
RISC-V Sim State Space 
Enumeration
By Griffin Knipe, Derek Rodriguez, David Kaeli and Yunsi Fei



Why is verification important?

• Unverified speculative execution 
leaks data, even with current 
hardware and software 
protections in place.


• Post-silicon designs are too 
costly to be verified at gate-level.


• Hardware vulnerabilities break 
software security guarantees. 

Cost of complexity



Verifying communication at the block level

• Catch speculative attacks at 
start of arch design.


• Collect performance 
estimates and run litmus tests 
from a single implementation.


• Provide a verification platform 
for design exploration that 
supports block-level 
performance simulation.

Yori Goals

Is the line fill buffer 
safe from timing 
side-channels?

Do speculated loads 
bypass ASID checks 

in L2?

Is there a data race 
during FPU fault 

handling? 



• Both Akita and CheckMate rely on 
events and time to describe a µarch.


• Akita is imperative (Go), while 
CheckMate is declarative (µspec).


• Akita flexibly interfaces with different 
levels of accuracy.


• Treat Akita as a Go DSL for state 
machines.

Bridging between Akita and CheckMate

.go

.µspec

Transpile

Litmus 
Tests

Relational Model Finder

Timing 
Results

Execute

Testing 
Results

Search



• A relational model is a directed 
graph, where edges indicate 
interactions.


• Relational models can be verified 
against a set of constraints, e.g., 
the RISC-V WMO memory 
consistency model.


• Proof by Counterexample for 
both MCM litmus tests and 
security litmus tests = subgraph 
matching problems using RMF.

CheckMate for Relational 
Modeling

Source: Trippel, Caroline et al. Security Verification via Automatic Hardware-
Aware Exploit Synthesis: The CheckMate Approach. IEEE MICRO 2019

Fetch Decode Exec Mem WB

Core 1

Fetch Decode Exec Mem WB

Core 2

Cache



1. Parse Akita component definitions for 
state-holding members


2. Determine component data in-flow


3. Map data in-flow to out-flow 


4. Map flow paths to Akita events


5. (In Progress) Convert event+flow to µspec


6. (Future Work) Chain event sequences 
across components


7. (Future Work) Map event sequences to 
instructions

Imperative → Declarative: Static Analysis

.go Analyze



Example: Fetch Unit
State Machine represented in GraphViz



Future Work

• Coalesce mappings into ISA behavior. For 
example, what events correspond to a 
load instruction?


• Extend relational model extraction to all 
components: leverage Akita as a domain 
specific language. 


• Demonstrate complete CheckMate 
integration by demonstrating automatic 
vulnerability detection.



Conclusion
• Yori combines architectural simulation with bounded verification 

for ISA correctness and side channel detection. 
• We illustrate complete enumeration of the state space for a simple 

instruction fetch unit via a multi-pass, static analysis of Akita.

• We propose a path towards generating relational models from 

enumerated state spaces, which can be used to generate the 
CheckMate DSL.

This work was supported in part by the National Science Foundation under Grant CNS-1916762 with the industry support from the 
Center for Hardware and Embedded Systems Security and Trust (CHEST) and Draper Laboratory.


