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ABSTRACT
Thanks to the rise of new, not-for-profit, collaborative engineering
organizations like lowRISC and OpenHW Group, open source con-
tinues to gain traction as an industrially viable computing hardware
development paradigm. These organizations continue to develop
the Ibex and CV32E40P processors both originating fromRI5CY, one
of the earliest and most well-known, academic open-source RISC-V
designs [1, 2]. Initially, the two cores were clearly differentiated, tar-
geting low-cost control tasks and energy-efficient signal processing,
respectively. However, besides establishing industry-grade verifi-
cation and standards compliance, several performance-oriented
features have been added to Ibex, making core and configuration
selection less obvious.

This work presents an in-depth comparison of the two cores
in terms of application performance, silicon area, and power con-
sumption. While the new Ibex features improve instructions-per-
cycle (IPC) performance by up to +34%, they negatively impact
the maximum operating frequency. Combining the writeback stage
with the single-cycle multiplier yields the highest performance at
the highest frequency. This configuration is on par with CV32E40P
in terms of performance while consuming 40% less area. CV32E40P
has advantages for less-control- but more compute-heavy signal
processing tasks where its custom instruction set extensions and
optimized pipeline can be put to use.

1 INTRODUCTION
Ibex and CV32E40P, the two 32-bit in-order RISC-V microprocessor
cores explored in this work, both originate from a single parent
design: RI5CY is among the earliest and most well-known open-
source RISC-V processor cores andwas originally developed by ETH
Zurich and the University of Bologna as main processing element
for milliWatt-range edge-computing devices [1, 2]. The extensive
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use by the industrial community urged the two IPs to be moved to
not-for-profit organizations to provide high-quality verification and
industrial maintenance, still maintaining their permissive licence
and open-source policy.

Ibex (originally known as Zero-riscy) is a 2-stage RV32E,I[M]C
core optimized for low-cost and low-power. It has been contributed
to lowRISC in December 2018. Since then, Ibex has been extended
with new optional features including support for a separate branch
and jump target ALU (BT-ALU), an additional writeback pipeline
stage (WB-Stage), static branch prediction (SBP), a single-cycle
integer multiplication unit (SC-Mult) and the RISC-V draft bit ma-
nipulation extension (RV32B).

In contrast, CV32E40P (previously known as RI5CY) is a 4-stage
RV32IM[F]C_Xpulp core optimized for high performance and en-
ergy efficiency on pattern recognition algorithms. It moved to
OpenHW Group in February 2020. The CV32E40P RV32IMC fea-
ture set plus interrupts and debug features have been fully verified
achieving 100% code-coverage, and the memory interfaces have
been modified to be compliant with the OpenBus Interface (OBI) [3].
As a positive outcome of their graduation to industry, both the cores
gained substantial effort invested into the design, improving code
and design quality, standards compliance, verification, performance
and documentation [4, 5].

In this paper, a Power-Performance-Area (PPA) comparison be-
tween the two cores is provided. In particular, application per-
formance, silicon area, power and energy efficiency are analyzed
across the different RTL parameters and application benchmarks.
This paper provides updates on the comparisons of the two cores
since the publication of Schiavone et al. based on earlier academic
versions of the designs [1].

2 CORE CONFIGURATIONS
All Ibex configurations are built based onGitHub commit 4719edf [6],
and the CV32E40P is built based on GitHub commit b05bee3 [7].
Detailed documentations of the Ibex an d CV32E40P cores are given
in [4] and [5] respectively.

Ibex: The default config of Ibex features a plain 2-stage pipeline as
described in [1]. In addition, Ibex offers several options for enhanc-
ing performance that we explore in this work:Writeback Stage (WB-
Stage) for faster memory transactions; Branch Target ALU (BT-ALU)
to leverage parallel computation of the branch condition and the
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branch target, to reduce the latency of mispredicted branches; Static
Branch Predictor (SBP) which identifies branch and jump instruc-
tions and predicts all jumps and conditional backwards branches
to be taken and any forward branches to be not taken (not yet fully
verified and documented); and Single-Cycle Integer Multiplication
Unit (SC-Mult), which calculates the mul instruction in one cycle
and mulh in two.

CV32E40P implements the micro-architecture of RI5CY [1, 2].
Although its memory interface changed protocol, performance
optimizations are visible only on outstanding transactions busses.
Also the timing path from and towards memory has been reduced.

3 EXPERIMENTAL SETUP
Our setup for evaluating performance and power of various core
configurations for different benchmark programs and toolchain op-
tions is derived from the Ibex Simple System [12]. This instantiates
a CPU core, a simulated dual-port RAM memory for instruction
and data storage with 1 cycle of latency and wait states, and a basic
peripheral to write ASCII output to a file.

3.1 Benchmark Programs
We evaluate the different core configurations using CoreMark [10]
and Embench [11] benchmark programs as the first one is a standard
benchmark used for embedded processors, and the second one as
it provides insights into data-intensive algorithms typical of the
edge-computing domain.

CoreMark is a synthetic benchmark program for embedded IoT
devices. It implements algorithms such as list processing, matrix
multiplications, state machine and cyclic redundancy tests. The
outcome of this benchmark is the CoreMark/MHz score.

The Embench suite of benchmarks is a built from a collection of
19 real applications testing the capabilities of CPU cores targeting
embedded platforms. The output of this suite is the execution time
relative to ARM Cortex-M4 ARMv7 and the code size score using
GCC 9.2.0 with optimization level -O2 and garbage collection.

The application binaries are generated using the upstream GCC
10.2.0 RISC-V compiler [8] and the modified 7.1.1 GCC compiler
supporting the Xpulp extensions [9].

4 RESULTS
We start by discussing the effects of different toolchain options on
code size before analyzing application performance.

4.1 Code Size
Table 1 shows the impact of different compiler toolchain options
on code size of Embench, which ranges from 1.13 when code size
is optimized as main target, to 6.08 when performance is preferred.
The benefits achieved for application performance depends upon
the core architecture and is discussed in the following sections.

4.2 Application Performance
We analyze performance results under a range of different aspects.

4.2.1 Compressed Instructions Extension. As shown in Figure 1
(top), the C extension leads to a performance degradation of only
1% on average when running Embench on the default Ibex config,

Table 1: Embench Code Size vs. Toolchain Options

Toolchain Options Code Size Score
-Os + garbage collectiona 1.13
-O2 + garbage collection 1.30 (1.15x)
-O3 + garbage collection 1.81 (1.60x)
-O3 + loop unrollingb+ garbage collection 2.94 (2.60x)
-O3 + alignmentc+ loop unrolling 6.08 (5.38x)

a) -ffunction-sections, -fdata-sections, -Wl, -gc-sections
b) -funroll-all-loops, c) -falign-jumps=4, -falign-functions=16

while the code size is reduced significantly by 30% on average, when
compiling with -O2 + garbage collection (bottom).

Figure 1: Embench speed (top) and size (bottom) scores
w/ and w/o compressed instructions when using upstream
RISC-V GCC and running on the default Ibex config.

4.2.2 Ibex Performance Evaluation. Embench and CoreMark appli-
cation performance scores for different Ibex configs and toolchain
options, including results adjusted for maximum operating fre-
quency, are listed in Table 2. The percentage change figures refer
to the default Ibex config with the same toolchain options. Speed
scores reported per MHz measure the efficiency of a hardware con-
fig in terms of instructions per cycle (IPC). Speed scores reported
at maximum frequency take into account the impact of additional
complexity on the critical path of a design. A detailed record of
the Embench performance for each test program compiled with
different compile time optimizations is given in Figure 2.

SBP enhances performance by 1.1% to 3.7% and -0.2% to 6.4% for
Embench and CoreMark, respectively. Best benefits are observed
for binaries compiled with medium code optimization effort as
most jumps and branches are replaced by function inlining and
loop manipulations, and loops benefit from the backward-taken,
forward-not-taken prediction scheme. However, when maximum
frequency is concerned performance decreases by up to 21.9%. The
SC-Mult yields consistent performance gains of between 4.3% and
5.7% for Embench, and between 3.1% and 4.6% for CoreMark. Signif-
icant improvements are achieved for benchmarks which are heavy
on integer multiplications (edn, matmult-int, ud). Since this hard-
ware option does not impact the critical path, the performance gains
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translate similarly to the frequency-adjusted scores. The BT-ALU
yields performance gains of 2.3% to 5.6% for Embench and 6.2% to
7.8% for CoreMark, which on average are comparable with those of
the SC-Mult. Best benefits are observed for binaries which are not
heavily optimized for performance as compile-time optimizations
often trade an increased code size to reduce control complexity.
However, if maximum frequency is targeted, performance boosts
are canceled out up to a performance loss of 13.9%. The WB-Stage
yields the highest performance gains of the investigated hardware
structures (up to 17.2%). It removes the majority of stall cases caused
by data transactions, resulting in very high gains for memory inten-
sive workloads. Since this structure does not impact the critical path,
the boost in efficiency persists if adjusted for maximum frequency.
This is the most area efficient config for CoreMark.

Combining all options yields an increase in IPC performance
of up to 34.9% (All). The combination of BT-ALU and SBP reduces
stalls upon correctly predicted taken branches to 0 cycles if the
target instruction is aligned. The combined benefit of the two struc-
tures is greater than the sum of their separate speedups, which
is observed for the benchmark matmult-int for balanced compile-
time optimization (Figure 2, middle). The single-cycle multiplier
acts orthogonally to those structures, accelerating only integer
multiplication instructions. In this config, Ibex performs as fast as
the Cortex-M4 using the same compiler optimizations. Exceptions
include cubic, minver, nbody and st demonstrating less efficient
soft-float libraries for RISC-V compared to ARM. Using a more
optimized RISC-V soft-float library such as RVfplib [14] can help
to reduce this gap. It is worth noting that running a size-optimized
binary on the maximum performance Ibex config yields a higher
IPC performance than running a performance-optimized binary
on the default config. Adjusted for maximum operating frequency
dominated by SBP, a performance gain of up to 6.4% remains.

4.2.3 Ibex vs. CV32E40P. When comparing Ibex including WB-
Stage and SC-Mult with CV32E40P using the RISC-V RV32IMC
ISA, the only differences lie in the multiplication latency for mulh
instructions and integer division, whereas the highest performing
Ibex configs improve the latency of jump and branch instructions.
Figure 3 shows a comparison between Ibex and CV32E40P using the
balanced compile-time optimization. For benchmarks featuring in-
teger division (cubic,minver, nbody, nettle-aes, sglib-combined, st, ud,
wikisort) a slight advantage is observed for CV32E40P with respect
to Ibex with WB-Stage and SC-Mult, as the former implements a
variable latency algorithm instead of a fixed 37-cycle latency one. A
slightly higher score for Ibex is observed for aha-mont64, the only
program using the mulh instruction. The maximum performance
Ibex config yields consistently the highest speed scores, with the
exception ofwikisort, which makes extensive use of integer division.

Table 3 lists average speed scores for Embench and CoreMark
when comparing the CV32E40P with the Xpulp extensions enabled
and the maximum performance Ibex config. To make a fair com-
parison the modified PULP toolchain based on GCC 7.1.1 is used
for both cores (targeting RV32IM ISA for Ibex and RV32IM_Xpulp
ISA for CV32E40P). Compressed instructions have been disabled
to exclude performance penalties of the C extension. The average
Embench speed score of CV32E40P lies about 11% above Ibex when
compiling with general optimization flags.

Table 2: Ibex Application Performance.

Embench CoreMark
Ibex Speed Speed
Configuration Speed / MHz @ max Freq. Speed / MHz @ max Freq.

Toolchain Options: -Os + garbage collection
Default 0.71 354 1.58 791
SBP 0.73 (+2.8%) 285 (-19.5%) 1.58 (-0.2%) 618 (-21.9%)
SC-Mult 0.74 (+4.2%) 365 (+2.9%) 1.63 (+3.1%) 805 (+1.8%)
BT-ALU 0.75 (+5.6%) 315 (-11.1%) 1.71 (+7.8%) 718 (-9.3%)
WB-Stage 0.81 (+14.1%) 401 (+13.3%) 1.75 (+10.3%) 867 (+9.6%)
All 0.91 (+28.2%) 358 (+1.1%) 1.96 (+23.7%) 772 (-2.4%)

Toolchain Options: -O2 + garbage collection
Default 0.76 379 2.07 1034
SBP 0.78 (+2.6%) 304 (-19.7%) 2.20 (+6.4%) 861 (-16.7%)
SC-Mult 0.79 (+3.9%) 389 (+2.7%) 2.15 (+4.0%) 1063 (+2.8%)
BT-ALU 0.79 (+3.9%) 331 (-12.6%) 2.23 (+7.6%) 937 (-9.5%)
WB-Stage 0.88 (+15.8%) 436 (+15.0%) 2.31 (+11.6%) 1147 (+10.9%)
All 1.00 (+31.6%) 393 (+3.8%) 2.79 (+34.9%) 1101 (+6.4%)

Toolchain Options: -O3 + garbage collection
Default 0.81 404 2.19 1096
SBP 0.84 (+3.7%) 328 (-18.8%) 2.30 (+5.1%) 901 (-17.8%)
SC-Mult 0.85 (+4.9%) 419 (+3.6%) 2.29 (+4.3%) 1128 (+3.0%)
BT-ALU 0.85 (+4.9%) 357 (-11.7%) 2.35 (+7.2%) 988 (-9.8%)
WB-Stage 0.94 (+16.0%) 466 (+15.3%) 2.46 (+12.0%) 1219 (+11.3%)
All 1.07 (+32.1%) 421 (+4.2%) 2.94 (+34.3%) 1160 (+5.9%)

Toolchain Options: -O3 + loop unrolling + garbage collection
Default 0.86 429 2.35 1173
SBP 0.87 (+1.2%) 340 (-20.8%) 2.43 (+3.6%) 951 (-18.9%)
SC-Mult 0.9 (+4.7%) 443 (+3.4%) 2.46 (+4.6%) 1212 (+3.3%)
BT-ALU 0.88 (+2.3%) 369 (-13.9%) 2.49 (+6.2%) 1048 (-10.7%)
WB-Stage 1.00 (+16.3%) 496 (+15.5%) 2.65 (+13.0%) 1316 (+12.2%)
All 1.12 (+30.2%) 441 (+2.7%) 3.12 (+33.0%) 1230 (+4.9%)

Toolchain Options: -O3 + alignment + loop unrolling
Default 0.87 434 2.36 1179
SBP 0.88 (+1.1%) 344 (-20.8%) 2.44 (+3.3%) 953 (-19.1%)
SC-Mult 0.92 (+5.7%) 453 (+4.4%) 2.47 (+4.6%) 1218 (+3.3%)
BT-ALU 0.9 (+3.4%) 378 (-13.0%) 2.51 (+6.3%) 1053 (-10.6%)
WB-Stage 1.02 (+17.2%) 506 (+16.5%) 2.67 (+13.1%) 1324 (+12.3%)
All 1.14 (+31.0%) 449 (+3.3%) 3.17 (+34.1%) 1247 (+5.8%)

Table 3: Ibex vs. CV32E40P (Xpulp) App Performance.

Embench CoreMark
Core Speed Speed
Configuration Speed / MHz @ max Freq. Speed / MHz @ max Freq.

Toolchain Options: -Os + garbage collection
Ibex + All 0.94 370 1.96 772
CV32E40P 1.05 (+11.7%) 475 (+28.4%) 1.98 (+1.1%) 897 (+16.2%)

Toolchain Options: -O2 + garbage collection
Ibex + All 1 393 2.79 1101
CV32E40P 1.11 (+11.0%) 502 (+27.6%) 2.74 (-2.1%) 1239 (+12.6%)

Toolchain Options: -O3 + garbage collection
Ibex + All 1.09 429 2.94 1160
CV32E40P 1.21 (+11.0%) 547 (+27.6%) 3.06 (+4.0%) 1387 (+19.6%)

Toolchain Options: -O3 + loop unrolling + garbage collection
Ibex + All 1.15 452 3.12 1230
CV32E40P 1.23 (+7.0%) 556 (+22.9%) 3.11 (-0.6%) 1406 (+14.3%)
Using modified PULP toolchain based on GCC 7.1.1 targeting RV32IM
for Ibex and RV32IM_Xpulp for CV32E40P.

Figure 4 shows a detailed view on the speed scores of individual
Embench programs. The largest performance benefits of CV32E40P
are observed for edn and matmult-int due to the extensive use of
hardware loops. Adding in compile-time loop unrolling compen-
sates the lack of support for hardware loops in Ibex and reduces
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Figure 2: Embench speed scores for different Ibex configu-
rations targeting optimal code size (top), balanced code size
and performance (middle) and maximum performance (bot-
tom) referred to the Cortex-M4.

Figure 3: Embench speed scores for CV32E40P and selected
Ibex configurations when using the upstream RISC-V GCC
toolchain targeting the base RV32IMC ISA.

the performance gap between Ibex and CV32E40P to just 7% (bot-
tom). Independently of the toolchain options, consistent advantages
for CV32E40P are observed for benchmarks crc32, cubic, edn, min-
ver, nbody, nettle-aes, nettle-sha256, st, ud and wikisort thanks to
extensive use of the custom Xpulp extensions.

Figure 4: Embench speed scores for Ibex and CV32E40P in-
cluding Xpulp extensions w/o (top) and w/ (bottom) loop un-
rolling (using PULP toolchain without C extension).

Table 4: Core Area and Clock Frequency

Core
Config

Area [kGE] Max Freq.
[MHz]@ 100 MHz @ max Freq.

Total Delta Total Delta
Ibex Default 23.72 - 31.47 - 500
+ SBP 25.41 +1.69 (+7%) 31.60 +0.13 (+0%) 391 (-22%)
+ SC-Mult 27.40 +3.68 (+15%) 41.87 +10.40 (+33%) 493 (-1%)
+ BT-ALU 24.16 +0.44 (+2%) 29.82 -1.65 (-5%) 420 (-16%)
+ WB-Stage 24.65 +0.92 (+4%) 32.99 +1.52 (+5%) 496 (-1%)
+ WB-Stage 28.18 +4.46 (+19%) 43.01 +11.54 (+37%) 495 (-1%)+ SC-Mult
Ibex + All 30.36 +6.64 (+28%) 37.04 +5.57 (+18%) 394 (-21%)
CV32E40P 53.64 +29.92 (+126%) 71.99 +40.52 (+129%) 453 (-9%)

For more control-oriented benchmark programs, such as aha-
mont, nsichneu, qrduino, sglib-combined and slre, the Xpulp exten-
sions have negligible effect [1]. Similarly, the CoreMark/MHz scores
of the two cores do not differ significantly as shown in Table 3.

4.3 Core Area and Clock Frequency
The cores have been synthesized in TSMC 65nm technology with
typical case conditions (1.2V, 25°) targeting high, low, and regu-
lar threshold voltage transistors. The selected synthesis tool was
Synopsys Design Compiler 2019.03. A latch-based register file im-
plementation has been used for both the cores. All designs were
constrained with a delay of 40% of their respective target clock pe-
riod on all input and output paths. This is an arbitrary, yet realistic
constraint and has an impact on maximum clock frequency. Results
may however vary in different design contexts. The maximum op-
erating frequency of each config has been determined by targeting
a clock frequency of 500 MHz and then taking the worst negative
slack from the synthesis report.

Area and frequency results for the evaluated configurations are
listed in Table 4. The percentage change figures refer to the default
Ibex config. All config options adding logic through the instruction
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memory request, such as SBP and BT-ALU, decrease the maximum
frequency significantly (22% and 16% respectively) as the cores have
been optimized to trade the cost with the maximum path length
towards memories. In contrast, the SC-Mult and WB-Stage options
increase only the area cost without impacting the critical path.
Enabling all config options reduces the maximum speed by 21%.

The default Ibex config has been designed to minimize area and
is as big as 23.72kGE and 31.47kGE when synthesized at relaxed
and maximum speed, respectively. The WB-Stage imposes an over-
head of 0.92 to 1.52 kGE with relaxed and tight timing constraints,
respectively. SBP reduces the maximum operating frequency (from
500MHz to 391MHz) and thus some area savings in the rest of the
design can be achieved. This results in no significant area overhead
with respect the Ibex default config at 500MHz. Whereas at relaxed
timing, an area increase of 1.69kGE is observed. The SC-Mult im-
poses a significant area overhead of 3.68kGE at 100MHz and of
10.40kGE at maximum speed due to the timing pressure, which
drives the synthesizer to select faster multiplier architectures over
simpler ones. The area overhead of the BT-ALU amounts to 0.44/1.65
kGE. As the BT-ALU strains the critical path at maximum speed,
timing optimization pressure upon other structures is relieved, lead-
ing to a smaller overall design. The Ibex config with WB-Stage and
SC-Mult enabled is of particular interest. Without notably impact-
ing maximum operating frequency (-1%), this config still enables
substantial IPC improvements (2.81 CoreMark/MHz, +19%) thereby
achieving a performance level comparable to CV32E40P using the
baseline RV32IMC ISA (1390 vs. 1406 CoreMark) despite a 40%
lower area footprint. When all the parameters are enabled (All), the
area overhead is 6.64kGE (28%) and 5.57kGE (18%) at relaxed and
maximum speed, respectively.

When comparing the default Ibex config with CV32E40P, the
area of the latter is 126%/129% bigger due to the micro-architecture
overhead for the custom ISA extensions and due to the additional
pipeline stages. The impact on the critical path is mitigated through
separation of decoding and execution in separate stages. Relative
to the maximum IPC performance Ibex config, the area overhead
is 77%/94% when synthesized with relaxed and tight timing con-
straints respectively. The maximum operating frequency of Ibex
and CV32E40P are at approximately the same levels.

4.4 Power and Energy Efficiency
To estimate the energy efficiency of the different architectures,
power simulations have been performed using the post-synthesis
netlists of all the core instances. The switching activity has been
extracted by means of post-synthesis simulation and analyzed using
Synopsys PrimeTime 2019.12. We compare the energy efficiency
of the cores when synthesized for 100 MHz and when targeting
maximum frequency while executing CoreMark.

The upstream RISC-V GCC toolchain (based on GCC 10.2.0) was
used to compile for the RV32IMC ISA of Ibex. For CV32E40P, the
modified PULP toolchain (based on GCC 7.1.1) was used to target
the RV32IM_Xpulp ISA. In both cases, the -O3 + loop unrolling flags
have been used for optimization. The dynamic and leakage power
as well as the energy dissipated during the benchmark execution is
shown in Table 5. Percentage changes are reported with respect to
the default Ibex config for a given netlist type.

4.4.1 Power Consumption. Unsurprisingly, the lowest dynamic
power consumption of 0.8 mW is observed for the default Ibex
config synthesized for an operating frequency of 100 MHz. The
SBP increases by 9.1% the dynamic power, and by 15% the leakage.
The BT-ALU is the most efficient config option from a power per-
spective. It imposes the least additional power consumption (5.4%
for dynamic and 2.8% for leakage power) that is compensated by
an increase in IPC performance of 6.3%. With an increase in leak-
age power of 7.9%, and an increase of 22.7% and 20.0% in dynamic
power, the SC-Mult and WB-Stage options come at similar cost.
The dynamic power consumption of the maximum performance
config of Ibex is 1.33 mW. This corresponds to an increase of 65.3%
with respect to the default config. Leakage power increases by 27%.
CV32E40P consumes 60.8% more power through leakage than the
maximum performance Ibex config. In terms of dynamic power,
CV32E40P consumes just 2.3% more (+69.8% when comparing to
the default Ibex config).

When targeting maximum frequency, the default Ibex sets the
baseline to 1.09 mW of dynamic and 6.53 𝜇W of leakage power at
500 MHz. The largest overhead in dynamic as well as leakage power
is observed for the SC-Mult with 32.3% and 111.3% as the datapath
for the multiplication unit is heavily optimized to meet timing con-
straints. The WB-Stage imposes 21.7% of dynamic power overhead.
SBP imposes an overhead of 6.8% in dynamic power while leakage
decreases by 1.7%. Similarly, the BT-ALU results in a decrease of
dynamic and leakage power by 0.7% and 7.7% due to a reduced
maximum operating frequency. However, when normalizing to the
frequency (mW/MHz), the SBP dynamic power consumption over-
head is the highest (1.36x) when compared with the default config
due to a major decrease of maximum frequency. For the maximum
performance config of Ibex, dynamic and leakage power increase
by 63.3% and 48.9%, while CV32E40P lies at an overhead of 44.2%
and 187.9% compared to the default Ibex config. The maximum
performance Ibex config consumes 13% more dynamic power than
CV32E40P, whereas the leakage power is 49% lower.

4.4.2 Energy Efficiency. The energy consumption is measured as
the compound effect of execution time and total power consump-
tion during the execution of the benchmark. When measuring the
relaxed netlist energy efficiency at 100 MHz, the only variable im-
pacting the execution time is the IPC. For the default Ibex config
the energy consumption is 3.40 𝜇J. With the BT-ALU, a slight en-
ergy reduction of 0.8% can be observed. For the SBP and WB-Stage,
we observe moderate dynamic energy overheads (5.6% and 6.1%),
while the SC-Mult has the largest dynamic energy overhead (17.3%)
due to the little use of multiplications in the selected benchmark
compared to the extra power consumption that is burnt at every
cycle. The maximum performance Ibex config imposes an energy
overhead of 24.3% with respect to the default config. The energy
overhead of CV32E40P lies at 29.0%.

At maximum operating frequency, the run time is the compound
effect of IPC and maximum frequency. This is particularly notice-
able for the SBP config. While the power consumption overhead
lies at a modest 6.8%, the increase in overall energy consumption
for one CoreMark iteration is almost five times higher (32.1%).
The maximum performance config of Ibex consumes 1.44𝜇J of en-
ergy for one CoreMark iteration. That is about 22.2% higher than
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Table 5: Core Power and Energy Efficiency Estimations

Core Config Power Energy / Iteration Execution Freq. CoreMark
Dyn. [mW] Lkg. [𝜇W] Dyn. [𝜇J] Lkg. [nJ] Time [ms] [MHz] Score / MHz Score

Netlist @ 100 MHz
Ibex 0.80 0.18 3.40 0.75 4.24 100 2.36 236
Ibex + SBP 0.88 (+9.1%) 0.20 (+15.2%) 3.59 (+5.6%) 0.84 (+11.5%) 4.10 100 2.44 244
Ibex + SC-Mult 0.98 (+22.7%) 0.19 (+7.9%) 3.99 (+17.3%) 0.78 (+3.1%) 4.05 100 2.47 247
Ibex + BTALU 0.84 (+5.4%) 0.18 (+2.8%) 3.37 (-0.8%) 0.73 (-3.2%) 3.99 100 2.51 251
Ibex + WBStage 0.96 (+20.0%) 0.19 (+7.9%) 3.61 (+6.1%) 0.72 (-4.6%) 3.75 100 2.67 267
Ibex + All 1.33 (+65.3%) 0.23 (+27.0%) 4.22 (+24.2%) 0.72 (-4.6%) 3.18 100 3.17 317
CV32E40P 1.36 (+69.8%) 0.37 (+109.0%) 4.39 (+29.0%) 1.20 (+58.8%) 3.22 100 3.11 311

Netlist @ Max Freq.
Ibex 1.09 6.53 0.92 5.54 0.85 500 2.36 1179
Ibex + SBP 1.16 (+6.8%) 6.42 (-1.7%) 1.22 (+32.1%) 6.74 (+21.6%) 1.05 391 2.44 953
Ibex + SC-Mult 1.44 (+32.3%) 13.80 (+111.3%) 1.18 (+28.0%) 11.34 (+104.6%) 0.82 493 2.47 1218
Ibex + BTALU 1.08 (-0.7%) 6.03 (-7.7%) 1.03 (+11.1%) 5.72 (+3.3%) 0.95 420 2.51 1053
Ibex + WBStage 1.32 (+21.7%) 7.59 (+16.2%) 1.00 (+8.4%) 5.74 (+3.5%) 0.76 496 2.67 1324
Ibex + All 1.78 (+63.3%) 9.59 (+46.9%) 1.44 (+55.5%) 7.75 (+39.8%) 0.81 393 3.17 1247
CV32E40P 1.57 (+44.2%) 18.80 (+187.9%) 1.12 (+20.9%) 13.37 (+141.3%) 0.71 452 3.11 1406

CV32E40P. Since CoreMark does not make extensive use of the
Xpulp ISA extensions, the CV32E40P energy efficiency figures are
sub-optimal [1]. The main reason why the CV32E40P energy effi-
ciency is higher than the most performant Ibex config comes from
the low-level power optimizations used in the CV32E40P pipeline.
In fact, clock-gating is used extensively to silence units like the
multiplier to reduce the dynamic power consumption. In contrast,
Ibex does not apply any clock-gating (as decoding and execution are
merged in one pipeline stage) nor operand silencing via AND-gates.

To reduce the gap, in this work we explore the potential of
operand silencing for Ibex. The resulting power figures are reported
in Table 6. The indicated percentage changes refer to the correspond-
ing baseline design without this power optimization. Both when
targeting relaxed and tight timing constraints, the dynamic power
consumption can be reduced substantially with savings between
10% and 35% (SC-Mult at maximum frequency). In addition, the
optimization does not significantly impact the critical path.

Table 6: Ibex Power Estimations with Silenced Multiplier

Ibex Config Power Freq. CoreMark
Dyn. [mW] Lkg. [𝜇W] [MHz] Score / MHz Score

Netlist @ 100 MHz
Default 0.72 (-10.2%) 0.18 (-1.1%) 100 2.36 236
SC-Mult 0.74 (-24.5%) 0.20 (+1.6%) 100 2.47 247
All 1.03 (-22.5%) 0.24 (+5.3%) 100 3.17 317

Netlist @ Max Freq.
Default 0.92 (-15.6%) 7.01 (+7.4%) 498 2.36 1176
SC-Mult 0.94 (-34.8%) 14.00 (+1.4%) 498 2.47 1231
All 1.39 (-21.8%) 9.87 (+2.9%) 395 3.17 1252

5 CONCLUSION
We have presented an in-depth Power-Performance-Area (PPA)
comparison between the closely related, open-source RISC-V pro-
cessor cores Ibex and CV32E40P including a cost-benefit analysis
of various optional performance-enhancement features of Ibex.

We found that the Ibex core architecture is well suited for a versa-
tile range ofworkloads. Using the optional performance-enhancement
features instructions-per-cycle (IPC) performance can be traded
for silicon area in multiple steps. Compared to the default 2-stage
pipeline configuration, the CoreMark/MHz performance can be in-
creased by up to 34% at an area cost of 28% and 18% for relaxed and

tight timing constraints, respectively. However, besides increasing
area in particular the BT-ALU and SBP options negatively impact
the critical path delay leading to a reduction in maximum operat-
ing frequency by 21% and reducing the net performance increase
to 6%. Of particular interest is thus the combination of WB-Stage
and SC-Mult. This configuration has no notable impact on maxi-
mum frequency (-1%) but still enables an IPC improvement of 19%
(2.81 CoreMark/MHz). The resulting net performance is on par
with CV32E40P using the baseline RV32IMC ISA (1390 vs. 1406
CoreMark) despite a 40% lower area footprint (43 vs. 72 kGE).

For relaxed timing, Ibex can outperform CV32E40P in terms
of IPC (3.17 vs. 3.11 CoreMark/MHz) with a 43% lower area foot-
print (30 vs. 54 kGE). However, achieving this performance level re-
quires compile toolchain options like loop unrolling and alignment
that heavily impact code size (+236% compared to -O3). CV32E40P
can reach similar performance without inflating code size, thanks to
advanced features like hardware loops as well as post-incrementing
load/store instructions provided through the Xpulp ISA extensions.
More significant advantage is taken of the Xpulp extensions thanks
to fused multiply-accumulate and SIMD instructions whenever ex-
ecuting less-control- but more compute-heavy signal processing
tasks. For example for Embench, CV32E40P is on average 11% and
28% faster than the maximum performance Ibex configuration in
terms of IPC and net performance, respectively. When targeting
maximum performance in such workloads, and where the use of
non-standard extensions is acceptable, CV32E40P can thus offer
higher performance-per-watt efficiency.

As for power, our results show that the default 2-stage pipeline
Ibex configuration remains the most efficient option [1]. Enabling
the performance enhancements directly translates into an increase
of up to 65% and 46% dynamic and leakage power consumption,
respectively. The fact that there is room for optimization is not com-
pletely unexpected as most effort of lowRISC and OpenHW Group
so far has been spent on improving code and design quality, stan-
dards compliance, verification, documentation and finally perfor-
mance. The increase in power is not due to fundamental deficiencies
of the performance enhancements and we have shown that there is
actually low hanging fruit for improving power consumption and
efficiency in Ibex by adapting techniques like input silencing and
clock gating that are widely used already in CV32E40P.
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