
A RISC-V Vector Accelerator for Machine Learning Inference

Imad Al Assir, Mohamad El Iskandarani, Hadi Rayan Al-Sandid, Mazen A. R. Saghir

American University of Beirut, Lebanon

Why Arrow?

 Proliferation of data-parallel machine learning applications.

 Diminishing performance returns from ILP and TLP.

 Vector architectures and ISA extensions ideal for workloads with

high levels of DLP.

Vector Processing

RISC-V (Scalar)

Execution time =

1+63*10+9+4 = 644 cycles

RISC-V (Scalar + Vector)

→ Speedup = 2.46x (without chaining)

Execution time =

1+1+64+64+64+64 + 4 = 262 cycles

C Code

Example : Vector Addition

A RISC-V Vector Accelerator for Machine Learning Inference

What is Arrow?

 Implements integer subset of RISC-V Vector Specs 0.9.

 Implemented on a Xilinx NEXYS Video FPGA board (XC7A200T-

1SBG484C).

Designed to be customizable using VHDL.

Arrow’s Architecture

Vector Register File Design

SIMD ALU

FPGA Implementation

 Implemented on a Xilinx XC7A200T-1SBG484C FPGA used in the

Nexys Video board.

 Using the Xilinx Vivado 2019.1 Design Suite.

 Arrow datapath packaged as an AXI IP.

 Xilinx MicroBlaze v11.0 as scalar processor.

 Generic and bus-independent.

FPGA Implementation

 Area Overhead:

FPGA Synthesis Results

MicroBlaze MicroBlaze + Arrow

Resource Utilization Utilization % Utilization Utilization %

LUT 2241 1.67 2715 2.03

FF 1495 0.56 2268 0.85

 Power Consumption:

 Clock Frequency: 100 MHz

FPGA Synthesis Results

System Power Consumption

MicroBlaze 0.270W

MicroBlaze + Arrow 0.297W

 Requirement : Toolchain to cross-compile C/C++ code to RISC-V binaries.

 Solution : LLVM/Clang fork offered by the EPI project. Offers support for RISC-V vector instructions

v0.9, which can be called using inline assembly or intrinsic functions.

 Requirement : Testing functional validity of our cross-compiled code / RISC-V binaries, containing

vector instructions.

 Solution : SPIKE RISC-V ISA simulator for functional validation of our benchmarks. Offers support for

the RISC-V "V" extension v0.9

Code Development Tools

 Basic Vector and Matrix operations from the University of

Southampton GitHub:

 Vector Addition, Multiplication, Dot Product, Max Reduction,

ReLu

 Matrix Addition, Multiplication, Max Pool

 2D Convolution

 Developed a cycle count model for scalar and vector operations.

Scalar cycle counts within 8% of Spike cycle counts.

Benchmark Setup

 Execution Time computed by multiplying cycle count by Arrow

clock cycle time.

 Energy Consumption computed by multiplying power

consumption (from synthesis report) by execution time.

Performance Model

Benchmark Results

 Energy reduced by:

- 96% to 99% for vector benchmarks.

- 80% to 99% for matrix operations.

- 20% to 43% for 2D convolution.

Benchmark Results

Due to its high performance and low energy consumption,

Arrow is well suited for edge machine learning applications.

Conclusion

Future Work

 Integrating Arrow as a tightly coupled accelerator in a RISC-V datapath (e.g.

WD SweRV EH1).

 Developing a gem5 model of the accelerator for more thorough performance

study using MLPerf and TinyMLPerf benchmark suites.

 Supporting ML data types (e.g. bfloat16 and posits) and ML-related

instructions.

Thank you for listening.

Questions?

