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Why is verification important?

• Unverified speculative execution 
leaks data, even with current 
hardware and software 
protections in place.


• Post-silicon designs are too 
costly to be verified at gate-level.


• Hardware vulnerabilities break 
software security guarantees. 

Cost of complexity



Verifying communication at the block level

• Catch speculative attacks at 
start of arch design.


• Collect performance 
estimates and run litmus tests 
from a single implementation.


• Provide a verification platform 
for design exploration that 
supports block-level 
performance simulation.

Yori Goals

Is the line fill buffer 
safe from timing 
side-channels?

Do speculated loads 
bypass ASID checks 

in L2?

Is there a data race 
during FPU fault 

handling? 



• Both Akita and CheckMate rely on 
events and time to describe a µarch.


• Akita is imperative (Go), while 
CheckMate is declarative (µspec).


• Akita flexibly interfaces with different 
levels of accuracy.


• Treat Akita as a Go DSL for state 
machines.

Bridging between Akita and CheckMate
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• A relational model is a directed 
graph, where edges indicate 
interactions.


• Relational models can be verified 
against a set of constraints, e.g., 
the RISC-V WMO memory 
consistency model.


• Proof by Counterexample for 
both MCM litmus tests and 
security litmus tests = subgraph 
matching problems using RMF.

CheckMate for Relational 
Modeling

Source: Trippel, Caroline et al. Security Verification via Automatic Hardware-
Aware Exploit Synthesis: The CheckMate Approach. IEEE MICRO 2019
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1. Parse Akita component definitions for 
state-holding members


2. Determine component data in-flow


3. Map data in-flow to out-flow 


4. Map flow paths to Akita events


5. (In Progress) Convert event+flow to µspec


6. (Future Work) Chain event sequences 
across components


7. (Future Work) Map event sequences to 
instructions

Imperative → Declarative: Static Analysis

.go Analyze



Example: Fetch Unit
State Machine represented in GraphViz



Future Work

• Coalesce mappings into ISA behavior. For 
example, what events correspond to a 
load instruction?


• Extend relational model extraction to all 
components: leverage Akita as a domain 
specific language. 


• Demonstrate complete CheckMate 
integration by demonstrating automatic 
vulnerability detection.



Conclusion
• Yori combines architectural simulation with bounded verification 

for ISA correctness and side channel detection. 
• We illustrate complete enumeration of the state space for a simple 

instruction fetch unit via a multi-pass, static analysis of Akita.

• We propose a path towards generating relational models from 

enumerated state spaces, which can be used to generate the 
CheckMate DSL.
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