
Implementing Hardware Extensions for Multicore RISC-V GPUs
Tine Blaise

Georgia Institute of Technology
Atlanta, Georgia

blaisetine@gatech.edu

Hyesoon Kim
Georgia Institute of Technology

Atlanta, Georgia
hyesoon@cc.gatech.edu

ABSTRACT
As silicon technology scaling is approaching its limits, the semicon-
ductor industry has adopted hardware specialization as a workaround
to continue improving the performance of processors, creating new
brands of multi-core processor architectures with specialized ex-
ecution units and fixed-function hardware. For instance, modern
GPUs today have dedicated custom hardware for image processing,
3D graphics, graph analytics, and machine learning acceleration.

In recent years, the RISC-V ISA adoption has increased, and
several implementations of GPUs based on the RISC-V ISA were
introduced that integrate multiple cores [5] [12] [6]. Extending a
RISC-V-based GPU to support custom hardware acceleration while
still maintaining compatibility with the RISC-V ISA is not a trivial
task. Part of the challenge involves extending the instruction set
and register file, but the other part is to figure out how the hardware
addition will interface with the existing processor pipeline.

In this work, we present a generalized methodology for imple-
menting hardware extensions for multi-core RISC-V-based GPUs.
We discuss the various hardware extension architectures on GPUs
and propose possible implementations on RISC-V. Our generalized
solution addresses both the ISA and microarchitecture changes.
We also provide a generalized solution for supporting hardware
performance monitoring counters for platforms with multiple cus-
tom accelerators onboard. We showcase some applications of our
methodology with a custom hardware extension implementation
on RISC-V-based GPUs.

KEYWORDS
High-Performance Computing, multi-threading, heterogeneous

Computing, Parallel Programming, Machine Learning, Systolic Ar-
ray, Graphics, Performance Monitoring

ACM Reference Format:
Tine Blaise and Hyesoon Kim. 2022. Implementing Hardware Extensions for
Multicore RISC-V GPUs. In Proceedings of ACM Conference (Conference’17).
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
As silicon technology scaling is approaching its limits [7], the
semiconductor industry has adopted multi-core architectures as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: GPU Pipeline With Hardware Extension Units

a workaround to continue improving the performance of proces-
sors, creating accelerators with hundredth of processing cores [13].
Another trend has been the push for specialization with dedicated
custom execution units and fixed-function hardware to accelerate
specific operations for a target application domain. For instance,
modern GPUs today implement dedicated custom hardware for im-
age processing, 3D graphics, graph analytics, and machine learning
acceleration [15] [13] [15] [17].

In recent years, the RISC-V ISA adoption has increased, and
several implementations of GPUs based on the RISC-V ISA were
introduced that integrate multiple cores [5] [12] [6]. Most of these
processors implement some of the RISC-V standard extensions,
mainly integer multiply/divide and floating-point arithmetic. Im-
plementing the RISC-V standard extensions is well documented in
the specifications [21], which simplifies the task for the average
developers. When it comes to non-standard extensions, such as
adding special function units or supporting a matrix multiplication
unit, for instance, there is no defined methodology to approach
the problem. Extending a RISC-V-based GPU to support custom
hardware while still maintaining compatibility with the RISC-V ISA
is not a trivial task. Part of the challenge involves extending the
instruction set, and register file as the new hardware requirements
may not be compatible with the RISC-V ISA; the other part is to fig-
ure out how the hardware addition will interface with the existing
processor pipeline.

In this work, we present a generalized methodology for imple-
menting hardware extensions for multi-core RISC-V-based GPUs.
Figure 1 illustrates an overview of a standard GPU pipeline with
custom fixed-function units A, B, and C (see yellow blocks). Hard-
ware fixed-function units A and B are located outside the GPU core
and are shared by all cores within their enclosing cluster. Hardware
fixed-function unit C is located inside each core, similar to most

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Tine Blaise and Hyesoon Kim

RISC-V standard extensions and has direct access to the pipeline.
The location of the custom accelerator block, whether it is upstream
of the computer core or downstream, whether it is configurable or
not, and whether it directly accesses memory or not, are some of
the potential design requirements that will impact the final imple-
mentation. Most of the techniques introduced in this paper also
apply to standard RISC-V-based single-core and multi-core CPUs.

We discuss the various hardware extension architectures on
GPUs and propose possible implementations on RISC-V. Our gen-
eralized solution addresses both the ISA and microarchitecture
changes. We also provide a generalized solution for supporting
hardware performance monitoring counters for platforms with mul-
tiple custom accelerators onboard. We showcase some applications
of our methodology with custom hardware extension implementa-
tions on RISC-V-based GPUs.

This paper makes the following key contributions:
• We propose a topology for GPU hardware extensions in term

of their design requirements and interaction with the GPU
pipeline.

• We present a generalized methodology for implementing
hardware extensions for multi-core RISC-V-based GPUs.

• We provide a generalized solution for supporting hardware
performance monitoring counters for platforms with multi-
ple fixed-function units onboard.

• We showcase some applications of our methodology with a
custom hardware extension implemented on RISC-V-based
Vortex GPU [20].

2 BACKGROUND
2.1 Processor Hardware Extensions
Processors have been implementing custom fixed-function hard-
ware and have exposed their access via their ISA extension since
their inception. GPUs have also followed this approach to accelerate
compute-intensive operations.

2.1.1 CPU Hardware Extensions. The common hardware exten-
sions implemented into today’s commodity CPUs [16] [14] [19]
[18] include floating-point units, cryptography instructions [22]
[9], Fused-multiply-add units, random number generators, Ham-
ming weight computation, special instructions for neural network
computation [2], etc.

2.1.2 GPU Hardware Extensions. On the graphics processing units,
a large portion of the hardware extension is dedicated to the graphic
acceleration and are implemented as fixed-function units, including
rasterizer units, texture units, tesselation units, interpolation units,
render output units, etc. Together with the standard hardware ex-
tensions such as floating-point units, modern GPUs also implement
custom hardware for machine learning acceleration [4].

2.2 RISC-V ISA Extension
The RISC-V ISA specifications [?] define a base instruction set
(RV32I) for integer arithmetic that is required by all implementa-
tions. The specifications also define optional standard extensions
with their detailed functions and description. For supporting non-
standard extensions, the specifications provide some facilities.

Figure 2: RISC-V 32-bit Instruction Formats

Figure 3: RISC-VMachine PerformanceMonitoring Counters

Figure 4: RISC-V CSRs Address Mapping

2.2.1 The Standard Extensions. The RISC-V ISA defines 15 standard
extensions (M, A, F, D, Q, L, C, B, J, T, P, V, N, H, S) that provide
acceleration for various operations, including integer multiplication,
atomics, floating-point, vector operations, etc.

2.2.2 User-Defined Extensions. The RISC-V specifications reserve
four custom opcodes 0x0B, 0x2B, 0x5B, and 0x7B for supporting
user-defined extensions. Designers can use either one of these cus-
tom opcodes to define their custom instructions using the standard
formats as described in Figure 3. The RISC-V instruction format
only supports up to two source operands for integer operations
and three operands for floating-point operations (R4), which is not
always sufficient for some extensions; we will discuss workaround
solutions in later sections.

2.2.3 Hardware Performance Monitoring Counters. Hardware per-
formance monitoring counters (HPMs) are essential components
of hardware evaluation as they enable the gathering of internal
performance statistics. The RISC-V ISA defines 32 pairs of control
status registers (CSRs) for storing HPMs where the lower half cov-
ers addresses 0xB00 to 0xB1F and the upper half addresses 0xB80
to 0xB9F. Three of the 32 registers are reserved for pre-defined
counters that include the execution cycles and the number of in-
structions (see Figure 2), leaving only 27 free slots. In a platform

Implementing Hardware Extensions for Multicore RISC-V GPUs Conference’17, July 2017, Washington, DC, USA

with multiple hardware extensions, we will propose a mapping to in-
crease that number while still preserving application compatibility
in later sections.

2.3 Vortex GPU Framework
The Vortex GPU [20] is a hardware implementation of a RISC-V-
based SIMT multi-core processor with an integrated software and
simulation task for architecture research. The GPU design has been
optimized to FPGAs, peaking above 250 Mhz, and capable of fitting
up to 64 cores (1024 threads) on Intel Stratix 10 FPGA [8]. These
features make Vortex a safe choice for experimenting our extension
experiments.

2.3.1 Vortex ISA. Vortex extends the standard RISC-V ISA with
five new instructions wspawn, tmc, split, join, and bar, to support
SIMT execution model and a tex instruction to accelerate texture
sampling.

2.3.2 Software Stack. Vortex’s flexible software stack allows for
the execution of OpenCL programs. OpenCL is supported through
a modified POCL [10] compiler backend to support RISC-V and
Vortex’s ISA extension [3].

2.3.3 Hardware Stack. Each processing core in Vortex implements
a standard RISC-V five-stage pipeline with additional hardware
blocks to support SIMT execution model. The execute unit inte-
grates RISC-V standard extensions for integer multiplication and
floating-point units. It also hosts a fixed-function texture accelerator
block.

3 A TOPOLOGY OF HARDWARE EXTENSIONS
We propose a characterization of hardware extensions that will infer
essential design decisions for the integration with the target proces-
sor pipeline. Table 1 summarizes a classification of common GPU
hardware extensions. Our selected list contains a floating-point
unit (FPU), fixed-point integer multiply-add (IMADD), SHA256
sum transformation function (SHA256Sum), matrix multiplication
(MatMul), software prefetching (Prefetch), graphics vertex fetch
engine (VFetch), graphics rasterizer (Raster), graphics attributes
interpolation (Interp), texture sampling (Tex), graphics alpha blend
(Blend). Table 2 provides the instruction operands signature for the
selected hardware extensions. The MatMul instruction’s operands
are used to index on-chip matrix register files a, b, c where a and b
are the source matrix indices and c is the destination. This imple-
mentation assumes another pair of custom instructions for loading
and storing matrix elements to memory.

3.1 Producer vs Consumer Extensions
The role type column distinguishes extensions that consume their
inputs from the processing cores, the consumers, and extensions
that produce their output to the processing cores, the producers. The
majority of hardware extensions generally operate as consumers
and their execution is triggered by the processing core pipeline.
Not all consumer extensions return a value, a software prefetch
instruction (Prefetch) for instance will not have a return value. The
graphics blend (Blend) extension takes pixel color information and
write/blend the value into a destination pixel memory location.

The GPU rasterizer (Raster) is a typical example of producer fixed-
function hardware that generates pixel stamps for the processing
core to operate on. Another graphics-related fixed-function unit
that operates like a producer is the vertex fetch unit (VFetch) that
accesses memory to process the vertex attributes needed as inputs
to the processing cores. A producer extension always needs to
produce a value for the core and notify the core when there is no
data to process.

3.2 Internal vs External Extensions
The location of the hardware extension is also an important distin-
guishing factor. In a multi-core processor, an accelerator block can
be placed inside the core or outside the core depending on the area
resource constraints or invocation bandwidth. The default option
is typically to keep the extension inside the core. This presents
several advantages, 1) having no sharing between cores maximizes
the compute bandwidth, which is ideal when the extension doesn’t
access memory, and 2) reduces design complexity as the new mod-
ule can integrate with the existing interface used by other execute
units. The main drawback of internal extensions is the area over-
head since each core in the processor will be instantiating the new
unit. And effective method to decide which location to place the
hardware extension is to profile the application and determine how
much bandwidth is needed. For instance, the graphics blend fixed-
function (Blend) unit can reside inside or outside the core. However,
pixel shader programs call the instruction once at the end of each
iteration, and a single iteration generation typically executes hun-
dredth and sometimes thousands of instructions. Placing the blend
unit inside the core will add negligible performance improvement.
On the contrary, the texture sampler unit (Tex) is preferably kept
inside the core because typical pixel shader programs produce mul-
tiple invocations of the instruction per iteration.

3.3 Needing local storage
Some hardware extensions, depending on the implementation, may
require some local storage to keep temporary data. An extension
like matrix multiplication (MatMul) will need on-chip temporary
storage to keep the elements of the source and destination matrices.
This implementation is well suited for a scalar processor where
wide vector register files are not available. In the graphics pipeline,
the vertex fetch and rasterizer units also maintain on-chip storage
for the attributes and pixel stamps, respectively, that they generate
for the processing core to consume.

3.4 Accessing Memory
Hardware extensions that require access memory are typically
located outside the core (have external location). This is mainly be-
cause of the memory latency, which requires queueing the pending
requests from the core. These components are generally memory-
bounds, which reduces the benefits of keeping the module local
to the core. In practice, the hardware extension is coupled with
a private cache that leverages its access pattern to improve data
locality therein reducing the memory latency. The texture sampler
unit in table 1 accesses memory while still remaining internal to
the core because it is typically attached to a read-only cache that
provides descent data locality, reducing the memory latency.

Conference’17, July 2017, Washington, DC, USA Tine Blaise and Hyesoon Kim

Name Role Type Location Local Storage Access Memory Operands Output Result Configurable
FMAdd Consumer Internal No No Standard Yes No
IMAdd Consumer Internal No No Complex Yes No

SHA256Sum Consumer Internal No No Standard Yes No
MatMul Consumer External Yes No Standard Yes No
Prefetch Consumer Internal Yes Yes Standard No No
VFetch Producer External Yes Yes Standard Yes Yes
Raster Producer External Yes Yes Standard Yes Yes
Interp Consumer Internal No No Complex Yes Yes

Tex Consumer Internal No Yes Standard Yes Yes
Blend Consumer External No Yes Complex No Yes

Table 1: A Classification of Common GPU Hardware Extensions

Name Output Source Operands
FMAdd result a, b, c
IMAdd result a, b, c, shift

SHA256Sum result inb
MatMul - a, b, c
Prefetch - addr
VFetch vertices -
Raster pixels -
Interp result dx, dy, a, b, c

Tex color u, v, lod,
Blend - x, y, color, id, mask

Table 2: Hardware Extension Signatures

3.5 Complex Operands
Another design factor in implementing custom instructions is fig-
uring out how to pass the inputs to the accelerator. Custom instruc-
tions that require more source operands than the limit defined by
the RISC-V ISA which is three (see Figure 3) are classified as having
complex operands. The graphic interpolation instruction (Interp)
for instance needs five operands to compute the equation f(dx, dy,
a, b, c) = (dx * a) + (dy * b) + c. Solving the challenge of handling
complex operands will have some performance implications. We
propose several strategies in the following section.

3.6 Configurable Extensions
Some extensions require configuration prior execution to change
the operating function or provide constant parameters to the accel-
erator. On a typical GPU all the fixed-function components of the
graphics pipeline export a configuration interface to feed constant
parameters or modify their runtime behavior. The recommended
method for configuring the hardware in RISC-V is to use control
status registers (CSRs). Figure 4 shows the RISC-V CSRs address
mapping across the different user, supervisor, and machine domains.
The RISC-V specification has reserved unused CSRs slots for custom
implementations, they fall under the non-standard CSR address
space where 512 slots are read/write and 192 slots are read-only.

4 RISC-V ISA EXTENSION
This section discusses the various methods for extending the RISC-V
ISA at the instruction level.

Figure 5: Operand Extension via Inputs Merging

4.1 Instruction Encoding
To encode the new instruction for a hardware extension. The devel-
oper can choose among the four available custom opcodes 0x0B,
0x2B, 0x5B, and 0x7B defined in the RISC-V specifications. The
main challenge is choosing an adequate instruction format. This
is the case because there are only four opcodes, and it is best to
reuse them as much as possible if there is a desire to support future
extensions. Figure 3 lists the most common formats with their cor-
responding encoding scheme. The commonly used formats are R
and R4.

4.1.1 R format. is the most flexible format because 1) its operands’
mix fits many hardware extensions that obey the generic C = f(A,
B) signature. 2) this scheme encodes 3 bits into func3 and 7 bits into
func7, which provides a total of 1024 possible instruction definitions
under that format.

4.1.2 R4 format. provides the best options when the number of
operands on the extension is large, taking advantage of the third
source operand in the format. The downside of this format is the
limited options available to encode multiple instructions under that
scheme. The format only has 5 bits (func3 + func2) available to
define 32 possible instructions.

In practice, implementations should prioritize R4 format and
assign it at least two opcodes. This is because GPU’s hardware
extensions tend to require more than just two operands.

4.2 Operands Extension
GPU’s Hardware extensions tend to require more than three operands
and deciding how to pass the other source parameters to the accel-
erator can have significant performance implications. We exper-
imented with three solutions for handling extra operands when
implementing a custom instruction.

Implementing Hardware Extensions for Multicore RISC-V GPUs Conference’17, July 2017, Washington, DC, USA

Figure 6: Operand Extension via Functions Merging

Figure 7: Operand Extension via CSRs

Figure 8: Hardware Performance Monitoring Extension

4.2.1 Inputs Merging. The most efficient solution to extend the
operands is to simply merge the input arguments of the instruction
to share the registers (see Figure 5). This is usually done by imple-
menting an intrinsic function that wraps the native instruction and
applies the merge. We found this method to be very effective for
some graphics extensions like Blend where some arguments don’t
are guaranteed to be clamped within a certain range and maybe
concatenated with others to share the same register.

4.2.2 Functions Merging. When the inputs arguments cannot be
merged, the next option is to explore overloading the instruction’s
function bits to store the additional registers (see Figure 6). Using
this scheme, it is possible to allocate two additional registers using
R3 format and one extra using R4 format. Note that extending
the number of operands presents two important drawbacks, 1)
it reduces the total number of instructions that can be allocated
for the given custom operand. 2) increasing the number of source
operands has a dependency on the supported register file in the
existing pipeline as reading an additional register adds complexity
to the backend.

4.2.3 Control Status Registers. The last option is to split the exe-
cution into two parts and pass the extra operands via CSRs before

invoking the instruction. The RISC-V specifications enforce no-
reordering during the execution of CSR instructions. This solution
is the least efficient because 1) CSR’s execution stalls the pipeline,
and 2) it adds an additional instruction to the pipeline for each
invocation of the extension, which will affect the overload IPC.

4.3 Software Support
A the software layer, applications need to be given access to the
new instructions. The preferred solution is to implement the new
ISA extension into the compiler. However, this requires technical
knowledge of the tools and may not be an effective investment if
the ISA is subject to changes in the future, a typical reality. The
main advantage of supporting the new ISA at the compiler level
is to leverage possible high-level code transformations that could
automatically be lowered into calls to the extension. The other
advantage is the debugging benefits of a supported assembler and
disassembler. The alternative and practical alternative to the com-
piler is to use intrinsic functions that wrap the encoded instructions
bytecode. Listing 1 illustrates a simple intrinsic function that wraps
the texture sample instruction (Tex) to expose the new instruction
to the application.

Listing 1: Tex instruction intrinsic function
1 i n l i n e t e x (u , v , l o d) {
2 uns igned __r ;
3 asm v o l a t i l e (" . i n s n ␣ r4 ␣ 0 x5b , 0 , 0 , % 0 , % 1 , % 2 , % 3 " :
4 " = r " (__r) : " r " (u) , " r " (v) , " r " (l o d)) ;
5 r e t u r n __r ;

5 IMPLEMENTING EXTERNAL EXTENSIONS
Implementing external extensions presents unique challenges in
that the hardware is shared by multiple processing cores.

5.1 Local Agents
Local agents are lightweight modules inside the core that manages
the communication channel with an external extension. Agents
process instructions issued by the pipeline and schedule them for
execution on the target external accelerator. Agents also manage
per-core local storage if in use. Figure 1 shows the two agents A
and B that manage communication with external unit A and B,
respectively.

5.2 Arbitration
Arbitrating access to the shared hardware extension can be handled
using elastic multiplexer or demultiplexer depending on whether
the extension is a consumer or a producer, respectively. The elastic-
ity will enforce proper handshaking as data enter or exit the core.
Figure 1 shows the demultiplexer block for the producer unit A
feeding the cluster of cores, and the multiplexer select the input for
consumer unit B.

6 HARDWARE PERFORMANCE COUNTERS
Hardware performance monitoring counters are essential for pro-
filing and debugging hardware features. There are only 32 of those
counters defined within the RISC-V ISA, and three of those counters

Conference’17, July 2017, Washington, DC, USA Tine Blaise and Hyesoon Kim

Figure 9: Fixed-point mutliply-add hardware

Figure 10: Fixed-point mutliply-add H/W vs S/W

are reserved. When implementing these counters to profile hard-
ware extensions, it is easy to run out of them. Even without any
onboard extension just instrumenting the standard pipeline may
often require more counters. We realized that a simple data cache
profiling would often use at least half of those counters already.

6.1 Hardware Implementation
A workaround to expand the counters limit is to classify the coun-
ters into categories. The preferred classification it to group them
based on the component. For instance, the counters for processor
pipeline, instruction cache, and data cache will be assigned class 0,
1, and 2, respectively. The implementation can then use one of the
non-standard available CSR slots to select the counter class. Figure
8 shows an implementation of that mapping using a simple multi-
plexer. Note that HPM slots 0-3 are excluded from the multiplexer
since they are reserved.

6.2 Software Support
A naive solution to gather hardware performance counters is to
dump their content directly to memory. Implementations can re-
serve an address space where to read the information from the
host CPU. It is preferable to flush the counters after the program
termination to capture the maximum trace. An implementation
may execute the dump in the _exit() call after the program main()
function has returned.

7 SAMPLE IMPLEMENTATION
In this section, we present two non-standard RISC-V extensions we
implemented to accelerate Fixed-Point Integer Multiply-Add on the
multi-core Vortex GPU [20]. Fixed-point math is commonly used in
graphics to approximate floating-point computation. It is often used
to in the rasterizer, during interpolation, and even during texture

sampling. This justify the need for a fixed-point matrix multiply
custom instruction.

7.1 ISA Encoding
Fixed-point mutliplication-add operation is defined as f(a, b, c, F)
= ((a * b) » F) + c where F is a constant shift parameter. To encode
this instruction in RISC-V we use R4 three-source-operands format.
We observed that constant F did not vary a lot; in fact, the common
values are 8, 16, and 24. Our encoding scheme stores F into the
2-bit func2 field by encoding its value as follows: 0->0, 1->8, 2->16,
3->24, which is (func2 « 3). This encoding scheme enabled the same
hardware to be used to perform standard integer multiplication,
which adds more value to the extension.

7.2 Microarchitecture
Figure 9 shows the basic microarchitecture of the hardware exten-
sion. It consists of a pipelined multiplier block that processes A
and B operands across several cycles (four cycles in this case). In
parallel, operands F, and C are scheduled into a shift register for
their output to synchronize with the multiplier where the shift and
addition occur.

7.3 Evaluation
Figure 10 compares the software versus the hardware extension
runtime execution of the kernel running multiple invocations of
imadd instruction on Arria 10 FPGA running at 200 MHz. There
is good scaling on both hardware and software as the number of
cores increases. Our hardware extension outperforms the software
implementation by about 17-20 %, not a huge gain mostly because
the source operands are read from memory which introduces a
latency overhead inside the kernel.

8 RELATEDWORK
Austin et al [1] propose an implementation of the RISC-V Cryp-
tography extension on the Vortex GPU [20]. The authors used the
official specifications draft to derive the instructions encoding and
implementation. Their hardware addition is located inside each core
as part of the execute unit. They achieved a 6.6x and 1.6x speedup
in hardware acceleration for AES-256 and SHA-256 respectively
compared to the software implementation.

Kuo et al [11] propose a RISC-V extension for accelerating Galois
Field arithmetic in cryptography. They implemeted a non-standard
extension with four new instructions FFWIDTH, CLMUL, CLMULH,
and FFRED. Their hardware addition is located inside the execute
unit of the processor. They achieved 77% in clock-cycle reduction
compared to software implementation.

9 CONCLUSION
In this paper, we discussed the various design challenges of im-
plementing a custom hardware extension in a RISC-V processor.
We proposed and contrasted various implementation alternatives
based on performance and cost. The RISC-V ISA integrates a rich
set of features that enables and encourages the expansion of the
platform via its custom instruction support, non-standard CSRs,
and hardware performance monitoring counters. It is up to the

Implementing Hardware Extensions for Multicore RISC-V GPUs Conference’17, July 2017, Washington, DC, USA

architect to make effective use of those facilities understanding the
cost-benefits of the design space.

REFERENCES
[1] A. Adams, P. Gupta, B. Tine, and H. Kim, “Cryptography acceleration in a risc-v

gpgpu,” 2021.
[2] A. Bhandare, V. Sripathi, D. Karkada, V. Menon, S. Choi, K. Datta, and V. Saletore,

“Efficient 8-bit quantization of transformer neural machine language translation
model,” arXiv preprint arXiv:1906.00532, 2019.

[3] T. Blaise, S. Lee, J. Vetter, and H. Kim, “Cbringing opencl to commodity risc-v
cpus,” in Fifth Workshop on Computer Architecture Research with RISC-V, 2021.

[4] J. Burgess, “Rtx on—the nvidia turing gpu,” IEEE Micro, vol. 40, no. 2, pp. 36–44,
2020.

[5] M. A. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara: A 1
GHz+ scalable and energy-efficient RISC-V vector processor with multi-precision
floating point support in 22 nm FD-SOI,” CoRR, vol. abs/1906.00478, 2019.

[6] S. Collange, “Simty: generalized simt execution on risc-v,” in First Workshop on
Computer Architecture Research with RISC-V (CARRV 2017), 2017, p. 6.

[7] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in 2011 38th Annual International Sym-
posium on Computer Architecture (ISCA), June 2011, pp. 365–376.

[8] P. Gupta, “Intel xeon+fpga platform for the data center,” http:
//reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf.

[9] G. Hofemeier and R. Chesebrough, “Introduction to intel aes-ni and intel secure
key instructions,” Intel, White Paper, vol. 62, 2012.

[10] P. Jaaskelainen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala, and H. Berg,
“Pocl: Portable computing language,” International Journal of Parallel Program-
ming, pp. 752–785, 2015.

[11] Y.-M. Kuo, F. Garcia-Herrero, and J. A. Maestro, “Versatile risc-v isa galois field
arithmetic extension for cryptography and error-correction codes,” 2021.

[12] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović, and K. Asanović,
“A 45nm 1.3ghz 16.7 double-precision gflops/w risc-v processor with vector accel-
erators,” in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC),
Sep. 2014, pp. 199–202.

[13] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified
graphics and computing architecture,” IEEE Micro, vol. 28, no. 2, pp. 39–55, March
2008.

[14] C. Lomont, “Introduction to intel advanced vector extensions,” Intel White Paper,
2011.

[15] M. Mantor, “Amd radeon™ hd 7970 with graphics core next (gcn) architecture,”
in 2012 IEEE Hot Chips 24 Symposium (HCS). IEEE, 2012, pp. 1–35.

[16] S. K. Raman, V. Pentkovski, and J. Keshava, “Implementing streaming simd
extensions on the pentium iii processor,” IEEE Micro, vol. 20, no. 4, pp. 47–57, Jul.
2000. [Online]. Available: https://doi.org/10.1109/40.865866

[17] R. Sommefeldt, “A look at the powervr graphics architecture: Tile-based render-
ing,” 2015.

[18] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker, “The
arm scalable vector extension,” IEEE Micro, vol. 37, no. 2, pp. 26–39, Mar. 2017.
[Online]. Available: https://doi.org/10.1109/MM.2017.35

[19] D. Suggs, M. Subramony, and D. Bouvier, “The amd “zen 2” processor,” IEEE Micro,
vol. 40, no. 2, pp. 45–52, 2020.

[20] B. Tine, K. P. Yalamarthy, F. Elsabbagh, and K. Hyesoon, “Vortex: Extending
the risc-v isa for gpgpu and 3d-graphics,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 754–766.

[21] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v instruction set
manual. volume 1: User-level isa, version 2.0,” EECS Department, UC Berkeley,
Tech. Rep., 2014.

[22] A. Zeh, A. Glew, B. Spinney, B. Marshall, D. Page, D. Atkins, K. Dockser, M.-J. O.
Saarinen, N. Menhorn, R. Newell, and C. Wolf, “RISC-V cryptographic extension
proposals volume i: Scalar & entropy source instructions,” https://github.com/
riscv/riscv-crypto/releases/tag/v0.9.0-scalar, Mar. 2021.

http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf
http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf
https://doi.org/10.1109/40.865866
https://doi.org/10.1109/MM.2017.35
https://github.com/riscv/riscv-crypto/releases/tag/v0.9.0-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v0.9.0-scalar

	Abstract
	1 Introduction
	2 Background
	2.1 Processor Hardware Extensions
	2.2 RISC-V ISA Extension
	2.3 Vortex GPU Framework

	3 A topology of Hardware Extensions
	3.1 Producer vs Consumer Extensions
	3.2 Internal vs External Extensions
	3.3 Needing local storage
	3.4 Accessing Memory
	3.5 Complex Operands
	3.6 Configurable Extensions

	4 RISC-V ISA Extension
	4.1 Instruction Encoding
	4.2 Operands Extension
	4.3 Software Support

	5 Implementing External Extensions
	5.1 Local Agents
	5.2 Arbitration

	6 Hardware Performance Counters
	6.1 Hardware Implementation
	6.2 Software Support

	7 Sample Implementation
	7.1 ISA Encoding
	7.2 Microarchitecture
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	References

