
Shared Vector Register of RISC-V for the Future
Hardware Acceleration

Tomoaki Tanaka
Tokyo University of Agriculture and

Technology
Tokyo, Japan

s229356t@st.go.tuat.ac.jp

Ryosuke Higashi
Tokyo University of Agriculture and

Technology
Tokyo, Japan

s208653w@st.go.tuat.ac.jp

Hidetaro Tanaka
Tokyo University of Agriculture and

Technology
Tokyo, Japan

s227891v@st.go.tuat.ac.jp

Takefumi Miyoshi
WasaLabo, LLC.
Tokyo, Japan

miyo@wasa-labo.com

Yasunori Osana
University of the Ryukyus

Okinawa, Japan
osana@eee.u-ryukyu.ac.jp

Jubee Tada
Graduate School of Science and

Engineering, Yamagata University
Yamagata, Japan

jubee@yz.yamagata-u.ac.jp

Kiyofumi Tanaka
Japan Advanced Institute of Science

and Technology
Ishikawa, Japan

kiyofumi@jaist.ac.jp

Hironori Nakajo
Tokyo University of Agriculture and

Technology
Tokyo, Japan

nakajo@cc.tuat.ac.jp

Abstract
In this study, we present a vector register sharing mechanism
that directly shares vector registers inside the processor with
the acceleration circuitry. Because this mechanism can share
the value of a vector register at a given time, high-speed
communication is expected, particularly in SoC FPGAs. To
validate this mechanism, this study designs and implements
a processor with vector registers to obtain a preliminary esti-
mation. The RISC-V’s RV64IMV and proprietary instructions
are adopted for the instruction set of the proposed processor.
As a preliminary evaluation of our proposed architecture,
we measured the CPI, maximum operating frequency and re-
source usage with and without vector extension instructions
for the processor. The evaluation shows that the proposed
processor can transfer data at a maximum of 787.2 [MByte/s]
with the vector register sharing mechanism.

CCS Concepts: • Hardware→ Hardware accelerators.

Keywords: RISC-V, Vector Extension, Hardware Accelera-
tion, Vector Register

1 Introduction
In recent years, acceleration has been introduced not only
in data centers or supercomputers but also in embedded de-
vices to offload regular processing from a processor, thereby
increasing the overall system speedup. In particular, GPUs,
that perform graphics processing operations on the fastest
systems, listed in the TOP500, are used for artificial intelli-
gence and large-scale simulations by taking advantage of the
large number of arithmetic operation units inside. However,
GPUs consume large amounts of power, and although they
are effective for SIMD operations, it is difficult for them to

handle other complex processing operations. On the other
hand, FPGAs, which allow flexible reconfiguration of ac-
celeration circuits, are attracting attention as a hardware
acceleration technology. FPGA acceleration is more flexible
and consumes less power than GPU acceleration. In gen-
eral, FPGA acceleration is implemented by connecting the
FPGA board to an I/O bus, such as PCIe, and supplying/-
collecting data between the processor and the accelerator
through the bus, bringing in high data transfer latency. To
overcome such delays, SoC FPGA devices, which incorpo-
rate a processor and FPGA logic on a single die, have been
developed by Intel Corporation and AMD Xilinx, Inc. SoC
FPGAs allow the acceleration circuitry to communicate with
the processor via an internal bus, which enables communica-
tion with lower data transfer latency than when using PCIe.
Data for acceleration is transferred from external memory
to the FPGA’s internal memory, processed by the accelerator,
and then transferred back to external memory or loaded by
the processor for subsequent processing. Typically, DMA is
used for the data transfer to reduce the load on the proces-
sor. While DMA is more effective for large data transfers,
the bandwidth of the SoC chip’s internal bus limits process-
ing performance. Therefore, transfer delays are significant
for sequential processing of small amounts of data, such as
streaming processing, thus performance improvement is hin-
dered. Consequently, as a new data transfer method between
a processor and a accelerator, we focus on sharing a proces-
sor’s internal registers directly with an acceleration circuit to
transfer data using load/store instructions to external mem-
ory. However, the size of processor registers in an ordinary
SoC FPGA is limited to 32 or 64 bits, and cannot be effec-
tive for large data transfers. Therefore, we propose a vector
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register sharing mechanism that enables high-bandwidth
data transfer instead of sharing ordinary integer registers.
To indicate the effectiveness of the vector register sharing
mechanism, we have designed and implemented a processor
that shares a part of vector registers using the RISC-V vector
extension instruction (RVV). In this paper, we present the
vector register sharing mechanism, implementation of the
mechanism based on a RISC-V vector extension as well as
the results of preliminary evaluation.

Section 2 describes related work on SoCs and accelerators.
Section 3 shows our proposed vector register sharing mecha-
nism. The instruction set and configuration of the proposed
processor are shown in Section 4. Section 5 shows the perfor-
mance of the processor as a preliminary evaluation. Finally,
Section 6 indicates the results and future prospects.

2 Related Work
Rjabov et al. have studies a method to communicate with a
host computer via PCIe using a device with Zynq-7000, one
of the SoC FPGAs [8].
A few years later, Tanwar et al. focus on communication

not between the main processors but between other periph-
eral PCIe-enabled devices, and achieves a 4-Gib/s transfer
rate at PCIe (2.0) x4 between accelerators using PCIe in Zynq
SoCs [9].

Several studies on DMA-based transfers are subsequently
conducted. Kavianipour et al. have studies FPGA-based DMA
transfer using PCIe. They achieve up to 748 [MByte/s] (read)
and 784 [MByte/s] (write) by communicating between the
FPGA and the memory on the host PC via PCIe [3].

In addition,when the processor operating frequency reaches
its peak, research has been conducted on P2P DMA, which
communicates directly between PCIe devices without using
any processors or a DMA controller [5].

NVIDIA has achieved direct communication between dif-
ferent GPUs via PCIe using a technology called GPUDirect.
Products using this technology have already been developed
[6].
As mentioned above, most research on data transfer and

DMA focus on devices with PCIe slots. However, edge com-
puters, such as those installed on small devices, are not suffi-
ciently large to use PCIe. Recently, SoC FPGAs have attracted
considerable attention as edge-side computers, and there
have been many related studies.
Jridi has examined the effectiveness of SoC FPGAs on

the Internet of Multimedia Things (IoMT). In this study, the
author envisions wireless image transmission and display
functions as applications, as well as the ability to compress
and encrypt multiple images simultaneously. In this paper,
power efficiency is improved by a factor of 7.7 by incorpo-
rating many of these functions in FPGAs as hardware [2].
Zhu et al. have focused on the fact that SoC FPGAs are often
used in edge-side computers in edge computing, and achieve

efficiency through dynamic task scheduling [10]. Qingqing
et al. have focused on the large amount of information from
sensors and other sources in mobile robots and offload the
hard processing to the FPGA side by using a SoC FPGA for
LiDAR odometry (light-based self-position estimation) of a
multi-robot, thereby increasing speed [7].
SoC FPGAs are expanding in edge computing. However,

communication between the processor and FPGA in SoC
FPGAs is performed via memory using an AXI bus [4]. This
results in a low transfer rate when the transfer size is large
because multiple memory accesses occur, and the bus is
occupied for a long time.

3 Vector Register Sharing Mechanism
3.1 Key idea of the proposed mechanism
The vector register sharing mechanism is developed to bring
high-speed data transfer between a processor and an accel-
erator in a SoC FPGAs by sharing the processor’s internal
vector registers directly with the accelerator, as shown in
Figure 1.

Figure 1. Vector Register Sharing Mechanism.

The transfer rate of the proposed mechanism is shown by
comparing it with Xilinx’s AXI DMA as an example. Because
AXI can transfer data up to 1024[bit] wide, this example
assumes n[bit] data larger than 1024[bit].
In Figure 2, the following procedure is used to perform

the transfer.
1. The processor transfers the data to memory. (memory

delay + n/1024 [clock])
2. Processor sends the address to DMAC (1[clock])
3. DMAC loads data from memory (memory delay +

n/1024 [clock])
4. DMAC transfers data to the FPGA (n/1024[clock])
The following number of clocks are required in total.
• (n/1024)×3 + 2[clock]
• memory delay× 2[clock]

The transfer with our proposed mechanism is shown in
Figure 3. Since the vector registers are directly shared, the
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Figure 2. DMA for processor to the FPGA data transfer.

transfer can be performed in one clock regardless of the
memory delay. Even if this mechanism is implemented on
the AXI bus, the transfer can be done in (n/1024) [clock]. The
comparison shows that the proposed mechanism is faster
than DMA.

Figure 3. Data transfer from processor to the FPGA using
vector register sharing mechanism.

Consider the case where the CPU is used for preprocessing
or post-processing before and after offloading processing to
the accelerator. For example, one may want to filter the data
to be offloaded according to parameters calculated by the
CPU. In this case of a transfer using AXI, the flow is as shown
in Figure 4.

1. Memory transfers data to processor (memory delay +
n/1024 [clock])

2. Processor runs preprocess
3. Processor transfers data to memory (memory delay +

n/1024 [clock])
4. Processor sends the address to DMAC (1 [clock])
5. DMAC loads data from memory (memory delay +

n/1024 [clock])
6. DMAC transfers data to the FPGA (n/1024[clock])
7. FPGA runs process
8. FPGA transfers data to DMAC (n/1024[clock])
9. DMAC stores data to memory

(memory delay + n/1024[clock])
10. Memory transfers data to processor

(memory delay + n/1024[clock])
11. Processor runs post-processing
12. Processor transfers data to memory (memory delay +

n/1024 [clock])

Figure 4. DMA transfer when processing before and after.

The proposed method can be executed in the order shown
in Figure 5.

1. Memory transfers data to processor (memory delay +
n/1024 [clock])

2. Processor runs preprocess
3. Processor transfers data to the FPGA (n/1024 [clock])
4. FPGA runs process
5. FPGA transfers data to processor (n/1024 [clock])
6. Processor runs post-process
7. Processor transfers data to memory (memory delay +

n/1024 [clock])

Figure 5. Transfer by vector register sharing mechanism
when there is a process before or after the main process.
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3.2 Current achievement
The processors inside existing SoC FPGAs cannot be identi-
fied. Therefore, to verify the vector register sharing mech-
anism, it is necessary to design and implement a processor
with vector registers and realize functions in the following
order.

1. Implement a processor with vector registers
2. Redesign the vector registers to be dual port
3. Connect accelerator to vector register
4. Enable vector load to supply data to accelerator
5. Start verification

In this paper, we designed and implemented a processor with
vector registers and dual-port vector registers.

4 System Configuration
4.1 Extended ISA
The processor supports RISC-V (RV64IMV) partially. Vector
extension v1.0-rc2 is adopted. The configuration parameters
are implemented by assuming that the number of vector
registers (LMUL) used in one instruction is less than or equal
to one. The instructions are implemented with only some
integer arithmetic instructions such as the RV64IM exten-
sion, and arithmetic instructions that change the width of
one element (SEW) in a vector register only in the destina-
tion register (widening and reduction instructions) are not
implemented.

In addition, unique instructions are implemented. To eval-
uate the vector register sharing mechanism, several instruc-
tions are implemented for measurement, such as an instruc-
tion to count the number of cycles and instructions of a
specified process and an instruction to display the value of
a specified register. In addition, to speed up matrix opera-
tions, we implement an original vector extension instruction
(VACC instruction) that calculates the sum of the elements
in a vector register.

4.2 Microarchitecture
The designed processor is shown in Figure 6. This processor
is in-order execution and can operate in a pipeline. This
processor operates in five stages. The decode, execution,
and write-back stage run in separate modules for vector
extension instructions and other instructions. The fetch and
memory access stage modules use memory and are shared by
all instructions. To avoid the READ-AFTER-WRITE hazard,
stalls are placed after branch instructions, jump instructions,
and load/store instructions.

4.3 Dual ported vector registers
To implement the vector register sharing mechanism, vector
registers must be dual-ported to make them accessible from
both the accelerator and processor. A ready/valid signal is
used by the accelerator to transfer data to the processor.
First, when write_valid is one, the arbiter checks the signal

Figure 6. Organization of the processor.

from the write back stage. If the signal from the write back
stage indicates a write to the same vector register, the arbiter
maintains its status and waits. Otherwise, the arbiter writes
write_data to the specified address in the vector register and
sets write_ready to one. The accelerator always outputs the
value of the specified vector register to the processor without
valid or ready.

Figure 7. Dual-ported vector registers and their input/out-
put.

5 Preliminary Evaluation
5.1 CPI
Two test benches are prepared to measure CPI. The number
of cycles required for the execution stage is the same for
both the RVV and scalar instructions, 1[clock]. The two
test benches used to verify CPI use scalar instructions. First,
a program is written in assembly language to determine
whether the number n is prime. In this program, n is divided
by n-1 to 2, and if there is a zero at the remainders, it is judged
not to be a prime number. Next, a program is written in C
to determine the nth tribonacci number. The nth tribonacci
number is calculated using Equation (1).

𝑓 (𝑛) =


0 if 𝑛 = 0
1 if 𝑛 ≤ 2
𝑓 (𝑛 − 1) + 𝑓 (𝑛 − 2) + 𝑓 (𝑛 − 3) if 𝑛 > 2

(1)
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Table 1. Maximum operating frequency/Resource usage.

Result Utilization in Alveo U250[%]
Processor Type without RVV with RVV without RVV with RVV

Maximum Operating Frequency[MHz] 59.72 9.84 - -
LUT 32743 933660 1.89 54.03
FF 6106 51862 0.18 1.50
DSP 50 1262 0.41 10.27

.

Figure 8. CPI measurement results.

The CPI have been measured as shown in Figure 8.
In the measurement, both data and instruction memory

are simulated without a memory delay. The CPI for prime
number determination is 1.60, and the CPI for tribonacci
number calculation is approximately 1.75.

The difference between the two test benches is in the fre-
quency of stall signals. The source code for prime number
evaluation is written in assembly language. This program
does not have a load/store instructions inside the loop. By
loading and storing memory before entering the loop, mem-
ory accesses are not performed in a process that is repeated n
times. Conversely, the source code for the tribonacci number
calculation is written in C language for recursive processing.
Because no optimization options are used at compile time,
many load and store instructions are used before and after
the function. Therefore, many load and store instructions are
used in this program. Additionally, many jump instructions
are executed using function calls. Because these instructions
require stalls, the CPI of the tribonacci number is slightly
higher.

5.2 Speed of matrix multiplication with V
instructions

Matrix multiplication (matmul) refers to the operation in
equation 2. In this test bench, A, B, and C are each 𝑛 × 𝑛

square matrices.

𝐶 = 𝐴𝐵. (2)
To compare the speed of matmul, two programs were

prepared for this equation.
Without the vector extensions, the program is a triple loop

as shown below.

Listing 1.matmul without RVV and the original instruction.
1 for ( i ) {
2 for ( j ) {
3 for ( k ) {
4 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ j ] [ k ] ;
5 }
6 }
7 }

With the vector extensions, the matrix multiplication code
is written in a double loop, as in the following program.

Listing 2. matmul with RVV and the original instruction.
1 for ( i ) {
2 for ( j ) {
3 vmul . vv v1 , A[ i ] , B [ j ]
4 vacc C[ i ] [ j ] , v1
5 }
6 }

The number of clocks for matrix multiplication with and
without vector extensions are compared using these test
benches. The results are shown in Figure 9.

Figure 9. Comparison of the speed of matmul.

The results indicate that the number of clocks required
to perform matrix multiplication decreases when vector ex-
tensions are used. The original instruction (VACC) reduces
the number of statements, which may have resulted in an
exponential decrease in the number of clocks with respect
to matrix size n.
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5.3 Operating frequency/Resource usage
The maximum operating frequency and resource usage are
measured with and without RVV. The vector register length
is 1024[bit]. Vivado 2020.3 is used for the verification. The
target device for the synthesis is Xilinx Alveo U250. The
operating frequency and resource usage are listed in Table 1.
These results show that processors with RVV have a sig-

nificant increase in resource usage and a significant decrease
in operating frequency have compared to processor without
RVV. The processor with RVV is found to be themost feasible
processors for FPGAs. The maximum CPI is approximately
1.6. The maximum transfer rate of the vector register sharing
mechanism is 787.2 [MByte/s].

6 Conclusion
We have proposed a vector register sharing mechanism for
fast data transfer between a processor and an accelerator. In
the mechanism, some vector registers inside the processor
are shared directly with acceleration circuits. After we com-
pared the transfer speed of this mechanism with DMA, we
have confirmed that the vector register sharing mechanism
can achieve faster transfers for hardware acceleration.
From the preliminary evaluations, the implemented pro-

cessor performs with the CPI as at most 1.6. Moreover, the
processor executes matrix multiplication up to 73.9 times
faster when using V-extensions with themaximum operating
frequency as 9.84[MHz]. Therefore, when the vector register
sharing mechanism is used, this processor can transfer data
at a maximum rate of 787.2 [MByte/s].

Future work
One of the reasons for the lowmaximumoperating frequency
of the processor is that multiplication and division circuits
are implemented without a pipeline, and the frequency is lim-
ited by the critical path. To overcome this problem, we will
improve the frequency by pipelining for the multiplication
and division circuits.

Longer vector registers for RISC-V are required to improve
the transfer rate. Currently, 54 [%] of the LUTs are used for
most vector registers and their arithmetic components.

In the future, we plan to implement vector registers on the
BRAM so that they can be operated asynchronously. This is
expected to reduce LUT utilization and allow longer vector
registers to be implemented.
In addition, it is necessary to connect the vector register

sharing mechanism to the accelerator and compare the speed
with AXI DMA. This comparison should confirm not only the
transfer speed but also the speed improvement in the actual
application. Therefore, it is necessary to compare the time
taken and the number of clocks by running the processes
that are often seen in edge-side computers. For the purpose,
it is necessary to determine the application, implement logic
to accelerate the application on the FPGA, and implement

the AXI bus and a proprietary bus to support DMA transfers
and vector register sharing mechanisms[1].
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