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ABSTRACT
In this work, we present a flexible and extensible bare-metal test
suite containing replications of all major transient-execution attacks
in RISC-V, which are demonstrated on RiscyOO, an open-source
out-of-order super-scalar RISC-V processor. While we characterize
these attacks both in FPGA hardware and in simulation, its sim-
plicity is particularly suited to verification in simulation during
processor development. As an example, we evaluate a version of
RiscyOO with CHERI security extensions. CHERI is an Instruction-
Set Architecture (ISA) security extension that provides fine-grained
memory protection and compartmentalization; it provides an in-
teresting target for transient-execution attacks, which are used
to violate memory safety to gain privileges and leak secrets. Our
results give clear evidence that sophisticated RISC-V implemen-
tations can be vulnerable to the same transient-execution attacks
as mainstream architectures, but give hope that open-source im-
plementations as well as open-source verification tools can help
discover and eliminate vulnerabilities during development. We fur-
ther show that the CHERI-RISC-V instruction set does not imply
defenses against transient execution attacks, but that a careful im-
plementation and aggressive pointer bounding can mitigate some
forms of attack. Our extensible test suite lays a common foundation
for future research on transient-execution attacks and their mitiga-
tions on RISC-V systems, which should pave the way to successful
and secure high-performance, open-source RISC-V processors.
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1 INTRODUCTION
Due to itsmodular nature, RISC-V describes not only one Instruction-
Set Architecture (ISA), but an entire set of ISAs [17, 18]. Processor
designers must implement the base instruction set, but can choose
which extensions they include or whether they do not implement
any further instructions. Furthermore, implementors can choose to
implement their own instructions customized for their applications’
needs. This property makes RISC-V a highly flexible ISA that has
received more and more attention in academia [3, 16].

The detection of transient-execution attacks caused an earth-
quake in the computer architecture and hardware security commu-
nity. Following the initial attacks [10, 13], new transient-execution
attacks have been detected on a regular basis [4]. While some have
asserted that RISC-V was safe from transient-execution attacks
due to the current prevelance of in-order implementations, more
sophisticated RISC-V processors are already capable of transient-
execution side-channel attacks [15]. Gonzalez et al. [6] proved the
feasibility of Spectre-PHT and Spectre-BTB on the open-source
BOOM processor and provided a preliminary mitigation mecha-
nism protecting the L1 cache. Furthermore, Le et al. [12] reproduced
Spectre-PHT on BOOM and retrieved the same results. In order
to advance the research on RISC-V in this field, we developed a
test suite comprising all major transient-execution attacks. To our
knowledge, this test suite is the first to reproduce the full set of
major transient-execution attacks on a RISC-V processor.

RISC-V is becoming a hotbed of architectural innovation in the
instruction set, and in recent years has also been extended for hard-
ware security research, e.g., the MI6 architecture [3]. The Spectre
and Meltdown family of vulnerabilities are microarchitectural side
effects of deeply speculative execution engines. Nevertheless the
architectural vocabulary of the instruction set can sometimes fa-
cilitate a microarchitecture that is resistant to transient-execution
side-channel attacks. We will examine to what degree the CHERI-
RISC-V ISA extension can enable safety in speculative, out-of-order
execution.
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In this paper, we are making the following contributions:
• Reproducing all major transient-execution attacks on RISC-V
• Building a suite to test in simulation and on a FPGA while
designing RTL1

• Demonstrating the feasibility of transient-execution attacks
on a CHERI-RISC-V microprocessor

• Evaluating the threat the various attacks mean to CHERI
systems in general

The paper is structured as follows: Section 2 introduces RISC-V
and the transient-execution attacks reproduced by our test suite, as
well as describing the abstract CHERI model and the concrete im-
plementation we are using for our experiments. Section 3 presents
CHERI’s security model and the threat model. Section 4 introduces
our test suite, which evaluates the feasibility of all major transient-
execution attacks on a processor implementing both RISC-V and
CHERI-RISC-V. Section 5 discusses our results and their implica-
tions for future CHERI implementations. Section 6 provides our
conclusions.

2 BACKGROUND
2.1 RISC-V
RISC-V is an open-source, royalty-free ISA, which follows the Re-
duced Instruction Set Computing (RISC) principle, and RISC-V is
a typical load-store architecture [2]. RISC-V offers three privilege
levels: machine level, supervisor level, and user level [18]. The
main advantage of RISC-V is its flexibility. Not only does it specify
many optional extensions, but also the concrete implementation
can decide whether the register width shall be 32 bits, 64 bits, or
128 bits. Furthermore, machine mode is the only privilege level that
is prescribed for an implementation. That gives hardware designers
a large degree of freedom to customize the implementation to the
application’s needs. RISC-V’s application area ranges from small
embedded systems to large-scale, high-performance servers.

2.2 Transient-Execution Attacks
In 2018, the detection of Spectre [10] and Meltdown [13] marked
the beginning of the era of transient-execution attacks. This class
of attacks relies on speculative execution, which all modern pro-
cessors use to improve performance. The two main mechanisms of
speculative execution are out-of-order execution and branch pre-
diction. In both cases, a microprocessor will execute instructions
where it cannot be sure whether they will actually be needed. In
case the processor speculates correctly, this improves performance.
Otherwise, the processor needs to roll back the speculatively exe-
cuted instructions and start executing the correct instruction stream.
Instructions that were erroneously executed are referred to as tran-
siently executed instructions. Their result is microarchitecturally
available as long as the misspeculation is not yet detected by the
processor. The goal of transient-execution attacks is to trick the
processor into speculatively executing an instruction stream that
accesses a secret, typically in a different protection domain. Due
to the execution eventually being rolled back, the secret has to be
recovered via a side channel (e.g., a cache timing side channel),
which is our focus here.

1https://github.com/CTSRD-CHERI/Test-Suite-Transient-Execution

Caches are heavily involved in transient-execution attacks for
two reasons. First, transient-execution attacks rely on speculatively
executed instructions and the condition that misspeculation re-
mains undetected by the processor for as many cycles as possible.
Increasing the load latency by evicting cache lines is essential to
the success of many attacks demonstrated in literature, as well as
to our example reproductions. Second, caches are used to encode
microarchitectural state. Depending on whether a cache line of a
virtual address is present or not, the load times will differ substan-
tially. Most transient-execution attacks demonstrated in academia
use the FLUSH+RELOAD [22] technique to encode a secret value.
This involves flushing an entire cache before the attack takes place.
During the attack, a load occurs to a virtual address depending on
a secret. After the attack, the attacker probes the access times of all
cache lines. The cache line encoding the secret value will lead to a
cache hit and therefore to shorter access times. By comparing the
access times of all cache lines, an attacker can leak a secret. Figure 1
shows the results of probing 16 L1 data cache lines in an example
attack. The cache line at index 10 is accessed significantly faster,
23 cycles rather than more than 66 cycles, allowing the attacker to
infer that this cache line has been accessed by the victim.

Neither RISC-V ISA nor the baseline RiscyOO implementation
offer a dedicated flush instruction [17–19]. Therefore, attackers
need to implement flush functions themselves. We implemented a
software flush function as a loop of continuous memory accesses
that will bring new lines into the caches, and eventually evict the
target lines. In order to make our flush function performant, we
used the parameters in Table 1. In our experiments, the cache state
was predictable, due to the fact that our attack was running in a
baremetal framework and was therefore the only code running
on RiscyOO at any time. For real-world attacks, other code might
operate on the processor and impact the cache state – or the cache
state before the attack runs is unknown. Real-world attacks will
therefore require a probabilistic approach but would nevertheless
be successful.
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Figure 1: Results of probing the L1 cache after an attack has
been conducted.
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Transient-execution attacks are divided into Spectre-style and
Meltdown-style attacks [4]; Spectre-style attacks follow control
flow or data flow misprediction, whereas Meltdown-style attacks
follow a faulting instruction. Following Arm’s whitepaper [1], we
identified six major transient-execution attacks applicable on RISC
architectures: Spectre-PHT, Spectre-BTB, Spectre-RSB, Spectre-STL,
Meltdown-US, and Meltdown-GP.

Spectre-PHT [10] targets direct branches and seeks to achieve
the misprediction of the decision whether a particular branch will
be microarchitecturally predicted to be taken or not-taken. An exem-
plary attack is depicted in Listing 1. In this case, the attacker trains
the direct branch resulting from the if statement such that the pro-
cessor always speculatively executes the body of the if statement.
This way, an attacker can provide any value for i and speculatively
access array0 out-of-bounds in order to obtain a secret value. This
secret value is encoded by performing a memory access to array1.

The goal of Spectre-BTB [10] attacks is to mispredict the target
of a branch. Past branch targets are stored in the Branch Target
Buffer (BTB) in order to enhance performance when the branch
is executed again. However, many microarchitectures allow BTB
entries to alias and therefore an attacker can speculatively steer
victim code to gadgets.

Most processors have a dedicated microarchitectural structure to
predict return addresses – the Return Stack Buffer (RSB). Similarly
to Spectre-BTB, Spectre-RSB [11, 14] seeks to inject a malicious
return address into the RSB and thus steer the predicted control-
flow to attacker-chosen gadgets.

Spectre-STL (Store-To-Load) [7] is an attack targeting memory
disambiguation. In order to improve performance, modern micro-
processors want to execute loads as early as possible to hide possible
latencies. To maintain correctness, loads must not be executed be-
fore dependent stores. However, microprocessors speculate on the
store-to-load dependencies, to enhance performance. Spectre-STL
exploits store-to-load misspeculation and achieves reading of stale
values from the memory subsystem.

The goal of Meltdown-US (User-Supervisor) [13] attacks is to
speculatively read from a supervisor-only page with user privileges.
In order to enhance performance, some microprocessors specula-
tively access a page before checking the permissions. This means
that there exists a window in which an attacker can access a page
without holding the necessary privileges. Meltdown-GP (General
Protection) [1] seeks to read a privileged register from user space.
Similarly, some processors allow access to these register specula-
tively before checking the permissions, which would enable an
attack.

2.3 CHERI Protection Model
Capability Hardware Enhanced RISC Instructions (CHERI) is a
security extension of conventional ISAs that adds capabilities –
unforgeable and bounded pointers. Figure 2 shows a 128-bit wide
capability that is used for 64-bit architectures. A capability contains
the address of the pointer and metadata including permissions and
bounds information. Furthermore, a capability has a hidden validity
tag (the 129th bit), which is atomically stored with the capability
in both registers and memory. A capability authorizes access to a
region of memory and no memory access is possible without a valid

capability. Furthermore, all capability operations are monotonic
and therefore cannot increase the privileges a capability grants.
Capabilities do not protect just data, but also code.

063

perms’16 experimental bounds’27

address’64

}
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Figure 2: Bit representation of a 128-bit capability.

CHERI-RISC-V is the mapping of the abstract CHERI model
to RISC-V . As RISC-V, CHERI-RISC-V is an ISA design space,
which means that it leaves freedom for future extensions and con-
crete implementations. CHERI RiscyOO, which is based on MIT’s
RiscyOO [23], is a 64-bit out-of-order superscalar processor im-
plementing CHERI-RISC-V with 128-bit-wide capabilities. The ex-
tension from RiscyOO to CHERI RiscyOO is depicted in Figure 3.
The RiscyOO basis is highly configurable. For our experiments,
we chose n = 2, which leads to two ALU pipelines and one FPU
pipeline. Independently of which value we chose for n, RiscyOO is
always configured with one memory pipeline. This makes CHERI
RiscyOO a 2-superscalar processor. A subset of the remaining pa-
rameters important to our attack set-up is listed in Table 1. We used
the same parameters in simulation and in synthesis.

Parameter Value

L1 I/D Cache Size 32 KiB
L2 Cache Size 1 MiB

Out-of-order Window 64
Memory Queues Size 38

Table 1: Overview of RiscyOO’s configuration for our exper-
iments.
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Figure 3: The CHERI RiscyOO pipeline.
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3 SECURITY AND THREAT MODEL
The ultimate target of an attacker is to leak a secret. A secret is a
value that the attacker has not sufficient permissions to access to,
e.g., a value stored on a supervisor-only page, but the attacker has
only user privileges. The goal of every test in our test suite is to get
access to resources without having the necessary permissions and
subsequently obtain a secret. CHERI systems are expected to respect
the security model of the baseline ISA, which for our described
experiments is RISC-V. Attackers should still be constrained to
the RISC-V privilege level and the address space in which they
are operating. Attackers should not be able to execute code in
a more-privileged level, nor should they have access to another
address space unless explicitly granted. The threat model used in
this work allows an attacker to execute arbitrary instructions, but
still any privilege escalation has to be prevented. Here, we follow
previous work that argues that cache side channels themselves
do not need to be prevented by hardware, but that software has
to take appropriate measures [8]. Therefore, attackers are able to
measure timing differences on CHERI-RISC-V systems and thus are
able to conduct FLUSH+RELOAD. This follows previous work from
Arm [1]. However, in our threat model it should not be possible for
attackers to gain privileges nor to leak any secret – even if only
through transient execution.

4 RESULTS
The essence of our test suite involves the transient-execution at-
tacks in RISC-V assembly that can be run on the bare-metal pro-
cessor without needing operating-system support. We extended
our test suite by applying the general RISC-V attacks to use CHERI
protection. The test suite was developed for two reasons. First, it
should prove the feasibility of a set of microarchitectural attacks
on a RISC-V processor and in its extension on a CHERI-RISC-V
microarchitecture. Second, several attacks prove the absence of
properties that might be important to certain implementations, e.g.,
CHERI systems must not allow access beyond existing capability
bounds and permissions – even if only in transient execution. Our
test suite allows running while developing hardware, and therefore
can reveal undesired microarchitectural properties in early stages.

This section presents the results of reproducing the major tran-
sient-execution attacks on CHERI RiscyOO, which is both a RISC-V
and a CHERI-RISC-V microarchitecture. An attack is successful if
it can leak a secret value. For all attacks conducted, we used the
FLUSH+RELOAD [22] cache timing side channel explained above
and tested all attacks by simulating our design using verilator. Fur-
thermore, we synthesized RiscyOO on a VCU-118 FPGA and con-
ducted our experiments on that FPGA as well. Figure 1 depicts the
cache-probing measurements of an exemplary attack (Spectre-RSB
for CHERI-RISC-V). The results for all attacks that we could suc-
cessfully conduct appear similar, and therefore the cache timing
results are not presented for any of the attacks. In Figure 1, both the
verilator and VCU-118 measurements show a significantly slower
access time for one of the cache lines and thus the attacker can leak
a secret. Furthermore, we can clearly observe that the simulation
behaves similarly in memory delays compared to the VCU-118 de-
lays, which makes our simulation results credible for future attack
results and related experiments.

RISC-V CHERI-RISC-V

Spectre-PHT S U
Spectre-BTB S S
Spectre-RSB S S
Spectre-STL S S
Meltdown-US U n/a

Meltdown-US-CHERI n/a U
Meltdown-GP U n/a

Meltdown-GP-CHERI n/a U

Table 2: Overview of attempted transient-execution attacks
on RISC-V and CHERI RiscyOO and whether they were suc-
cessful(S), unsuccessful(U ), or not applicable(n/a).
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Figure 4: Last two stages of the RiscyOO memory execution
pipeline.

A summary of the results of our experiments for both RISC-
V and CHERI-RISC-V attacks on CHERI RiscyOO is depicted in
Table 2. Compared to the transient-execution attacks described in
Section 4, we added two Meltdown-style attacks that are CHERI
adaptions of the respective two conventional Meltdown attacks.
Like Meltdown-US, attackers attempt to access memory through
Meltdown-US-CHERI which they were not granted privileges for,
which means in CHERI that attackers do not have a valid capability
to the sought region of memory. CHERI-RISC-V introduces an
Access System Registers (ASR) bit, which specifies whether code
is allowed to access Special Capability Registers (SCRs). These
SCRs are capability-wide registers that are necessary for the correct
operation of pure-capability code in CHERI-RISC-V. A Meltdown-
GP-CHERI attack seeks to speculatively access an SCR and leak
this register’s value without having the necessary ASR privileges.

As depicted in Table 2, we could not successfully any of the
four Meltdown-style attacks due to the fact that they are rendered
impossible by (CHERI) RiscyOO’s implementation. For data page ac-
cesses, the Page Table Entry (PTE) is received from the Translation
Lookaside Buffer (TLB) in the final stage in the memory execution
pipeline. This stage – depicted in Figure 4 – checks whether the
page is supervisor-only or whether it can also be accessed from
user space. In case the privileges are not sufficient, this pipeline
stage will raise a page fault exception. This exception will be han-
dled immediately and the load attempting to fetch a secret will
never leave the core. Therefore, Meltdown-US is microarchitec-
turally prevented. For a similar reason, CHERI RiscyOO prevents
Meltdown-US-CHERI attacks. In the penultimate stage of the mem-
ory execution pipeline, CHERI RiscyOO performs capability checks.
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In case the capability pointer is out-of-bounds or the capability
is invalid, an exception will be raised and the load will not leave
the core, which prevents the attack. For both Meltdown-GP and
Meltdown-GP-CHERI, the permissions for accessing system reg-
isters or SCRs are checked in the Rename stage, which is part of
the in-order front-end of (CHERI) RiscyOO. In case the code does
not have the necessary privilege level to access the sought register,
the Rename stage code will detect this and mark the instruction
as executed in the corresponding Reorder Buffer (ROB) entry. This
precludes the instruction from ever being scheduled to an execution
pipeline, which prevents a result from being executed. Therefore,
neither Meltdown-GP nor Meltdown-GP-CHERI are possible on
(CHERI) RiscyOO.

We successfully reproduced all four Spectre-style attacks on
(CHERI) RiscyOO in both RISC-V and CHERI-RISC-V assembly
with the exception of Spectre-PHT on CHERI-RISC-V. Even though
the respective RISC-V and CHERI-RISC-V variants are similar and
have the same goal, they have a different approach to reach their
goal. A conventional RISC-V Spectre attack has to circumvent ad-
dress space and privilege level boundaries whereas a CHERI-RISC-V
Spectre attack focuses on gaining access to powerful capabilities. In
CHERI, address spaces and privilege levels are existent, but they do
not play a big role because capabilities are the central security mech-
anism. In our test suite, we provide both RISC-V and CHERI-RISC-V
variants of all four Spectre attacks. For an attack, the respective vari-
ants share the similar underlying mechanisms. The CHERI-RISC-V
variants can be seen as extensions to the RISC-V attacks because
they also need to circumvent the capability security mechanism.
For brevity reasons, we present only the CHERI-RISC-V variants of
our test suite here.

The Spectre-PHT attack on CHERI-RISC-V poses a special case,
because its success depends on the concrete capability configuration.
Listing 1 shows the key lines of a Spectre-PHT attack where the
variable i is under the attacker’s control. Both array0 and array1
are represented as capabilities in CHERI. The goal of the attacker is
to speculatively execute the code covered by the if statement for
values with i ≥ size . To reach the branch-direction misprediction,
the Pattern History Table (PHT) has to be mistrained with previous
calls to the victim code, such that it strongly predicts the control
flow to the body of the if statement. CHERI systems can success-
fully mitigate this attack if the bounds of the capability guarding
array0’s memory are configured so that it allows access only to
size many elements and if the concrete implementation prevents
out of capability bounds access in any case. Our CHERI compiler
automatically establishes bounds information from memory allo-
cations and thus preserves the programmer’s intent. As explained
for Meltdown-US-CHERI, it is not possible to transiently access
memory out of capability bounds in CHERI RiscyOO. However, if
array0’s capability grants access to more than size elements, a
successful Spectre-PHT attack on CHERI RiscyOO is possible.

Listing 1: Spectre-PHT attack in C
i f ( i < s i z e ) {

in t k = a r r ay0 [ i ] ;
in t l = a r r ay1 [ k ] ;

}

Furthermore, CHERI RiscyOO provides protection against fla-
vors of Spectre-PHT attacks. In [9], the attacker’s goal is to write
to an arbitrary memory location instead of reading from it. A pos-
sible target would be overwriting a return address and therefore
manipulating control-flow in speculation. However, CHERI clearly
differentiates between whether a capability or data is being writ-
ten to memory. A data write can never lead to valid capability
being formed, because the tag bit will be stripped when writing
to memory. Therefore, CHERI systems can mitigate this type of
Spectre-PHT attack.

We reproduced multiple variants of Spectre-BTB in order to
illuminate its threat to RISC-V and CHERI-RISC-V systems. All
conducted experiments have in common that they want to specu-
latively jump from a privileged domain to an attacker-controlled
gadget residing in a less privileged domain. This way, attackers can
execute arbitrary code with privileges they previously did not have.
In our attacks, we managed to execute attacker gadgets in S privi-
lege mode. Furthermore, we were able to leak kernel capabilities to
attacker gadgets. Spectre-BTB attacks are possible because of how
RiscyOO’s BTB is designed. It has 1024 entries, which store the
address of the jump target. In CHERI RiscyOO, the BTB stores not
just the target address, but the entire target capability; therefore,
an entry comprises all privileges that come with that capability in-
cluding the one bit validity tag. Due to collisions in the BTB caused
by a hash function, it is possible for an attacker to substitute a
BTB entry with an entry holding a valid capability to the attacker’s
domain. The first step is to insert an entry to the attacker gadget,
which is achieved by executing a branch to that target. The next
time the victim jump with the aliased BTB entry is executed, the
control-flow will speculatively go to the attacker’s gadget. For sim-
ilar reasons, RiscyOO’s RSB allows Spectre-RSB attacks. The RSB
stores the entire target capability enabling speculation to powerful
capabilities in CHERI RiscyOO. The attacker’s goal is to achieve a
mismatch between the software stack containing the correct return
address and the RSB.

We could reproduce Spectre-STL both in RISC-V and in CHERI-
RISC-V assembly on (CHERI) RiscyOO. Both attacks do not differ
notably; however, the CHERI-RISC-V variant uses capabilities for
memory accesses. Spectre-STL attacks rely on loads being specu-
latively executed before dependent stores, and therefore leaking
a secret. CHERI does not put any constraints on store-to-load de-
pendencies, nor on memory versioning. In RiscyOO, a load will be
executed out-of-order as soon as all of its arguments are ready. If
the store on which the load depends is delayed, e.g., it needs its
address from memory, RiscyOO will speculatively execute a load
before a dependent store, which enables Spectre-STL attacks in
both RISC-V and CHERI-RISC-V on (CHERI) RiscyOO.

5 DISCUSSION
The test suite presented above is highly flexible and enables ex-
tensions not only for previously undetected attacks, but also for
other ISAs that might offer different security properties, or might
emphasize another concept. One large advantage of our test suite
is that all tests run without an underlying operating system and
enable us to detect properties of the microarchitecture rather than
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effects by the operating system. An operating system often sched-
ules multiple processes and introduces noise into the system, e.g.,
last-level cache lines are evicted by an unrelated process. Poten-
tially, this shadows the possibility of an attack even though it is
microarchitecturally possible. Our test suite is tailored for being
used while designing RTL and allows developers to verify whether
certain attacks are possible on the microarchitecture early on in the
development process. Furthermore, the tests written in RISC-V and
CHERI-RISC-V assembly facilitate comparison with compiler gen-
erated code. With our test suite, we lay the foundation to find out
whether compilers generate code that is secure in transient execu-
tion. This is crucial in the testing phases of a target architecture of a
compiler. The CHERI-RISC-V backend of the LLVM framework [5]
currently in development can benefit from our test suite since we
developed a clear understanding of what transient-execution attack
patterns look like in CHERI-RISC-V, which will simplify detecting
and mitigating them.

Our results in Section 4 clearly show that CHERI-RISC-V im-
plementations can mitigate Spectre-PHT attacks. However, this is
feasible only if the capability does not enable access to the secret.
Otherwise, an attack is possible on CHERI-RISC-V systems as they
do not constrain transient execution in another way. A secure pro-
gram requires an as tight capability configuration as possible. This
is not trivially possible for large programs, though. Furthermore,
CHERI-128 capabilities use compressed bounds [21] in order to
fit in the 128 bit format. This can lead to imprecise bounds and
therefore the capability can enable access to more memory than
needed by the data, which in turn opens the door to Spectre-PHT
attacks. It is important to note that Spectre-PHT does not violate
CHERI’s security model as long as the attacker is able to access
only memory that is granted by the authorizing capability. How-
ever, Spectre-PHT breaks the software’s guarantee that memory
can be guarded by an if statement. This is not a problem only for
RISC-V microarchitectures, as many processors with different ISAs
are vulnerable to Spectre-PHT attacks [4].

As described in the previous section, Spectre-BTB allows jumps
to arbitrary targets, which are not limited to the current RISC-V
privilege level. Furthermore, branch targets are not limited to the
current compartment. This enables an attacker to jump from a
powerful compartment, e.g., running in S privilege mode, to an
attacker-chosen gadget in order to use S mode privileges or have
access to a powerful capability. S mode privileges include the per-
mission to access supervisor-only instructions and enables access
to privileged registers, e.g., satp which is the register holding the
root address of the page table tree. Spectre-BTB attacks clearly
violate both the CHERI and the RISC-V security model as explained
above. Due to the similarities in the attack styles, Spectre-RSB
violates both security models in the same way. Future work has
to find mitigation mechanisms for Spectre-BTB and Spectre-RSB
and explain how these are secure, but still keeps the entire system
performant. Similar to Spectre-PHT, Spectre-STL does not violate
CHERI’s security model. All memory accesses – even when they
are executed transiently – are allowed by the respective capabili-
ties. CHERI’s security model does not include versions of memory,
which is exploited by Spectre-STL attacks.

In order to enforce CHERI’s security model, CHERI implementa-
tions need to ensure that an attacker never has access to more ca-
pabilities than architecturally present. As described above, Spectre-
BTB and Spectre-RSB allow access to powerful capabilities. How-
ever, branch prediction is important to the performance of microar-
chitectures in general and this holds as well for CHERI implemen-
tations. Future hardware implementations must find ways to incor-
porate mitigation mechanisms in order to prevent unauthorized
memory accesses and privilege escalation without degenerating
the system to be non-performant. One effective mitigation mecha-
nism not implemented yet is to use tags in the BTB and RSB, e.g.,
Compartment Identifiers (CIDs) [20]. CHERI was not designed to
prevent transient-execution side-channel attacks, but it it is able to
partially mitigate this attack class. Furthermore, CHERI’s hardware-
enforced capabilities enable precise reasoning about the privileges
an attacker has.

6 CONCLUSIONS
We have presented an open-source test suite for the RISC-V ar-
chitecture that reproduces all major transient-execution attacks.
We have exercised this suite to characterize the RiscyOO out-of-
order RISC-V implementation, finding that it was vulnerable to
a majority of these attacks in both simulation and on FPGA. We
demonstrated the flexibility of this suite by extending it to target
CHERI-RISC-V, a security-focused ISA extension, and characterized
the CHERI RiscyOO implementation. While the CHERI RiscyOO
microarchitecture was not natively safer than its RiscyOO ancestor,
default behaviour of the CHERI compiler was able to mitigate cer-
tain classes of attack by attaching bounds to pointers which were
found to be enforced in transient execution. Nevertheless, most of
our experiments were successful, demonstrating leakage of unin-
tended values. Especially, we find Spectre-BTB and Spectre-RSB
attacks to be a large threat to CHERI systems because they allow
attackers to have access to powerful capabilities and execute arbi-
trary code gadgets in speculation. Still, even without consciously
targeting transient-execution attacks, CHERI RiscyOO can mitigate
one of the four Spectre attacks and offers a promising approach
to support software-based mitigations. We expect this test suite to
grow into a valuable tool for the development of new mitigation
mechanisms across the RISC-V community for the development of
new microarchitectures and architectural extensions.
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