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Motivation 

● Influx of real-time devices 
○ Processing sensitive information

● Edge Computing
● Increased third-party applications on real-time devices

○ Crypto libraries, IDS, etc. 

● Attacks targeting these devices
○ Tesla Attack through Connman [1] 
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Existing Solutions

● RTOS Kernel Security
○ Not reliable [2] 

● Memory Protection Units (MPUs) 
■ Doesn’t protect adversary RTOS

● Software-Fault Isolation
○ Performance Overhead
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Goals

1. Strong isolation
2. Negligible performance overhead
3. Protection against adversary RTOS

Solution: Trusted Execution Environments
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Trusted Execution Environments (TEE)

● Enables secure computation and isolation 
○ Even from privileged OS!

● Must be suitable in an embedded system context..
○ No expensive hardware 

● Dynamic TEE creation 
○ Dynamic installation of 3rd party apps 

● Multi-isolation 
○ Isolate between tasks
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TEE/Enclave Backends 

● Intel Software Guard Extensions (SGX)
○ Expensive hardware (i.e. Memory Encryption Engine) 
○ Required VM Support

● ARM TrustZone
○ Single zone architecture

● MultiZone
○ No dynamic TEE creation
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● Open-source framework to create customizable TEEs
● Based on RISC-V architecture

○ Isolation via PMP registers
● No reliance on VM

○ Easy to remove S-mode component
● Dynamic multi-TEE creation
● Software Encryption/Integrity
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FreeRTOS

● Open-source!
● Popular RTOS owned by Amazon

○ Libraries to interface with AWS

● Small Footprint
○ Kernel is only 3 files 

● Add-on libraries
○ TCP/IP 
○ I/O 
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Keystone + FreeRTOS

● Keystone isn’t a scheduler
● We still need an RTOS

○ Take away privileges 

● Solution
○ Combine FreeRTOS + Keystone 
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FreeRTOS Module -- ERTOS 

● Created a module in FreeRTOS
○ APIs to allow enclave creation, execution, etc. 

● Used Keystone as a TEE backend
○ Security Monitor manages enclaves

● FreeRTOS protected by an enclave
○ User-mode RTOS
○ Schedules tasks

● Tasks can be.. 
○ Unprotected
○ Secure (TEE)
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FreeRTOS Enclave

● Allowed to signal to SM to create, execute, or delete 
enclaves
○ Restricted for enclave tasks

● All interrupts to an enclave task switch to RTOS 
enclave
○ Mitigate DoS
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Results 
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Message Passing Modes

● Enclave Tasks
○ Asynchronous Messages via Mailbox
○ Synchronous Message Passing

■ Single Copy 
○ Shared buffer 

■ Consumes PMP 
● Normal Tasks

○ Zero-copy Queue
■ Between non-secure tasks 
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Future Work
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Thank you!

Contact: 

alexthomas@berkeley.edu 
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