.
Some features are transactional installs, reproducible software de-
ployment, and lightweight containers. Each on its own deserves
proper inspection, but here we are focused on easy RISC-V cross
compilation and RISC-V emulation.

There is a plethora of package management and software deploy-
ment frameworks. Distributions have their own package managers,
including dpkg and rpm. Even so, many modern computer languages
include their own package manger including JVM jar, Javascript
npm, Python pip, Ruby gems, and Rust cargo. The use of these
package managers, however, breaks down when having to deal
with multiple languages and complex ecosystems. Other high-level
packagers including conda, brew, and spack try to address such
concerns, but fall short in reproducibility and depend on the under-
lying distribution to “bootstrap” the build process. Also, similar to
the main distros, they do not escape dependency “hell” and have no
uniform way of managing mixed software versions (i.e., requiring
an older version of a library). GNU Guix and its sibling Nix, side-
step many of the issues and provide next-generation reproducible
package management for everyone.

GNU Guix is especially suitable for bootstrapping, cross compi-
lation and emulating different architectures in a reproducible way.
What does “reproducible” really mean? It means that when one
researcher builds a software stack or hardware model with all its
dependencies on one system, another person can regenerate the
same binary dependency “graph” faithfully on another system. It
also means researchers can share binaries (“substitutes” in Guix ter-
minology) over the network and trust they are bit-exact compared
to the binaries built from source. Because Guix installs software
under a hash value, all packages are isolated. So if Apache is built
with SSL 1.1.1 and another with SSL 1.0.3, they can both co-exist
on one system and even run at the same time. Likewise, on a Guix
system we can cross-compile packages to different architectures,
both dynamically and statically linked, and thanks to Linux binfmt
support we run them transparently on QEMU in emulation on one
single system. GNU Guix is not a small software distribution. At last
count there are over 20K packages including 1800 Python packages
and over 1900 R packages. In March 2022, over 70 people committed
changes to the Guix package tree with 800 git commits.

The Case for Using Guix to Enable Reproducible RISC-V Software & Hardware

3 GUIX FOR PACKAGING
RISC-V SOFTWARE STACKS

In this section, we describe our on-going efforts to port RISC-V
software stacks to Guix including bootstrapping through GNU Mes
and integrating modern C++ cross compilers with RISC-V support.
Bootstrapping software for novel architectures is a challenge. Typi-
cal software distributions, such as Debian, use a single binary ’blob’
that is larger than 250Mb. It takes a lot of know how and it is
non-trivial to bring such bootstraps to new platforms.

The GNU Mes project aims to bootstrap from, so called, Stage0
to a C compiler capable of compiling GCC, with only the explicit
requirement of a single 1 KB binary or less. Today GNU Guix for
AMD64 and ARM64 bootstraps from this tiny binary Stage0 starting
point! GNU Mes provides the TinyCC C compiler written in a simple
Scheme interpreter consisting of about 5,000 lines of C. With these,
GNU Mes now supports a full open source self-hosted bootstrap that
compiles GCC 4.6.4. Through GNU Mes, the GNU Guix operating
system is successfully bootstrapped from source on a regular basis
on the GNU Guix build farms.

The next phase is to complete bootstrapping of RISC-V targets
with GNU Mes. The GNU Compiler Collection (GCC) added support
for RISC-V with version 7.5, making migration of RISC-V software
possible. To close the bootstrapping gap the NLNet-funded GNU
Mes-RISCV project is back-porting the RISC-V support to the GCC
4.6.4 C compiler, a version that is able to compile C++ and, thus,
GCC 7.5 and on-wards. This effort in combination with a port of
the GNU Mes to RISC-V, will provide a full bootstrap system for
RISC-V machines. So far, the core of RISC-V has been back-ported
from GCC 7.5 into GCC 4.6.4. The latter therefore cross-compiles
to RISC-V, and some simple programs compile to assembler. More
work is required to support associated libraries, specifically 1ibgcc
for some complex operations and, perhaps, libatomic. Once these
are migrated, testing will be easier and we will aim to build GCC
7.5 using the back-ported compiler.

Next we will continue with porting TinyCC to RISC-V so that
it can compile GCC 4.6.4 directly for RISC-V. Once the GNU Mes
RISC-V bootstrap is functional it means that bootstrapping any
RISC-V target (including exotic research RISC-V variants!) should
become fairly trivial by adapting Stage0.

Another NLNet-funded project is porting GNU Guix packages to
RISC-V. The following software is working as Guix installable soft-
ware for RISC-V: the GNU stack, including gcc, gfortran and gecgo;
mesa graphics; clang, ruby and R. Java support will be patched in
with icedtea-2 (java 7). There is no Rust for RISC-V yet, but that’s a
particular focus of the NLNet grant and it targeted for the coming
year.

By getting a GNU Mes bootstrap and GNU Guix packages ported
to RISC-V we are creating a full software deployment ecosystem
that can be used by anyone on any RISC-V platform. In the near fu-
ture the build farms for the GNU Guix project will have have RISC-V
RV64GC machines. That will allow distribution of binary substi-
tutes. There is also the option of creating substitutes using QEMU
emulation. Currently, GNU Guix provides packages for POWERPC
64le using QEMU emulation. Note that, because of its reproducible
packaging, anyone can distribute binaries, and we are sharing com-
piled binaries between our own machines.

4 GUIX FOR PACKAGING
RISC-V HARDWARE MODELS

In this section, we describe our on-going efforts to port RISC-V hard-
ware models to Guix including the Spike functional-level model,
gemb5 cycle-level model [2], and Ariane RTL model [10].

We have developed a Guix package for the Spike RISC-V functional-
level hardware model which is now upstreamed to the main Guix
package repository!. The package describes how to reproducibly
download Spike 1.1.0 and build it from source using the standard
GNU build system. The package describes a key dependency on the
device tree compiler package (dtc) which was already packaged in
Guix. The package also describes how to patch the build process to
ensure that when building Spike it will refer to the version of dtc
installed in the Guix store as opposed to any other version installed
on the host system. Finally, the package captures a build-time de-
pendency on Python which is required for some of the unit tests.
Since this package is in the main Guix package repository, precom-
piled binaries are available through the Guix build farm enabling
fast installation. The package is guaranteed to always produce the
same bit-exact install on any machine.

We have developed a proof-of-concept Guix package for the
gem5 RISC-V cycle-level hardware model that handles all build- and
run-time dependencies and installation®. There is a base package
that builds gem5 for six ISAs and a derived package that only builds
gemb5 for RISC-V to reduce build time and space usage. The package
ensures builds are reproducible by eliminating non-deterministic
use of __DATE__ and __TIME__, patches the build environment to
work with SCons, and performs a well-structured install of the
gemb simulator binaries and example configurations. Additional
derived packages could enable easily providing packages for dif-
ferent compile-time configurations. The package is guaranteed to
always produce the same bit-exact install on any machine.

We have developed a proof-of-concept Guix package for the
Ariane RISC-V hardware model®. The original build instructions
provided in the Ariane GitHub repository do not specify any kind
of build-time dependencies on the native compiler tool-chain. The
instructions provide both Bash shell scripts to install Verilator and
the device tree compiler from source as well as instructions on
how to install a specific version of Verilator and the device tree
compiler package on Ubuntu. The instructions download a large
precompiled binary containing a specific version of the RISC-V
cross-compiler from an online SiFive archive. The precompiled
binary cross-compiler is installed in a non-standard location ne-
cessitating the use of an ad-hoc environment variable to enable
later build steps to locate these tools. It took two person-days to be
able to successfully build the Ariane RTL simulator, cross-compile a
RISC-V workload, and run this workload on the Ariane RTL simula-
tor. Complications included managing specific versions of Verilator
on non-Ubuntu distributions, undefined dependencies on native
tools, an ambiguous dependency graph, and non-standard instal-
lations. The package we have developed avoids all of these issues
by: precisely specifying the build-time dependencies on Spike and

Uhttps://git.savannah.gnu.org/cgit/guix.git/tree/gnu/packages/virtualization.scm
Zhttps://git.genenetwork.org/guix-bioinformatics/guix-
bioinformatics/src/branch/master/gn/packages/virtualization.scm
Shttps:/git.genenetwork.org/guix-bioinformatics/guix-
bioinformatics/src/branch/master/gn/packages/riscv.scm

C. Batten, P. Prins, E. Flashner, A. Isaac, J. van Nieuwenhuizen, E. Zarraga, T. Ta, A. Rovinski, E. Garrison

Verilator 4.110 regardless of the host Linux distribution; patching
the build process to eliminate the use of an ad-hoc environment
variable to specify the location of 1ibfesvr. a; patching the source
to fix a bug which prevents displaying standard output during a
simulation; and wrapping the installed binary to provide a clean
interface. The package is guaranteed to always produce the same
bit-exact install on any machine.

5 CASE STUDY

This case study illustrates how to use Guix to reproduce a simple
experiment involving both RISC-V software and hardware. The
case study first installs a Smith-Waterman sequence alignment
workload for native execution. The case study then installs QEMU
for RISC-V emulation, Spike for RISC-V functional-level hardware
modeling, gem5 for RISC-V cycle-level hardware modeling, and
Ariane for RISC-V RTL hardware modeling (using the Verilator
simulator). Finally, the case study uses a RISC-V cross-compiler to
compile the Smith-Waterman workload for RISC-V and then runs
this workload on QEMU, Spike, gem5, and Ariane. This case study
uses RISC-V RV64GC, but Guix provides the mechanisms to enable
similar experiments on other RISC-V architectures. To reproduce
this case study, a researcher first must download and install Guix®.

5.1 Add a new channel

In addition to Guix’s main package repository, users can create
their own “channels” that include third-party packages. We need
to add such a channel to get access to the gem5 package, Ariane
package, and the derived Smith-Waterman package.

% cd $HOME/.config/guix
% cat > channels.scm \
<<'END'
(use-modules (guix ci))
(list
(channel
(name 'gn-bioinformatics)
(url (string-append "https://git.genenetwork.org/"
"guix-bioinformatics/guix-bioinformatics.git"))
(branch "master"))
(channel-with-substitutes-available
%default-guix-channel "https://ci.guix.gnu.org"))
END

5.2 Update Guix and install Smith-Waterman

We use guix pull to download package descriptions from the
main and third-party package repositories. We then install Smith-
Waterman package and run it natively. Here we use the default
“profile”, but we could also install this package in a dedicated Guix
“profile”, similar to Python’s virtual environment.

% mkdir -p $HOME/tmp/misc/test-guix

% cd $HOME/tmp/misc/test-guix

% guix pull

% guix install smithwaterman

% smithwaterman -p TGATTGTACCAAA TGATCATGTACCA

4https://guix.gnu.org/en/download

5.3 Install QEMU, Spike, gem5, and Ariane

We now install QEMU, Spike, gem5, and Ariane. Guix takes care of
ensuring all dependencies are installed. For example, Guix will not
just ensure the C++ compiler for Spike is installed, but it will also
ensure the C compiler used to bootstrap building that C++ compiler
is installed. Guix will install SCons, Boost, Python, Verilator, and
dtc. Guix will automatically download bit-exact substitutes when
available (e.g., QEMU, Spike) and compile packages from source
otherwise (e.g., gem5, Ariane).

% guix install gemu spike gem5-riscv cva6

5.4 Build and run Smith-Waterman on QEMU

We can use guix build -target=riscv64-1linux-gnu to cross-
compile most Guix packages for RISC-V. While QEMU supports
both dynamic and static linking, Spike, gem5, and Ariane only
support static linking. So we cross-compile the derived Smith-
Waterman package to produce a statically linked executable. Guix
automatically takes care of installing and configuring an appropri-
ate compiler to enable reproducible cross compilation.

% cd $HOME/tmp/misc/test-guix
% DIR=$(guix build \

--target=riscv64-linux-gnu smithwaterman-static)
% ln -sf $DIR/bin/smithwaterman sw-riscv64

5.5 Build RISC-V proxy kernel

The RISC-V proxy kernel is needed to handle system calls for both
Spike and Ariane. So we cross-compile the proxy kernel which
has also been packaged and is available in the main Guix package
repository.

% cd $HOME/tmp/misc/test-guix

% DIR=$(guix build \
--target=riscv64-linux-gnu riscv-pk)

% 1n -sf $DIR/bin/pk pk

5.6 Run Smith-Waterman on QEMU, Spike,
gemb5, and Ariane

We can now run the Smith-Waterman workload on QEMU, Spike,
gemb5, and Ariane. Obviously RTL simulation is quite slow, so the
Ariane simulation can take over an hour.

% cd $HOME/tmp/misc/test-guix

% qgemu-riscv64 ./sw-riscv64 -p TGATTGTACCAAA TGATCATGTACCA

% spike ./pk ./sw-riscv64 -p TGATTGTACCAAA TGATCATGTACCA

% gem5.opt \
$GUIX_PROFILE/share/gem5/configs/example/se.py \
--cmd=./sw-riscv64 \

--options="-p TGATTGTACCAAA TGATCATGTACCA"

% ariane +max-cycles=100000000 +time_out=100000000 \
./pk ./sw-riscv64 -p TGATTGTACCAAA TGATCATGTACCA

The Case for Using Guix to Enable Reproducible RISC-V Software & Hardware

6 RELATED WORK

A detailed survey of software package managers is beyond the scope
of this paper. However creatively applying software package man-
agers in the context of hardware is more novel. So in this section, we
discuss other hardware package managers and frameworks, includ-
ing Bender [9], FuseSoC [7], LiteX [6], and HDLMake [5]. Table 1
summarizes the comparison among hardware package managers
and Guix. The key detail that separates Guix from other package
managers is that guix enables bit-exact reproducible builds. Most
managers surveyed offer some form of source file management and
dependency resolution (using appropriate versions of dependen-
cies). The surveyed hardware package managers also incorporate
some form of EDA tool interfacing (such as to Verilator) while Guix
does not. The problem with the approach taken by other managers
is that they have no mechanism to ensure that the tool versions are
appropriate for use because tools are not considered dependencies
(nor any way to ensure cross-compiler tool-chains will reliably pro-
duce software to run on programmable processors). In addition, the
managers do not have isolation to ensure that environment does not
leak into the build and alter results. Because of these shortcomings,
we find that Guix is the only manager among those surveyed that
can provide cross-platform, reproducible builds. In addition, Guix
offers build caching due to its ability to hash inputs and recognize
if a build has been completed previously.

Bender: Bender is a dependency management tool for hardware
design projects [9]. The stated goals for Bender are: (1) compatible
with multiple electronic design automation (EDA) tool vendors
and flows, (2) allow for reproducible builds, (3) manage source
files for a project and its intellectual property (IP), (4) manage
source dependencies, and (5) generate tool scripts for supported
tools. Bender uses a lock file (Bender.yml) to list git hashes of
dependencies. This ensures that Bender will use the correct versions
of IP, however it does not ensure that the tool versions nor the
environment are consistent. Thus, the output can vary greatly or
not build at all. Bender manages build order of IPs to ensure proper
compilation by tools and uses dependency resolution based on
semantic versioning to ensure that the dependencies are compatible.
Bender can also generate scripts for supported EDA tools.

FuseSoC: FuseSoC is a package manager and a set of build tools
for HDL (Hardware Description Language) code [7]. Its main pur-
pose is to increase reuse of IP cores and be an aid for creating,
building and simulating SoC solutions. FuseSoC claims to enable:
(1) reuse of existing cores, (2) creating compile-time or run-time
configurations, (3) running regression tests against multiple sim-
ulators, (4) porting designs to new targets, (5) encouraging other
projects to use your code, and (6) setting up continuous integration.
The main selling point of FuseSoC is that it enables IP reuse across
different tool vendors and easy management of source code. Fus-
eSoC uses Edalize as an interface library to several different EDA
tools and vendors. However, FuseSoC does not have management
over tool versions or environment.

LiteX: LiteX provides an infrastructure to create FPGA cores
& SoCs, explore digital architectures, and create full FPGA-based
systems [6]. LiteX provides many common components required
for SoCs, including interconnects, memory interfaces, and CPU

Fuse HDL
Guix Bender Soc LiteX Make
Source file management v v v v v
Dependency resolution v v v v
EDA tool interface 4 v 4 v
EDA tool packaging v
Environment management v
Bit-exact reproducible builds v
Build caching v

Table 1: Comparison of package manager features

cores. It also provides direct interfacing with EDA tools and sup-
port for debug infrastructure. LiteX is heavily focused on FPGA
development and includes easy interfaces to FPGA debug and soft-
ware unlike other hardware package managers. However, LiteX is
a small ecosystem which is not intended to be as extensible as the
other platforms.

Hdlmake: Hdlmake is a tool designed to help FPGA designers to
manage and share their HDL code by automatically finding file de-
pendencies, writing synthesis & simulation Makefiles, and fetching
IP-Core libraries from remote repositories [5]. Hdlmake generates
GNU Makefiles for (1) fetching IP from repositories, (2) simulating
and synthesizing HDL projects, and (3) generating multi-vendor
project files. Hdlmake is also targeted mainly towards FPGA EDA
flow management. Hdlmake offers some abstraction for IP versions,
but mainly relies on git or other version control.

Among the surveyed hardware package managers, Guix is the
only one which can ensure a consistent environment and tool ver-
sions for reproducible builds. Other package managers aim to pro-
vide ease of use by interfacing with multiple EDA tools, but they
forgo management of the environment and tool versions, which
can lead to different results or build failures without effort (and
perhaps guesswork) from the user to replicate the environment. An
interesting direction for future work would be to integrate Guix into
one of these hardware package managers to combine the benefits
of truly reproducible builds with simpler EDA tool interfacing.

7 CONCLUSION

This paper describes our on-going efforts to bring RISC-V into
the Guix ecosystem. We have described our work on using Guix
both for packaging RISC-V software stacks and RISC-V hardware
models. The goal of this paper is to introduce the RISC-V computer
architecture community to the Guix package manager and hopefully
spark interest in contributing to our efforts to enable reproducible
RISC-V software and hardware.

ACKNOWLEDGMENTS

This work was supported by NSF PPoSS Award #2118709 and NLNet
awards for GNUMes-RISCV and Guix-Riscv64.

C. Batten, P. Prins, E. Flashner, A. Isaac, J. van Nieuwenhuizen, E. Zarraga, T. Ta, A. Rovinski, E. Garrison

REFERENCES s

[1] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17. EECS Department, University of California, Berkeley.

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 Simulator. SIGARCH Computer
Architecture News (CAN) 39, 2 (Aug 2011), 1-7.

[3] Bruce R. Childers, Alex K. Jones, and Daniel Mossé. 2015. A Roadmap and
Plan of Action for Community-Supported Empirical Evaluation in Computer 5 e 7). .
Architecture. ACM SIGOPS Operating Systems Review 49, 1 (Jan 2015), 108-117. Florian Zaruba and Luca Benini. 2019. The Cost of Apphcatlon—leiss Processing:

[4] Grigori Fursin and Anton Lokhmotov. 2019. Artifact Evaluation for Reproducible Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core

Quantitative Research. SIGARCH Computer Architecture Today (Feb 2019). in 22-nm FDSOI Technology. IEEE Trans. on Very Large-Scale Integration Systems
(TVLSI) 27, 11 (Nov 2019), 2629-2640.

Javier D. Garcia-Lasheras. 2014. Introducing hdlmake Version 2.0. 8th White

Rabbit Workshop (Oct 2014).

[6] Florent Kermarrec, Sébastien Bourdeauducq, Hannah Badier, and Jean-
Christophe Le Lann. 2019. LiteX: an Open-Source SoC Builder and Library
Based on Migen Python DSL. Workshop on Open Source Design Automation (Mar
2019).

[7] Olof Kindgren. 2019. A Scalable Approach to IP Management with FuseSoC.
Workshop on Open Source Design Automation (Mar 2019).

[8] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson,

Paul Gao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, Tavio

Guarino, Ajay Joshi, Mark Oskin, and Michael Bedford Taylor. 2020. BlackParrot:

An Agile Open-Source RISC-V Multicore for Accelerator SoCs. IEEE Micro 40, 4

(Jul/Aug 2020), 93-102.

Fabian Schuiki. 2019. BENDER: A Dependency Management Tool for Hardware

Design Projects. Week of Open Source Hardware (Jun 2019).

=

[10

	Abstract
	1 Introduction
	2 Guix Background
	3 Guix for Packaging RISC-V Software Stacks
	4 Guix for Packaging RISC-V Hardware Models
	5 Case Study
	5.1 Add a new channel
	5.2 Update Guix and install Smith-Waterman
	5.3 Install QEMU, Spike, gem5, and Ariane
	5.4 Build and run Smith-Waterman on QEMU
	5.5 Build RISC-V proxy kernel
	5.6 Run Smith-Waterman on QEMU, Spike, gem5, and Ariane

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

