RISC-V Dataflow Extension

Martin Cowley and Lina Sawalha
{martin.j.cowley,lina.sawalha}@wmich.edu
Western Michigan University
Kalamazoo, Michigan, USA

Abstract

Dataflow architecture is an alternative to the Von Neumann
(control flow) architecture that can improve performance and
lower energy consumption. Existing dataflow architectures
are either explicit or hybrid. While explicit dataflow architec-
tures provide higher performance for irregular workloads,
control flow architectures provide effective control specula-
tion and precise interrupts/exceptions. Hybrid dataflow/Von
Neumann architectures combine both dataflow architecture
models with control flow architectures.

Most of the existing hybrid architectures integrate ele-
ments of dataflow in the Von Neumann computing model. In
this work, we designed an Instruction Set Architecture (ISA)
extension for the RISC-V architecture that is capable of exe-
cuting explicit dataflow instructions. We also implemented
a heterogeneous dataflow/Von Neumann CPU model in the
Gemb5 simulator capable of running both Von Neumann and
dataflow instructions in a single executable. We ran few mi-
crobenchmarks; our results show up to 7.5% improvement in
performance, demonstrating the potential for the dataflow
ISA extension and the heterogeneous dataflow/Von Neu-
mann architecture.

CCS Concepts: - Computer systems organization — Data
flow architectures; « Theory of computation — Timed
and hybrid models.

Keywords: RISC-V extension, Dataflow architecture

ACM Reference Format:

Martin Cowley and Lina Sawalha. 2018. RISC-V Dataflow Extension.
In Proceedings of CARRV ’21: Fifth Workshop on Computer Architec-
ture Research with RISC-V (CARRV °21). ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/1122445.1122456

1 Introduction

Traditional Von Neumann architectures rely on the control
flow model of computation. In this model, the processor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CARRYV 21, June 17, 2021,

© 2018 Association for Computing Machinery.
https://doi.org/10.1145/1122445.1122456

uses a program counter (PC) to sequentially fetch instruc-
tions from memory. However, even with the out-of-order
execution model, which integrates some dataflow aspects,
parallelism can still be limited by the window size. In addi-
tion, Von Neumann architectures are not very efficient for
workloads with irregular data and control behaviors.

Dataflow is an alternative model of computation. Instruc-
tions are fetched and executed based solely on the availability
of data. Existing work shows that dataflow architectures have
the potential to improve performance and reduce energy con-
sumption [2-4, 6, 8, 9]. Explicit dataflow architectures have
been effective for irregular workloads, but they struggle with
control speculation, debugging, and implementing dynamic
data structures. Combining explicit dataflow and control flow
computing models in a heterogeneous processor architecture
allows for exploiting the benefits of both.

In this paper, we propose a dataflow (DF) extension to
the RISC-V Instruction Set Architecture (ISA). To test the
performance of the extension we created a dataflow CPU
model and integrated it with the Gem5 simulator. We also
designed a heterogeneous dataflow/Von Neumann (DF/VN)
architecture.

The rest of the paper is organized as follows. Section 2 men-
tions background information about DF and hybrid DF/VN
models. Section 3 describes our DF extension to the RISC-V
ISA. Section 4 shows our heterogeneous architecture, and
section 6 describes the experimental setup and shows the
results. Finally, section 7 concludes the paper and describes
future work.

2 Background

Dataflow architectures have been studied for decades. Be-
cause processors are susceptible to instructions with long
latency, computer architects have been searching for ways
to increase parallelism. For example, a simple in-order pro-
cessor must block during a cache miss, causing the CPU
to be idle for long periods of time. This is inefficient, since
independent instructions that are ready to be executed has
to wait in the pipeline. Researchers have turned towards the
dataflow model of computation to help alleviate the problem.

In the dataflow model, an algorithm is not represented as
a sequence of instructions. Rather, dataflow programs are
written as a graph. Each node of the graph is an instruction
and arcs between nodes represent true data dependencies
between instructions. Instead of referencing source and des-
tination registers, dataflow instructions contain pointers to

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CARRV 21, June 17, 2021,

destination instructions. In a dataflow program, data is sent
from one instruction to the next. Data drives instruction
scheduling and program order is ignored. Figure 1 shows
a simple arithmetic expression represented as a dataflow

graph.

BN

3 .
[apD | | ADD |
N2 4

./

[muL)

<

F

LI L]

/

Figure 1. Dataflow Graph implementing the expression: f =
(a+b)*(c+d)

2.1 Tagged-Token Architectures

Dataflow architectures send instruction operands directly
to each instruction instead of loading them from a register
file. There are different ways to implement this in hardware.
Tagged-token machines represent each operand as a data
token [1, 6]. Each piece of data is stored in a token, which
contains the data and an identification tag. A cache is used
to store operand tokens until the corresponding instruction
is ready to be executed. This cache is also used as the in-
struction scheduling mechanism. An instruction becomes
ready when both operands have reached the cache. When
this event is detected, the two operand tokens are dispatched
along with the instruction and executed.

One option for tag matching is to use a fully associative
memory to store the tokens. The instruction address is used
as the tag/key to access the cache. All operands of an in-
struction will have identical tags and will be mapped to the
same location. A hash function has also been used to im-
plement this feature [1, 6]. The Monsoon architecture uses
similar tag-matching hardware, but simplified the matching
system by replacing the associative memory with a simple
effective address calculation [8]. These architectures use the
instruction address to detect when an instruction is ready
to be executed; when two operands of an instruction arrive,
both operand tokens will be matched to the same location
in memory, and the instruction is ready to be executed.

2.2 Hybrid DF/VN Models

Modern out-of-order processing cores borrow from the dataflow

model to exploit Instruction Level Parallelism (ILP). They use
sophisticated hardware to detect instructions that are ready
and execute them out of program order. The main limitation
is that these cores are fundamentally control flow and must
maintain program order by committing instructions in-order.
This complicates the hardware-increasing cost, latency, and

Cowley and Sawalha

energy consumption—and limits ILP because of the limited
window of instructions that can be executed out-of-order.
Other hybrid dataflow/Von Neumann (DF/VN) architec-
tures combines the control flow and dataflow aspects differ-
ently. Some examples include TRIPS [3], WaveScalar [9] and
DySER [5]. While these architectures relax the restrictions
of VN architectures, they still limit the amount of parallelism
that can be achieved. On the other hand, explicit dataflow
architectures can schedule instructions from anywhere in
the program as long as their operands are ready. This allows
for a much wider window of instructions to choose from.

2.3 Heterogeneous DF/VN Architectures

Heterogeneous DF/VN architectures combine different DF
and VN cores in one processor, for example the SEED archi-
tecture [7]. The SEED architecture consists of two hetero-
geneous cores: a standard VN based core and a DF engine.
Nowatzki et al. analyzed different benchmarks to study the
potential improvements for a heterogeneous architecture ca-
pable of switching between the DF and VN cores within a sin-
gle application. They used a high-level modeling technique
to estimate performance instead of a cycle-level simulation.
They did not take into consideration the switching cost be-
tween the DF and the OoO cores and assumed a different
instruction set for the DF engine.

In this paper, we propose a DF extension of the RISC-V
ISA. Our work considers a heterogeneous DF core and an
000 core that share the same cache. Our work considers the
switching cost between the DF] and the OoO cores. We used
a cycle-level architectural simulator, gem5 to simulate our
DF extension and heterogeneous architecture. We also used
the llvim compiler infrastructure and implemented a simple
compiler that translates the llvm intermediate representation
(IR) to the new dataflow RISC-V sub-ISA instructions.

3 The RISC-V Dataflow Extension

Dataflow (DF) instructions require a completely different
structure from standard control flow instructions. To sim-
plify the hardware, each instruction has a maximum of two
operands and up to three output arcs, as shown in Figure 2.
The result of an instruction is sent along its arcs to each de-
pendent instruction. Figure 3 compares the bit fields between
a normal RISC-V instruction and a dataflow instruction. The
instructions are encoded with opcode and function bits to
specify the operation, similar to regular RISC-V instructions.
However, instead of using the remaining bits to specify the
source operands, the dataflow instructions encode pointers
to dependent instructions: Destination0, Destination1, and
Destination2- representing the arcs in a DF graph. The re-
maining bits D2, D1, and DO are used to distinguish between
left or right operands.

RISC-V Dataflow Extension

Operand0 Operandl

l

Destination0 Destination2

Destination1

Figure 2. Instruction Node

a) | func7 | rs2 | rs1 [func3 | rd | Opcode |

31 25 24 2019 15 14 1211 76 0

b) | D2 I Destination2 | D1 | Destinationl | DO | Destination0 l func " Opcode |
31 30 24 23 22 16 15 14 87 6

Figure 3. RISC-V Instruction Bitfields: (a) regular RISC-V
instruction (R-type), (b) RISC-V DF extension instruction

One benefit of a DF architecture is that it moves data de-
pendencies to the ISA level. Instructions have explicit point-
ers to their dependent instructions lowering the complexity
of the hardware needed to keep track of data dependencies
and to detect ready instructions. To simplify the hardware,
each instruction has at most two operands and up to three
instruction pointers. The instruction pointers are encoded as
an offset from the current instruction. When an instruction
executes, the data is sent to all dependent instructions. The
effective address of the dependencies are calculated using
the following equation:

EA = currInst.Addr + destinationOf fset

Our DF ISA extension consists of DF instructions in four
different main categories: arithmetic and logical instructions,
memory instructions, control instructions and DF/VN com-
munication instructions.

Arithmetic and Logical Instructions. Table 1 shows
the arithmetic and logical instructions that the dataflow ex-
tension currently supports. It reflects the common operations
found in most ISAs: addition, subtraction, multiplication, bit-
wise operations, and compare instructions.

Memory instructions. Table 2 lists all memory instruc-
tions in the DF extension. The dataflow execution model ac-
cesses memory through shared caches with the 00O model.

Even though true data dependencies are explicit in the
dataflow extension, memory aliasing is still a problem. We
take a conservative approach and force memory instructions

CARRV ’21, June 17, 2021,

Table 1. Arithmetic and Logic Instructions

H Name Description H
df add addition
df sub subtraction
df sl shift left
df and bitwise AND
df not bitwise NOT
df_mul multiplication
df cmpLT Compare Less Than
df_cmpEQ Compare Equal
df cmpGT Compare Greater Than

Table 2. Memory Instructions

H Name Description H
df 1w load 64-bit
df sw store 64-bit

df sd store 32-bit
df_1d load 32-bit
df Ib load single byte
df_sb store single byte

to execute in-order any time an aliasing problem can occur.
This memory ordering is done by the compiler: the compiler
inserts additional data dependencies between memory in-
structions to force them to execute in-order. As such, our
architecture does not introduce new memory consistency
problems.

Control Instructions. Control instructions (Table 3) are
used to implement conditional branches and looping. Dataflow
branch instructions are similar to control flow branches in
that they allow the program to execute conditional code (e.g.
if-else statements). Control flow branches modify the pro-
gram counter to dictate which part of the algorithm should
be executed. However, the DF extension converts control
dependencies to data dependencies, which controls the flow
of data between different paths in the dataflow graph.

Figure 4 shows the structure of a branch instruction. There
are two operands: a piece of data to be sent, and a boolean.
The output of the branch has two arcs, but only one path is
taken per branch. The boolean input determines which path
should be taken. If the condition is 0, the false path will be
taken, otherwise the true path will be taken.

Branch instructions can be used to implement loops, and
the compiler unrolls loops four times. However, loops intro-
duce a problem with re-entrant code: how do we execute
the same instruction multiple times in a DF architecture? A
unique number is given to each loop iteration in the form
of a context tag. The context tag isolates each loop iteration
to prevent any conflicts. The df_loop_br instruction behaves

CARRV 21, June 17, 2021,

Condition Data

True PathT /]False Path

Figure 4. Dataflow Branch Instruction

Table 3. Control Instructions

H Name Description H
df br branch instruction
df loop_br branch+modify context
df_modContext instruction modifies the context tag

Table 4. Communication Instructions

‘ ‘ Name Description ‘ ‘

df_switch toggle between Von Neumann and dataflow mode
df tok generates a dataflow token
df_mov loads token data into a register

like the df br branch instruction except it also increments
the context. This is used to handle simple for/while loops. If
more complex loop structures need to be implemented, the
df_modContext allows the compiler to directly change the
context.

VN/DF Communication. Because DF instructions devi-
ate from the VN model significantly, some glue instructions
are needed to integrate the DF sub-ISA and allow for fast
switching between the DF and VN models. The df switch
instruction toggles the execution mode between the VN and
DF cores. This is needed because executing DF instructions
requires a complete shift in the way the processor fetches,
schedules, and executes instructions. The df_tok and df mov
instructions allow the VN and DF cores to communicate.
The df_tok instruction is used to take data from a register
and create a DF token. The df_mov instruction performs the
opposite action; a data token is moved into the register file.

4 The DF Extension’s Microarchitecture

Our DF microarchitecture is based on earlier work of tagged-
token machines [1, 6] with modifications to reduce energy
consumption and also support mainstream DF execution.
Tagged-token machines process data in the form of tokens
(Figure 5). Each token has two components: a piece of data
and a tag. The tag includes an instruction pointer (to the
instruction that uses the operand) and a context value that
is used for looping.

Cowley and Sawalha

Data IP ‘ Context

|

Tag

Figure 5. Dataflow Token

The tag is used to match operands that belong to the same
instruction; if an instruction has two operands then both
operands will contain the same tag. The DF core knows that
an instruction is ready to execute when it detects two tokens
with the same tag. The instruction and the two operands are
then sent to the execute stage. Single operand instructions
do not have to wait and can be executed as soon as the first
token is generated.

The DF core consists of a simple pipeline. All dependencies
among instructions are determined statically by the compiler;
however, instructions are being dispatch to the functional
units dynamically. The DF core can support predication and
can be used for limited regions or larger regions of code, with
restrictions on the number of tokens that can be handled as
once.

4.1 Pipeline

The DF pipeline is a circular pipeline; tokens that are gener-
ated in the execute stage are routed back to the token queue
to be processed. Figure 6 shows the four main steps of the
pipeline: fetch, decode, match, and execute. Each step is more
than one stage and takes multiple cycles. The length of the
DF pipeline is 12. Both the DF and the OoO piplines run
under the same clock frequency.

v

v

Match

—> Fetch Decode Execute =

Figure 6. Pipeline

Fetch. The fetch unit fetches instructions from memory.
The only deviation from VN cores is that there is no PC.
Instead, the fetch address comes from the input token sent
from the previous stage or the OoO core.

Decode. This stage decodes instructions, but does not have
to fetch operands from a register file. Instead, the operands
are contained in the tokens.

Match Unit. The match unit is used to detect which in-
structions are available for execution. This module is sig-
nificantly different from any other in the VN architecture.
Instead of a register file, the match unit has a small cache

RISC-V Dataflow Extension

of memory for storing data tokens, called token cache. It is
a 450-entry content addressable memory with the token’s
tag as the key. When both operand tokens of an instruction
have been generated and have reached the match stage, the
instruction is "fired" and sent to the next stage to be executed.
Here are two scenarios that result in an instruction being
executed:

o Single-operand instruction: it bypasses the match unit
and is sent directly to the execute stage.

e Dual-operand instruction: the first operand token is
stored in the cache when it arrives. When the second
operand token is generated, a match is detected be-
cause both tokens have the same tag and are mapped
to the same spot in the cache. Then the first token is
removed from the cache and both operands are sent
to the next stage for execution.

This stage also contains a simple loop predictor. This is
used to speed up execution of simple loop structures. How-
ever, more complex control speculation is difficult due to
the difficulty of recovering from branch mispredictions. Be-
cause instructions order is abandoned in dataflow cores, it is
difficult to flush all speculative instructions. After a branch
misprediction, our dataflow core flushes the entire token
cache and returns control back to the OoO core.

Execute. Once a match has been determined, the instruc-
tion is dispatched to one of the functional units. When the
instruction is executed, instead of writing back to a register
file, up to three tokens are generated and sent back to the
token queue.

5 The Heterogeneous DF/VN Architecture

Our heterogeneous DF/VN model consists of two cores, an
out-of-order (O0O) core and a DF core. A switch instruction
will change the mode of operation between the DF and the
000 cores. One advantage of our ISA extension is that the
heterogeneous architecture is capable of switching execution
models within a single application with reduced overhead
compared to switching to a totally different ISA. It also im-
poses lower overhead on compilation and loading.

The two cores share the same cache, which allows the
cores to communicate large amounts of data (arrays) with-
out communication overhead. Additionally, the df tok and
df mov instructions allow the two cores to directly send data
back and forth (see previous section). Figure 7 shows a block
diagram of our DF/VN heterogeneous architecture. Table 5
summarizes the main microarchitecture configurations of
both the DF and the OoO pipelines.

6 Experimental Setup and Results

To evaluate the potential for our DF extension, a DF CPU
model was added to the gem5 computer architecture simu-
lator [2]. A heterogeneous processor architecture contains

CARRV ’21, June 17, 2021,

Out of
Order Dataflow
L1 Cache

Figure 7. Hybrid Model

Table 5. 00O and DF Microarchitecture Configurations

H Name 000 DF H
Pipeline stages 15 12
fetch Width 8 8
decode Width 6 6
Rename Width 6 -
Match Width - 8
commit Width 8 8
Branch predictor | loop predictor | loop predictor

Reservation station 60 entries -

Reorder buffer 220 entries -
Match unit - 450 entries
L1 ICache Size 16 KB
L1 DCache Size 64 KB
L2 Size 4 MB

the DF pipeline discussed in the previous section as well as
gemb5’s existing out-of-order core, called O3.

We have implemented a simple compiler written as an
LLVM backend that is capable of compiling C/C++ code into
a dataflow graph. More work is required to make the com-
piler more efficient and optimized. As such, we optimized
certain parts of the code manually. Because of the manual
modifications effort, this work considers only microbench-
marks to study the performance of the DF extension for
common programming features (loops, arrays, arithmetic,
etc.). We wrote three microbenchmarks: sum array, matrix
multiplication and indirect sum.

Sum Array. The first microbenchmark is a simple sum
array program. A single for loop is used to loop through
and add up all elements of an array. This microbenchmark
was chosen to measure the DF core’s performance of two
features that are ubiquitous to programming: for loops and
arrays.

Matrix Multiplication. Multiplies two NxN matrices.
Matrix multiplication has regular access patterns, but has a
more complex memory and control structures. Only the inner
most loop was compiled to dataflow and the rest of the code

CARRV 21, June 17, 2021,

Algorithm 1: Sum Array

sum = 0;

for i=0; i<N; i++ do
‘ sum += array/[i];

end

was run on the OoO core. This also tests the performance of
a program that frequently switches between dataflow and
Von Neumann execution.

Algorithm 2: Matrix Multiplication

sum = 0;
for k=0; k<N; k++ do
for j=0; j<N; j++ do
for i=0; i<N; i++ do
| result[K][j] += A[K][i] * BLi][j];
end
end
end

Indirect Sum. The next program represents a class of
algorithms called “irregular applications”. These are applica-
tions that have irregular data or control behaviors that are
difficult for traditional VN processors to handle. The indirect
sum microbenchmark finds the sum of an array but the ac-
cess to the array is not sequential as shown below. idx is
an array of random integers, which are used to index the
array; the array elements are accessed in a random order.
This irregular memory access pattern is unpredictable and
performs poorly with the cache, causing large delays. The
DF model can improve performance by increasing ILP.

Algorithm 3: Indirect Sum

sum = 0;
for i=0; i<N; i++ do
index = idx[i];
sum += array[index];
end

We compiled two versions of each microbenchmark: one
using only the standard RISC-V instruction set for the OoO
core and one for the heterogeneous architecture including
the DF extension. Both OoO and DF cores run at the same fre-
quency. Table 6 shows the speedup of each microbenchmark
relative to the OoO core. The Sum Array benchmark shows
a 7.5% improvement of performance using the DF extension
due to mainly lower cache misses and lower number of in-
structions. The Matrix Multiplication results in a slowdown
using the DF core due to the overhead cost of the frequent

Cowley and Sawalha

Table 6. Percent Improvement of dataflow and Von Neu-
mann CPUs

H Benchmark % Improvement H
Sum Array 7.48%
Matrix Multiplication -2.36%
Indirect Sum 3.21%

switching between the VN and DF cores. Finally, the DF ex-
tension shows a 3.2% improvement in performance over the
000 core for the Irregular Sum benchmark, executing more
instructions in parallel.

7 Conclusion and Future Work

In this work, we designed a new extension for the RISC-V
Instruction Set Architecture (ISA) that executes dataflow in-
structions. We added the dataflow sub-ISA to the RISC-V ISA
and simulated it using the gem5 simulator. Our heteroge-
neous dataflow/Von Neumann architecture runs applications
using both the dataflow and out-of-order execution models,
considering the communication cost between both pipelines.
We used three microbenchmarks to simulate the hybrid ar-
chitecture. Our results show a performance improvement up
to 7.5% for the dataflow core over the OoO core.

In the future, we aim to improve the compiler to generate
an optimized dataflow code. We will also run many different
benchmarks to find the performance benefits for different
types of applications and application domains. In addition,
we will estimate the energy consumption of the DF core
and the heterogeneous architecture. Finally, we will consider
adding more instructions to the dataflow ISA extension and
optimize the DF hardware further.

8 Acknowledgement

We thank the reviewers for their valuable feedback. This
work was supported in part by the Faculty Research And
Creative Activities Award (FRACAA) W2016-037, and the
College of Engineering and Applied Sciences at Western
Michigan University.

References

[1] Arvind and R. Nikhil. 1990. Executing a program on the mit tagged-
token dataflow architecture. IEEE Trans. Comput. 39 (1990), 300-318.
hﬁps://doi.org/10.1 109/1SCA.1990.134511
Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood and. 2011. The
gemb5 simulator. ACM SIGARCH Computer Architecture News 39, 2 (May
2011), 1-7. https://doi.org/TOJ 145/2024716.2024718
[3] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin,
Lizy K. John, Calvin Lin, Charles R. Moore, James Burrill, Robert G.
McDonald, William Yoder, and the TRIPS Team. 2004. Scaling to the

[2

—

https://doi.org/10.1109/ISCA.1990.134511
https://doi.org/10.1145/2024716.2024718

RISC-V Dataflow Extension

End of Silicon with EDGE Architectures. IEEE Computer 37, 7 (2004),
44-55. https://doi.org/10.1 109/MC.2004.65

[4] Jack B. Dennis and David P. Misunas. 1975. A Preliminary architecture

(5]

(6]

for a Basic Data-Flow Processor. ISCA °75 Proceedings of the 2nd annual
symposium on Computer architecture 3, 4 (Jan. 1975), 126-132. https:
//doi.org/10.1145/642089.642111

V. Govindaraju, C.-H. Ho, and K. Sankaralingam. 2011. Dynamically
specialized datapaths for energy efficient computing. HPCA (Feb. 2011),
300-318. https://doi.org/10.1109/HPCA.2011.5749755

J. R Gurd, C. C Kirkham, and I. Watson. 1985. The Manchester prototype
dataflow computer. Commun. ACM 28, 1 (Jan. 1985), 34-52. https:
//doi.org/10.1145/2465.2468

CARRV ’21, June 17, 2021,

[7] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam.

[8

[9

[

—

2015. Exploring the potential of heterogeneous von neumann/dataflow
execution models. ISCA ’15 Proceedings of the 42nd Annual International
Symposium on Computer Architecture 43, 3 (2015), 298-310. https:
//doi.org/10.1145/2872887.2750380

G.M. Papadopoulos and D.E. Culler. 1990. Monsoon: an explicit token-
store architecture. Proceedings. The 17th Annual International Sympo-
sium on Computer Architecture (May 1990), 82-91. https://doi.org/10.
1109/ISCA.1990.134511

Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen,
Andrew Putnam, Ken Michelson, Mark Oskin, and Susan J. Eggers. 2007.
The WaveScalar architecture. ACM Transactions on Computer Systems
(TOCS) 25, 2 (May 2007).

https://doi.org/10.1109/MC.2004.65
https://doi.org/10.1145/642089.642111
https://doi.org/10.1145/642089.642111
https://doi.org/10.1109/HPCA.2011.5749755
https://doi.org/10.1145/2465.2468
https://doi.org/10.1145/2465.2468
https://doi.org/10.1145/2872887.2750380
https://doi.org/10.1145/2872887.2750380
https://doi.org/10.1109/ISCA.1990.134511
https://doi.org/10.1109/ISCA.1990.134511

	Abstract
	1 Introduction
	2 Background
	2.1 Tagged-Token Architectures
	2.2 Hybrid DF/VN Models
	2.3 Heterogeneous DF/VN Architectures

	3 The RISC-V Dataflow Extension
	4 The DF Extension's Microarchitecture
	4.1 Pipeline

	5 The Heterogeneous DF/VN Architecture
	6 Experimental Setup and Results
	7 Conclusion and Future Work
	8 Acknowledgement
	References

