Bringing OpenCL to Commodity RISC-V CPUs

Blaise Tine, Seyong Lee, Will Gulian, Jeff Vetter, Hyesoon Kim
Motivation

- OpenCL has proven to be effective at leveraging the parallelism in commodity multi-core CPUs and GPUs
- There is a rich variety of OpenCL applications for scientific computation
- OpenCL provides access to a unique class of benchmarks for architecture research
- There is currently no publicly available implementation of OpenCL targeting commodity RISC-V processors
Challenges

- The RISC-V ISA is very flexible
- There is a large variety of commodity RISC-V CPUs
- Most RISC-V CPUs are low-profile implementations
 - Support minimal standard ISA specification
 - May not be able to run an operating system
 - May not support a filesystem
- How to compile OpenCL runtime to target RISC-V?
- How to compile the OpenCL kernel to target RISC-V?
- How to execute multiple kernel functions?
POCL Compiler and Runtime Framework

POCL[1]: Portable Open-Source OpenCL

- OpenCL Compiler
- OpenCL Runtime

Cross-platform
- CPUs: X86, ARM
- GPUs: AMD, NVidia
- Custom accelerators: TCE[2]

OpenCL Compiler
- LLVM-based
- Built-in Optimized Library

OpenCL Runtime
- Use multi-threading on CPU
- Use kernel offloading on GPU

[1] P. Jaaskelainen et al `pocl: A performance-portable OpenCL implementation`

[2] O. Jäskeläinen et al `Opencl-based design methodology for application-specific processors`
OpenCL for Linux-Capable RISC-V CPUs

Linux-Capable RISC-V CPUs
- ISA extension for OS support
 - Atomics
 - Fence
 - CSRs

Adding RISC-V support
- Cross-compilation support for RISC-V
 - OpenCL runtime
 - OpenCL application
- Kernel offline compilation
 - POCL binary format
 - New runtime kernel loader
 - clCreateProgramWithBinary()
OpenCL for Newlib RISC-V CPUs

Newlib-Capable RISC-V CPUs
Lowest Profile ISA Capabilities
Cannot host a File system nor OS

Challenges
- Where/how to store the kernel?
- How to invoke the kernel at runtime?
- What about multi-functions kernels?

Solution
- Single-file binary
 - OpenCL application
 - OpenCL runtime
 - OpenCL kernels
- Use static kernel registration
 - Pre-compiled kernel static libraries
 - Runtime registration and lookup
- `clCreateProgramWithBuiltinKernels()`
Evaluation

- Validated implementation on QEMU and Spike simulator
- Also supports the lowest RISC-V ISA profile: RV32i
- Tested Linux-capable support on Fedora 64-bit OS on QEMU
- Performance results not indicative of actual CPU scaling

<table>
<thead>
<tr>
<th>RISC-V Architecture</th>
<th>POCL Device Class</th>
<th>Tested Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV32im -lp32</td>
<td>RISCV-NewLib</td>
<td>Spike, QEMU</td>
</tr>
<tr>
<td>RV32imf -lp32f</td>
<td>RISCV-NewLib</td>
<td>Spike, QEMU</td>
</tr>
<tr>
<td>RV64imfd -lp64d</td>
<td>RISCV-NewLib</td>
<td>QEMU</td>
</tr>
<tr>
<td>RV32gc -lp32d</td>
<td>RISCV-Linux</td>
<td>QEMU</td>
</tr>
<tr>
<td>RV64gc -lp64d</td>
<td>RISCV-Linux</td>
<td>QEMU</td>
</tr>
</tbody>
</table>

Table 2: Tested RISC-V CPUs Configurations
Thank You

| Source Repository: |
| https://github.com/vortexgpgpu/pocl |

Thank you!