
A RISC-V Vector Accelerator for Machine Learning Inference

Imad Al Assir, Mohamad El Iskandarani, Hadi Rayan Al-Sandid, Mazen A. R. Saghir

American University of Beirut, Lebanon

Why Arrow?

 Proliferation of data-parallel machine learning applications.

 Diminishing performance returns from ILP and TLP.

 Vector architectures and ISA extensions ideal for workloads with

high levels of DLP.

Vector Processing

RISC-V (Scalar)

Execution time =

1+63*10+9+4 = 644 cycles

RISC-V (Scalar + Vector)

→ Speedup = 2.46x (without chaining)

Execution time =

1+1+64+64+64+64 + 4 = 262 cycles

C Code

Example : Vector Addition

A RISC-V Vector Accelerator for Machine Learning Inference

What is Arrow?

 Implements integer subset of RISC-V Vector Specs 0.9.

 Implemented on a Xilinx NEXYS Video FPGA board (XC7A200T-

1SBG484C).

Designed to be customizable using VHDL.

Arrow’s Architecture

Vector Register File Design

SIMD ALU

FPGA Implementation

 Implemented on a Xilinx XC7A200T-1SBG484C FPGA used in the

Nexys Video board.

 Using the Xilinx Vivado 2019.1 Design Suite.

 Arrow datapath packaged as an AXI IP.

 Xilinx MicroBlaze v11.0 as scalar processor.

 Generic and bus-independent.

FPGA Implementation

 Area Overhead:

FPGA Synthesis Results

MicroBlaze MicroBlaze + Arrow

Resource Utilization Utilization % Utilization Utilization %

LUT 2241 1.67 2715 2.03

FF 1495 0.56 2268 0.85

 Power Consumption:

 Clock Frequency: 100 MHz

FPGA Synthesis Results

System Power Consumption

MicroBlaze 0.270W

MicroBlaze + Arrow 0.297W

 Requirement : Toolchain to cross-compile C/C++ code to RISC-V binaries.

 Solution : LLVM/Clang fork offered by the EPI project. Offers support for RISC-V vector instructions

v0.9, which can be called using inline assembly or intrinsic functions.

 Requirement : Testing functional validity of our cross-compiled code / RISC-V binaries, containing

vector instructions.

 Solution : SPIKE RISC-V ISA simulator for functional validation of our benchmarks. Offers support for

the RISC-V "V" extension v0.9

Code Development Tools

 Basic Vector and Matrix operations from the University of

Southampton GitHub:

 Vector Addition, Multiplication, Dot Product, Max Reduction,

ReLu

 Matrix Addition, Multiplication, Max Pool

 2D Convolution

 Developed a cycle count model for scalar and vector operations.

Scalar cycle counts within 8% of Spike cycle counts.

Benchmark Setup

 Execution Time computed by multiplying cycle count by Arrow

clock cycle time.

 Energy Consumption computed by multiplying power

consumption (from synthesis report) by execution time.

Performance Model

Benchmark Results

 Energy reduced by:

- 96% to 99% for vector benchmarks.

- 80% to 99% for matrix operations.

- 20% to 43% for 2D convolution.

Benchmark Results

Due to its high performance and low energy consumption,

Arrow is well suited for edge machine learning applications.

Conclusion

Future Work

 Integrating Arrow as a tightly coupled accelerator in a RISC-V datapath (e.g.

WD SweRV EH1).

 Developing a gem5 model of the accelerator for more thorough performance

study using MLPerf and TinyMLPerf benchmark suites.

 Supporting ML data types (e.g. bfloat16 and posits) and ML-related

instructions.

Thank you for listening.

Questions?

