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Background

Control Flow

• Algorithm represented as a sequence of instructions

• Instructions fetched in-order

• Instructions might be executed out-of-order

• Maintain control flow (commit in-order)

Dataflow

• Program is a graph of instructions

• Arcs between instructions are true-data dependencies

• Increase Instruction-level-parallelism (ILP): instructions 
are executed based on the availability of data
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Control Flow Challenges

Challenges with out-of-order CPUs

• Extract ILP from control-flow programs

• Dataflow Execution of control-flow programs (limits window size)

• Complex hardware to extract data-dependencies

How to improve performance and minimize energy consumption?
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Explicit Dataflow Motivation

True-data dependencies are exposed to the ISA

• Increase window of instructions

• Simplify hardware

• Better at handling irregular applications
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Related Work

• Explicit Architectures
• Tagged-token machines  (Gurd 1985, Arvind 1990, Papadopoulos 1990)

• Wavescalar (Swanson 2007)

• Hybrid Architectures
• TRIPS  (Burger 2004)

• Dyser (Govindaraju 2012)

• Heterogeneous
• SEED (Nowatzki 2015)
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Contributions

• Dataflow sub-ISA

• Simple LLVM-based compiler 

• Gem5 simulation model
• Explicit dataflow model

• Heterogeneous: existing out-of-order (O3) combined with new dataflow 
model
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RISC-V Extension

• Max Operands: 2

• Max dependencies: 3

• Dependencies are encoded in the 
bitfields for the instruction 

• Control Dependencies are 
converted to data dependencies
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Instruction Bitfields

• Destination: pointer 
to dependent 
instruction  

• D2,D1,D0: specifies 
the left or right 
operand 
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Arithmetic and Logic Instructions
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Memory Instructions

Memory aliasing

• Conservative approach
• Memory instructions are forced 

to execute in-order

• Compiler inserts data 
dependencies between memory 
instructions
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Conditional Instructions

• Control dependencies are converted into data 
dependencies

• df_br: conditional branch instruction (if-else)

• df_loop_br: used to implement loops

• df_switch: switch between dataflow and Von 
Neumann execution
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Dataflow Microarchitecture

• Circular pipeline

• Fetch stage: no PC

• Decode stage: no reg file

• Match Unit:
• 450-entry token cache

• Simple loop predictor 
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Instruction Scheduling

• Operands are stored in the cache until all operands have arrived for 
the corresponding instruction

• Dispatch: instructions are dispatched to functional units (FUs) when 
all operands have reached the token cache

• The output to the FUs are placed in the 
token queue to later be processed by the 
operand cache
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Heterogeneous Microarchitecture

• Switches between OoO and 
Explicit dataflow execution

• Shared L1 Cache

• Special dataflow instructions 
allow the two architectures 
communicate
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Experiments

• Added heterogeneous model to gem5
• Combination of dataflow core + existing O3 model

• LLVM backend
• Generates dataflow graphs from C/C++ code

• more work required to optimize code (optimizations are currently done by 
hand).

• Microbenchmarks test common programming features
• Loops, arrays, arithmetic, etc.
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Microbenchmarks

Sum array:
• simple loop 

• regular memory access

Indirect Sum:
• simple loop 

• irregular memory access paterns

Matrix Multiplication:
• Regular memory access (matrix)

• More complected control structures
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Results

• Up to 7.5% improvement

• Worst case: -2.36% reduction 

(mainly due to fine-grain switching overhead) 
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Conclusion and Future Work

• New extension for the RISC-V ISA

• Added a dataflow simulation model to gem5 

• Up to 7% improvement over gem5’s existing OoO core.

• Future work:
• Improve compiler to better optimize code and target larger applications

• Run many benchmarks to measure dataflow benefit for different applications 
and domains

• Estimate energy consumption
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