Versatile RISC-VISA GF extension for Cryptography and error-correction codes

Yao-Ming Kuo

Contents

- Challenges
- Our approach
- Galois field arithmetic
- ISA extension proposal
- Implementation
- Performance and FPGA resources
- Conclusion
- Future work

NEBRIJA NEBRIJA

Challenges

- The devices send all the information to a centralized authority, which processes the data.
- o Latency
- Heavy workload at the cloud side (limitations and availability)
- Privacy (sec)
- A platform, which enables the computation, communication and storage closer to the network is required.

Accenture. (2018). Cryptography in a post-guantum world.

Qian, Jia & Sengupta, Sayantan & Hansen, Lars. (2019). Active Learning Solution on Distributed Edge Computing.

Challenges

• Satellite mobile edge computing: The hardware must be flexible and be able to attend different tasks (different protocols) with low latency and power consumption.

4

Wang, Y., Yang, J., Guo, X., & Qu, Z. (2019). Satellite edge computing for the internet of things in aerospace. Sensors, 19(20), 4375.

Zhang, Z., Zhang, W., & Tseng, F. H. (2019). Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial netw orks using edge computing techniques. *IEEE network*, *33*(1), 70-76.

Our approach

- Focus on general-purpose lightweight processors, which operates with different algorithms based on GF(2^m).
 - Error-correction codes (i.e, Non-binary LDPC, BCH, RS codes)
 - Pre-quantum cryptography (i.e, AES, Elliptic Curve)
 - Post-quantum cryptography (i.e, McEliece, Rainbow, HQC)
- Proprietary ciphers based on GF(2^m).
- Hardware reutilization (No specific logic for each different algorithm). Flexibility.

Galois field arithmetic

GF(2^m) Addition ٠

$$a(x) = a_{m-1}x^{m-1} + \dots + a_1x + a_0$$

$$b(x) = b_{m-1}x^{m-1} + \dots + b_1x + b_0$$

$$a_i \wedge b_i \in GF(2), 0 \le i \le m - 1$$

- GF(2^m) Multiplication (Traditional two-step multiply) ٠
 - Carry-Less multiplication (CLMULH / CLMUL) First step: 0
 - Second step: Reduction depending on the irreducible polynomial (FFRED) Ο
- GF(2^m) Inversion

Xinmiao, Z. (2016). VLSI architectures for modern error-correcting codes. Crc Press.

ISA extension proposal

- FFWIDTH: It receives in RS1 the degree of the polynomials, and in RS2, the irreducible polynomial.
- FFRED: It receives the polynomial to be reduced as a parameter. In RS1, it receives the high part, and in RS2, the low part of the polynomial. This instruction returns the reduced polynomial c(x).
- CLMULH and CLMUL: The parameters are the same as extension B.

Example: GF multiplication for AES

ISA implementation

SweRV Core ←DMI→ AXI interconnect AXI axi2wb Memory Wishbone interconnect Boot System UART ROM controller SPI GPIO UART

Western Digital Corporation. 2020. RISC-V SweRV EL2 Programmer's Reference Manual. https://github.com/chipsalliance/Cores-SweRV-EL2/blob/branch-1.3/ docs/RISC-V_SweRV_EL2_PRM.pdf

Performance

AES128	CBC Enc.	CBC Dec.	CTR Enc.	CTR Dec.	ECB Enc.	ECB Dec.			
standard	197,920	198,240	198,208	198,197	50,641	50,726			
our proposal	38,328	39,303	39,033	38,995	10,854	11,011			
Reduc. %	80.63%	80.17%	80.31%	80.33%	78.57%	78.29%			
AES192	CBC Enc.	CBC Dec.	CTR Enc.	CTR Dec.	ECB Enc.	ECB Dec.		RS(25	5,247)
standard	242,573	242,695	242,839	242,828	62,572	62,661		Encode	Deco
our proposal	47,016	48,019	47,637	47,617	13,764	13,939	standard	154,003	151,6
Reduc. %	80.62%	80.21%	80.38%	80.39%	78.00%	77.75%	out proposal	29,006	22,6
							Reduc. %	81.17%	85.0
AES256	CBC Enc.	CBC Dec.	CTR Enc.	CTR Dec.	ECB Enc.	ECB Dec.			
standard	285,245	285,593	285,439	285,425	72,331	72,416			
our proposal	53,396	54,548	54,054	54,036	14,462	14,660			
Reduc. %	81.28%	80.90%	81.06%	81.07%	80.01%	79.76%			

Number of cycles for AES

Number of cycles for RS codes

Decode

151,681

22,648

85.07%

RS(255,239)

Decode

303,289

45,237

85.08%

Encode

300,831

58,660

80.50%

FPGA resources – Nexys A7

SweRV-EL2	Slice LUTs	Slice Registers	F7 Muxes	F8 Muxes	Slice	LUT as logic
standard	18,605	7651	341	74	5,329	18,605
our proposal	19,974	7688	413	80	5,699	19,974
Inc. %	7.36%	0.48%	21.11%	8.11%	6.94%	7.36%

Olof Kindgren, SweRVolf Github repository. https://github.com/chipsalliance/Cores-SweRVolf

Conclusion

- Flexible GF(2^m) arithmetic extension is proposed.
 - Error-correction codes (i.e, Non-binary LDPC, BCH, RS codes)
 - Pre-quantum cryptography (i.e, AES, Elliptic Curve)
 - Post-quantum cryptography (i.e, McEliece, Rainbow, HQC)
- More than 4x acceleration (~80% reduction in clock cycles) for AES and Reed-Solomon.
- Increment of only 7% in logic utilization (slices) for SweRV EL2.
- Max. operation frequency remains the same for SweRV EL2.

Future work

- Square and inverse operation implementation.
- Post-Quantum cryptography performance results.

Thank you!

