
17/06/2021 1Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Extending the RISC-V ISA for exploring
advanced reconfigurable SIMD instructions

Fifth Workshop on Computer Architecture Research with RISC-V (CARRV 2021)

Philippos Papaphilippou, Paul H. J. Kelly, Wayne Luk

Department of Computing, Imperial College London, UK

Source available: philippos.info/simdsoftcore

Questions? pp616@ic.ac.uk

17/06/2021 2Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Introduction - Motivation
● Tradeoff between using CPUs with SIMD vs FPGAs

– ISAs provide a fixed set of vector extensions in CPUs
● Overspecialised instructions, bloated extensions
● Still inefficient in certain applications
● Increased hardware complexity
● Relying on sophisticated high-end micro-architecture

– FPGA are flexible, but are found in highly-heterogeneous systems
● Main memory bottleneck for HPC: high latency, low bandwidth
● Complicating the programming models
● Communication logic impacts operating frequency

● A possible future path in computer architecture
– Small FPGAs on modern CPUs working as instructions

● No easy way to explore custom SIMD instructions currently

CPU

Accelerator

DRAM

CPU
core

slot 0

slot 1

slot 2

slot 3

17/06/2021 3Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Contributions
● Experimental non-standard instruction types

– Enabling optional access to a high number of registers
– Expressing complex SIMD tasks with fewer instructions

● An open-source softcore
– Complete framework to evaluate novel custom SIMD instructions
– Micro-architectural design choices to maximise streaming performance
– Source available: philippos.info/simdsoftcore

● Verilog (HDL) templates for custom SIMD instructions
– Allowing implementations of arbitrary pipeline lengths

● Evaluation of novel instructions uses cases on an FPGA for
– Sorting
– Prefix sum

FPGA

Customised
RISC-V
Softcore

17/06/2021 4Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Custom vector instruction types
● Based on RV32I base instruction types

– R, I, S/B, U/J
● Two new custom instruction types

– I’-type
● 2 vector registers for input and 2 for output
● 1 32-bit register for input and 1 for output

– S’-type
● 1 vector register for input and 1 for output
● 2 32-bit registers for inputs and 1 for output

● “V” extension not followed
– Targeting high-end processors

● (e.g. 32 vectors, 100s of instructions)

– Draft state
● Toolchain support

I-type

imm[11:0] rs1 func3 rd opcode

I’-type

vrs1 vrd1 vrs2 vrd2 rs1 func3 rd opcode

S-type

imm[11:5] rs2 rs1 func3 rd opcode

S’-type

vrs1 vrd1 imm rs2 rs1 func3 rd opcode

31 29 28 26 25 24 23 22 20 19 15 14 12 11 7 6 0

Naming conventions:
(v)rs: source (vector) register

(v)rd: destination (vector) register

17/06/2021 5Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Custom vector instruction types
● Main ideas

– Accessing multiple register operands
● Advanced SIMD instructions

– Only 8 vector registers
● Fit many operands in (32-bit) instructions
● Reduced need for chaining

– Vector 0 representing 0
● Easily alias unused operands with 0

● Minimal toolchain modification
– Using the custom instruction opcodes

● 0x2, 0xa, 0x16, 0x1e

– Using the immediate fields for Vector registers
● Using pre-existing types I and S

– Call using inline assembly
● Example: load data of address x+y to vector register 1 in C/C++:

I-type

imm[11:0] rs1 func3 rd opcode

I’-type

vrs1 vrd1 vrs2 vrd2 rs1 func3 rd opcode

S-type

imm[11:5] rs2 rs1 func3 rd opcode

S’-type

vrs1 vrd1 imm rs2 rs1 func3 rd opcode

31 29 28 26 25 24 23 22 20 19 15 14 12 11 7 6 0

asm volatile ("c0_lv x0, %0, %1, %2":: "r"(x), "r"(y), "I"(1<<(6)));

17/06/2021 6Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Verilog instruction templates
● Supporting arbitrary pipelines

– Custom code after “/// User code ///”
● Parameters

– Vector register width (VLEN)
– Pipeline latency (c1_cycles)

● Template for instruction type I’
● Inputs register values:

– in_data, in_vdata1, in_vdata2
● Destination register names:

– rd, vrd1, vrd2
– (will eventually reappear as output)

● Equivalents for output
– out_ prefix

17/06/2021 7Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Verilog instruction templates
● Simple example: sort 4 values inside a vector register

– 4 × 32-bit integers = 128-bit vector (for VLEN=128)

● Implementing a small bitonic sorter

– Consisting of compare-and-swap (CAS) units: sorters of 2 elements

– 3 pipeline stages for 3 layers, required to sort 4 elements

36
37

> > >

output

17/06/2021 8Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Last-Level Cache (LLC)

Softcore Micro-architecture
● RISC-V Core

– Specification: RV32 I, M
– Single pipeline stage for basic instructions

● But separate pipelines for caches, “M”, SIMD

● Cache hierarchy
– DL1, IL1, LLC caches
– Traditional (modified Harvard) model

● All caches accessing the same address space
● Not a given in softcores

– NRU cache replacement policy
– Writeback policy

● Tested on Ultra96 FPGA, running at a frequency of 150 MHz
– Sharing same DRAM as ARM A53 cores

17/06/2021 9Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Last-Level Cache (LLC)

Optimisations for SIMD and streaming

● DL1 block size equal to VLEN

– Supporting throughput for SIMD

– No need to fetch block on SIMD writes

● Very wide LLC blocks

– Efficient bursts to main memory

– Localities favouring streaming pattern

● LLC strobe functionality

– Support storing wide blocks efficiently in FPGA’s block RAM

● Doubling the frequency of the interconnect (platform-specific)

– Saturate the port bandwidth more easily with 300 MHz at 128-bit/ cycle

– Emulating a port of double the width (VLEN)

17/06/2021 10Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Evaluation
● Three goals

– Evaluate the efficiency of the softcore implementation
– Justify the design choices related to streaming

performance
– Explore the behaviour and efficiency of example novel

custom SIMD instructions
● Evaluation platform (Ultra96 board)

– Ultra96 board
● Xilinx Zynq UltraScale+ device: 4 ARM cores & FPGA
● 2 GB RAM: 1GB for ARM, 1GB for RISC-V softcore

– Controlling the RISC-V softcore through the ARM
cores running Linux

17/06/2021 11Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

32 64 128 256 512 1024

0

2

4

6

8

10

m
em

cp
y(

)
R

at
e

(G
B

/s
)

S
peedup over 32-bit registers

Vector register width (bits)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2048 8192 32768

m
em

cp
y(

)
R

at
e

(G
B

/s
)

LLC block size (bits)

Evaluation: Design space exploration
● Parameters

– Vector register size (VLEN) → impacting SIMD parallelism and localities
– LLC block size → impacting burst size through the AXI bus

● Selected configuration:
– 256-bit vector registers, 16384-bit LLC blocks

17/06/2021 12Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Evaluation: softcore implementation details

● Final configuration:

– For Ultra96

– Through parameters

● Indicative performance comparison with other (non-SIMD) softcores in the literature:

17/06/2021 13Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Evaluation: streaming performance

● Evaluating communication efficiency

● STREAM benchmark suite

– Adopted for RV32I, non-SIMD

– 4 kernels: Copy, Add, Scale, Triad
● Copy: 0.18 GB/s
● SIMD Copy: 1.37 GB/S (through memcpy())

● Indicative comparison with a drop-in replacement

– PicoRV32 working as an AXI peripheral at 300 MHz

– STREAM best rates
● 4.8, 3.6, 4.4, 4 MB/s for Copy, Scale, Add, Triad

– The proposed softcore is 38x faster for copy, and 144x faster with SIMD

17/06/2021 14Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Use case 1: sorting
● Complete 32-bit sorting

– Based on Batcher’s odd-even mergesort
– Pipelined implementations

● Two new instructions
– c2_sort

● Sort 8 × 32-bit integers (1 vector)
– c1_merge

● Merge two sorted lists of 8 × 32-bit integers
(2 vectors)

● Modification to support arbitrarily long inputs

● Algorithm phases
– Sort all input in chunks of 16 elements

● (2 calls of c2_sort, 1 call of c1_merge)

– Merge hierarchically using c1_merge

0 1 2 3 4 5 6 7 8 9 10

cycles

5

3

9

10

2

0

1

4

6

6

0

11

3

8

2

12

0

1

2

3

4

5

9

10

0

2

3

6

6

8

11

12

0

0

1

2

2

3

3

5

6

6

8

9

10

11

12

4

17/06/2021 15Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Use case 1: sorting
● Sorting-in-chunks loop: execution timeline visualisation

● Performance results for complete 32-bit sorting of 64 MiB of random input

– 12.1 times speedup over qsort()

– 1.8 times speedup over qsort() on the hardened ARM A53 core

17/06/2021 16Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Use case 2: prefix sum
● Prefix sum

– Useful in many database operations

– Serial version pseudocode:

● Pipelined implementation

– Based on the Hillis and Steele algorithm

– Modified to support arbitrarily long input
● Results

– 4.1 times speedup over the serial version

17/06/2021 17Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Discussion
● Comparing use case 1 - sorting to an older Intel approach [Chhugani et al. 2008]

– Sorting 16 integers (for phase 1) over 4 integers using Intel SIMD intrinsics
● 13x lower instruction count
● 4.3x fewer cycles

● Ideally, the reconfigurability is left for the instructions
– Simple instruction implementations, benefiting from higher-end CPU features
– Potentially operating at much higher frequencies

● Challenges for reconfigurable instructions in more advanced CPUs
– Holding states inside the instruction (and not through operands)
– Wrong execution path, context switching support

● Holding states inside the instruction
– Challenging, but it would be necessary for approaching FPGA-like performance
– FPGAs benefit from on-chip memories
– Can complicate programming models, verification etc.

17/06/2021 18Extending the RISC-V ISA for exploring advanced reconfigurable SIMD instructions

Conclusions
● Contributions

– Experimental non-standard instruction types
– An open-source softcore for exploring custom SIMD instructions
– Templates for implementing advanced reconfigurable instructions
– Micro-architectural design choices to maximise streaming performance

● Small FPGAs working as custom instructions on modern CPUs can
– Reduce instructions and cycles
– Remove the bandwidth bottleneck in FPGAs
– Simplify the ISA vector extensions
– Lower the hardware complexity

● Future work
– Further improvements and pipelining of the framework
– Experiment with partial reconfiguration for a more modular approach
– Elaborate on possible real-world workarounds for the internal state challenge

Thank you for your attention!

Questions?

Source available:
philippos.info/simdsoftcore

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

