
RISC-V Dataflow Extension
Authors: Martin Cowley and Lina Sawalha

Western Michigan University

CARRV 2021

Background

Control Flow

• Algorithm represented as a sequence of instructions

• Instructions fetched in-order

• Instructions might be executed out-of-order

• Maintain control flow (commit in-order)

Dataflow

• Program is a graph of instructions

• Arcs between instructions are true-data dependencies

• Increase Instruction-level-parallelism (ILP): instructions
are executed based on the availability of data

2

Control Flow Challenges

Challenges with out-of-order CPUs

• Extract ILP from control-flow programs

• Dataflow Execution of control-flow programs (limits window size)

• Complex hardware to extract data-dependencies

How to improve performance and minimize energy consumption?

3

Explicit Dataflow Motivation

True-data dependencies are exposed to the ISA

• Increase window of instructions

• Simplify hardware

• Better at handling irregular applications

4

Related Work

• Explicit Architectures
• Tagged-token machines (Gurd 1985, Arvind 1990, Papadopoulos 1990)

• Wavescalar (Swanson 2007)

• Hybrid Architectures
• TRIPS (Burger 2004)

• Dyser (Govindaraju 2012)

• Heterogeneous
• SEED (Nowatzki 2015)

5

Contributions

• Dataflow sub-ISA

• Simple LLVM-based compiler

• Gem5 simulation model
• Explicit dataflow model

• Heterogeneous: existing out-of-order (O3) combined with new dataflow
model

6

RISC-V Extension

• Max Operands: 2

• Max dependencies: 3

• Dependencies are encoded in the
bitfields for the instruction

• Control Dependencies are
converted to data dependencies

7

Instruction Bitfields

• Destination: pointer
to dependent
instruction

• D2,D1,D0: specifies
the left or right
operand

8

Arithmetic and Logic Instructions

9

Memory Instructions

Memory aliasing

• Conservative approach
• Memory instructions are forced

to execute in-order

• Compiler inserts data
dependencies between memory
instructions

10

Conditional Instructions

• Control dependencies are converted into data
dependencies

• df_br: conditional branch instruction (if-else)

• df_loop_br: used to implement loops

• df_switch: switch between dataflow and Von
Neumann execution

11

Dataflow Microarchitecture

• Circular pipeline

• Fetch stage: no PC

• Decode stage: no reg file

• Match Unit:
• 450-entry token cache

• Simple loop predictor

12

Instruction Scheduling

• Operands are stored in the cache until all operands have arrived for
the corresponding instruction

• Dispatch: instructions are dispatched to functional units (FUs) when
all operands have reached the token cache

• The output to the FUs are placed in the
token queue to later be processed by the
operand cache

13

Heterogeneous Microarchitecture

• Switches between OoO and
Explicit dataflow execution

• Shared L1 Cache

• Special dataflow instructions
allow the two architectures
communicate

14

Experiments

• Added heterogeneous model to gem5
• Combination of dataflow core + existing O3 model

• LLVM backend
• Generates dataflow graphs from C/C++ code

• more work required to optimize code (optimizations are currently done by
hand).

• Microbenchmarks test common programming features
• Loops, arrays, arithmetic, etc.

15

Microbenchmarks

Sum array:
• simple loop

• regular memory access

Indirect Sum:
• simple loop

• irregular memory access paterns

Matrix Multiplication:
• Regular memory access (matrix)

• More complected control structures

16

Results

• Up to 7.5% improvement

• Worst case: -2.36% reduction

(mainly due to fine-grain switching overhead)

17

Conclusion and Future Work

• New extension for the RISC-V ISA

• Added a dataflow simulation model to gem5

• Up to 7% improvement over gem5’s existing OoO core.

• Future work:
• Improve compiler to better optimize code and target larger applications

• Run many benchmarks to measure dataflow benefit for different applications
and domains

• Estimate energy consumption

18

