
Performance Counter Design Variation in
Rocket Chip via Feature-Oriented Programming

Justin Deters & Ron Cytron

Washington University in St. Louis
j.deters@wustl.edu

Supported under NSF CISE award CNS-1763503 Performant Architecturally Diverse Sys-
tems via Aspect-oriented Programming

Features in RISC-V

• RISC-V implementations need
to be adaptable to be
successful.

• Not all features are needed
all the time.

• Sometimes we seek to
augment features.

• We demonstrate this using
Rocket Chip’s performance
counters.

1

Feature Choices

2

Standard Rocket Chip

3

Embedded Core

4

Small Core

5

Debug Core

6

• How do we mix these features together?
• What happens when we do this?

6

Current Monolithic Design

• The naive approach includes
all features in
If-Then-Else blocks.

• Including all features quickly
becomes unmanageable.

• Monolithic design obscures
where the system starts and
ends.

• Hard coding and entangling features complicates maintenance
and extension.

7

Instead deconstructing a monolithic version,
why not construct a version with only the

features we need?

7

Feature-Oriented Programming

• We follow a feature-oriented
approach to introduce
features and their variations
into a core implementation.

• Obtain a foot print with only
the features we need.

• Structure the code to
accommodate future
variations easily.

• Instead of including everything, break the performance counter
system into user selectable feature units.

• Use aspect-oriented programming to apply selected features.
• Aspects capture what and where code should be added.
• Conditionally apply aspects to “weave” desired features.

8

Contribution: Feature Application using Scala Trees (Faust)

• We modify the Scala abstract
syntax trees with feature
information.

• Faust can modify any part of the
generator.

• We hook directly into the type
system of Scala/Chisel.

• Faust packages features into
aspects.

1 t r a i t CSRHardware {
2 def buildDecode () : Unit
3 def buildMappings () : Uni t
4 }
5
6 c lass CSRF i le () with CSRHardware {
7
8 buildMappings ()
9
10 buildDecode ()
11
12 def buildMappings () = {
13 //mapping code
14 }
15
16 def buildDecode () = {
17 //decode code
18 }
19 }
20
21 abs t rac t c lass PerfCounters ()
22 extends CSRHardware {
23
24 def buildMappings () = {
25 //mapping code
26 }
27
28 def buildDecode () = {
29 //decode code
30 }
31 }

9

Feature DSL

• Faust borrows syntax from aspect languages.
• Users just need to extend the Feature class.

Example
1 class CounterSystemFeature (numCounters: Int) extends Feature {
2 before (q"buildMappings()") insert (q"val numRealCounters =

$numCounters") in (q"class CSRFile") register
3

4 after(q"buildMappings()") insert q"performanceCounters.
buildMappings()" in (q"class CSRFile") register

5

6 before (q"buildDecode()") insert (q"performanceCounters.
buildDecode()") in (q"class CSRFile") register

7 }

• Easily package features and add them to Faust.

10

Dependency Management

11

When are events counted?

Direct Counters
• The standard way
Rocket Chip collects
event information.

• All events are counted
at all times if
configured.

Address Restricted Counters

• Events are only counted when the PC is within a specific address
range.

• Feature users can customize the address range.

12

Which events are counted?

Instruction,
Microarchitectureal, &
Cache Events
• These are the events
provided by
Rocket Chip.

• These groupings are
arbitrary and could
easily be more
atomized.

Accumulator Event

• Simple event from the Accumulator RoCC accelerator.
• Any accelerator could be adapted to provide event information.

13

Endpoint Design Variations

• The base implementation has 24056 LUTs.
• Only pay for features that we actually want.
• Easily compare different design endpoints.

14

• Our feature oriented design can save space!
• Monolithic implementations leave space
savings on the table and are tedious to start
with.

14

Conclusions and Future Work

Our System
• Compossible
• Extendable
• Simple
• Cheap

Future Work
• Bring feature-oriented design
to other parts of Rocket Chip.

• Work directly with
Rocket Chip authors to
improve the type system.

Feature-oriented design provides a viable path for RISC-V
implementations to be tailored, extendable, and easy to understand.

15

