
Enclaves in Real-Time Operating 
Systems

Alex Thomas, Stephan Kaminsky, Dayeol Lee, Dawn 
Song, Krste Asanovic

1



Motivation 

● Influx of real-time devices 
○ Processing sensitive information

● Edge Computing
● Increased third-party applications on real-time devices

○ Crypto libraries, IDS, etc. 

● Attacks targeting these devices
○ Tesla Attack through Connman [1] 

2



Existing Solutions

● RTOS Kernel Security
○ Not reliable [2] 

● Memory Protection Units (MPUs) 
■ Doesn’t protect adversary RTOS

● Software-Fault Isolation
○ Performance Overhead

3



Goals

1. Strong isolation
2. Negligible performance overhead
3. Protection against adversary RTOS

Solution: Trusted Execution Environments

4



Trusted Execution Environments (TEE)

● Enables secure computation and isolation 
○ Even from privileged OS!

● Must be suitable in an embedded system context..
○ No expensive hardware 

● Dynamic TEE creation 
○ Dynamic installation of 3rd party apps 

● Multi-isolation 
○ Isolate between tasks

5



TEE/Enclave Backends 

● Intel Software Guard Extensions (SGX)
○ Expensive hardware (i.e. Memory Encryption Engine) 
○ Required VM Support

● ARM TrustZone
○ Single zone architecture

● MultiZone
○ No dynamic TEE creation

6



● Open-source framework to create customizable TEEs
● Based on RISC-V architecture

○ Isolation via PMP registers
● No reliance on VM

○ Easy to remove S-mode component
● Dynamic multi-TEE creation
● Software Encryption/Integrity

7



Untrusted Enclave 1 
Enclave 2 

H
ig

he
r P

riv
ile

ge

Enclave App 1
(EAPP)

Runtime (RT) 1

Eapp App 2

RT 2Operating System (OS) 

Security Monitor (SM) 

RISC-V Cores Optional H/W Features Root of Trust

App AppUser
(U-Mode)

Supervisor
(S-Mode)

Machine
(M-Mode)

Trusted 
Hardware

8



FreeRTOS

● Open-source!
● Popular RTOS owned by Amazon

○ Libraries to interface with AWS

● Small Footprint
○ Kernel is only 3 files 

● Add-on libraries
○ TCP/IP 
○ I/O 

9



Keystone + FreeRTOS

● Keystone isn’t a scheduler
● We still need an RTOS

○ Take away privileges 

● Solution
○ Combine FreeRTOS + Keystone 

10



FreeRTOS Module -- ERTOS 

● Created a module in FreeRTOS
○ APIs to allow enclave creation, execution, etc. 

● Used Keystone as a TEE backend
○ Security Monitor manages enclaves

● FreeRTOS protected by an enclave
○ User-mode RTOS
○ Schedules tasks

● Tasks can be.. 
○ Unprotected
○ Secure (TEE)

11



User Mode

M- Mode

FreeRTOS Kernel
 

Security Monitor

SBI Interface

Mailbox Mailbox Mailbox 

Unprotected Task

TEE
 

Enclave Task

EAPP Library

TEE
 

Enclave Task

EAPP Library

12



FreeRTOS Enclave

● Allowed to signal to SM to create, execute, or delete 
enclaves
○ Restricted for enclave tasks

● All interrupts to an enclave task switch to RTOS 
enclave
○ Mitigate DoS

13



 

 

Task List 

 

RTOS 
Scheduler

U-Task

U-Task Handle

U-Task Handle

E-Task Handle

U-Task

E-Task

SBI Interface EAPP Library

M- Mode Security Monitor

 

RISC-V
Hardware

1

2

3

14



M- Mode

User Mode

FreeRTOS Kernel
Enclave 0

 
Enclave Task 1

1

Security Monitor

2

Unprotected Task 1

Unprotected Task 2

Mailbox Mailbox Mailbox 

SBI Interface

Enclave Task 2

SBI Interface

15



Results 

16



Message Passing Modes

● Enclave Tasks
○ Asynchronous Messages via Mailbox
○ Synchronous Message Passing

■ Single Copy 
○ Shared buffer 

■ Consumes PMP 
● Normal Tasks

○ Zero-copy Queue
■ Between non-secure tasks 

17



18



19



Future Work

20



ERTOS Module 

FreeRTOS

EAPP

Keystone SGX TrustZone

EAPP

Enclave Backends

21



Thank you!

Contact: 

alexthomas@berkeley.edu 

22

mailto:alexthomas@berkeley.edu


Bibliography 

[1] R. Weinmann & B. Schmotzle “TBONE - A zero-click exploit for Tesla MCUs” 
https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf

[2] G. Mullen and L. Meany, "Assessment of Buffer Overflow Based Attacks On an 
IoT Operating System," 2019 Global IoT Summit (GIoTS), 2019, pp. 1-6, doi: 
10.1109/GIOTS.2019.8766434.

23


