
Cryptography Acceleration in a RISC-V GPGPU

Austin Adams∗†
Pulkit Gupta∗
aja@gatech.edu

pgupta91@gatech.edu
Georgia Institute of Technology

Atlanta, Georgia, USA

Blaise Tine
btine3@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Hyesoon Kim
hyesoon@cc.gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

ABSTRACT
AES and the SHA family are popular cryptographic algorithms for
symmetric encryption and hashing, respectively. Highly parallel
use cases for calling both AES and SHA exist, making hardware-
accelerated execution on a GPGPU appealing.We extend an existing
GPGPU with a cryptography execute unit that will accelerate key
elements of these algorithms. We implement a subset of the RISC-V
cryptography extensions draft specification on the Vortex GPGPU,
seeing 1.6× speedup for SHA-256 and 6.6× speedup for AES-256
on average over pure software implementations on Vortex.

1 INTRODUCTION
A cryptographic accelerator for SHA-256 and AES-256 could be
applicable in a handful of use-cases. Indeed, x86 already provides
AES and SHA instructions designed to accelerate these workloads
[18, 19]. SHA acceleration is highly applicable to cryptanalysis, and
specifically for finding SHA collisions [34]. AES acceleration could
be applied to full disk encryption and high-throughput encrypted
file servers. Together, for example, they could be used for a secure,
reliable file distribution system on a public facing network. With
the traditional CPU approach, the bandwidth is bottlenecked by the
limited number of threads; however on a GPGPU, many files can
be operated on in parallel. Also, depending on the cipher mode, a
single file can be operated on in parallel. As Vortex is seemingly the
first of its kind in the world of open-source GPGPUs that utilize the
RISC-V architecture, we will extend this GPGPU with the proposed
RISC-V cryptography ISA extension draft to determine the viability
of such an accelerator for increasing throughput and bandwidth
for AES encryption/decryption and SHA hashing [15, 39].

From here, Section 2 will cover an introduction to SHA-256 and
AES-256, followed by a history of cryptographic acceleration on
GPGPUs and in RISC-V. Section 3 will detail our approach to the
hardware implementation of the specific SHA-256, AES-256, and bit
manipulation instructions we have chosen to implement. Section
4 details the assembly intrinsics and algorithm modifications that
have been performed to support hardware acceleration for AES-256
and SHA-256.

In Section 5, we show the performance and area differences
and provide some insight and analysis as to the results we find.
Based on these results, we recommend AES acceleration where
workloads require it, but hesitate to encourage implementation
of SHA acceleration or bit manipulation instructions as the gains
they provide are not comparable to the frequency increase of CPUs

∗Both authors contributed equally to this research
†Corresponding author

compared to physical GPUs. Finally, in Section 6, we briefly outline
future work.

2 BACKGROUND AND RELATEDWORK
2.1 Secure Hash Algorithm 2 (SHA-2)
Each algorithm in the SHA-2 family takes in amessage and produces
a digest (or hash) [29]. The family includes SHA-224, SHA-256, SHA-
384, SHA-512, SHA-512/224, and SHA-512/256, but in this paper
we focus on SHA-256, which produces a 256-bit digest for a given
message.

Equations 1 through 6 show some operators required for SHA-
256 [29]. 𝑥,𝑦, 𝑧 represent 32-bit words; ROTR𝑛 (𝑥) rotates a word 𝑥
right 𝑛 bits; and SHR𝑛 (𝑥) shifts a word 𝑥 right 𝑛 bits.

Ch(𝑥,𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (¬𝑥 ∧ 𝑧) (1)
Maj(𝑥,𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (¬𝑥 ∧ 𝑧) ⊕ (𝑦 ∧ 𝑧) (2)

Σ0 (𝑥) = ROTR2 (𝑥) ⊕ ROTR13 (𝑥) ⊕ ROTR22 (𝑥) (3)

Σ1 (𝑥) = ROTR6 (𝑥) ⊕ ROTR11 (𝑥) ⊕ ROTR25 (𝑥) (4)

𝜎0 (𝑥) = ROTR7 (𝑥) ⊕ ROTR18 (𝑥) ⊕ SHR3 (𝑥) (5)

𝜎1 (𝑥) = ROTR17 (𝑥) ⊕ ROTR19 (𝑥) ⊕ SHR10 (𝑥) (6)

For each 512-bit message block, the SHA-256 algorithm invokes
Ch and Maj 64 times each, Σ0 and Σ1 64 times each, and 𝜎0 and 𝜎1
48 times each [29].

2.2 Advanced Encryption Standard (AES)
AES is a symmetric block cipher which operates on 128-bit data
blocks and key sizes of 128, 192, or 256 bits [14]. In this paper, we
focus on “AES-256,” which means AES with a 256-bit key. A full
description of AES remains out of the scope of this paper (see the
specification for details [14]), but we include a high level description
of in order to explain our optimizations.

Listing 1: AES cipher pseudocode [14]
1 Cipher(byte in[16], byte out[16],

2 byte keysched [16*15])

3 begin

4 byte state [4,4]

5 state = in

6 AddRoundKey(state , keysched[0, 16*3])

7
8 for round = 1 step 1 to 14

https://orcid.org/0000-0002-3179-8735
https://orcid.org/0000-0002-6061-7825


Austin Adams, Pulkit Gupta, Blaise Tine, and Hyesoon Kim

9 SubBytes(state)

10 ShiftRows(state)

11 if round < 14

12 MixColumns(state)

13 AddRoundKey(state ,

14 keysched[round*16,

15 (round +1)*16 -1])

16 end for

17
18 out = state

19 end

For context, Listing 1 shows the pseudocode for the AES cipher.
The state, input, and output are 4-by-4 column-major matrices of
bytes. Descriptions of AES subroutines used in the cipher follow:

• SubBytes: Replace each byte in the input word/state accord-
ing to the S-Box, a predefined non-linear substitution table.

• AddRoundKey: XOR each column of the state with its corre-
sponding key in the key schedule (explained below).

• ShiftRows: Cyclically left-rotate the bytes in each row of the
state. The offset of rotation is the zero-indexed row number.

• MixColumns: Replace each entry in each column with a func-
tion of the entries in the same column, where the function
consists of predefined shifts and XORs.

Note that with the exception of AddRoundKey, all four aforemen-
tioned subroutines have complementary Inv* versions used in the
inverse cipher. InvSubBytes, for example, replaces bytes according
to an inverse S-Box.

A key expansion step which runs before the cipher generates
the key schedule (keysched in Listing 1) from the 256-bit key. The
key schedule contains a separate 4-byte key for each column for
each cipher round; all subsequent cipher invocations use the same
key schedule for a given cipher key. Notably, for AES-256, key
expansion makes 13 calls to SubWord, which applies SubBytes to
all four bytes in an operand, and 7 calls to RotWord, which performs
an left byte rotation on its operand.

2.3 Block Cipher Modes for AES
Practically, using block ciphers such as AES requires choosing a
block cipher mode. Block ciphers modes recommended by NIST
include Electronic Code Book (ECB), Cipher Block Chaining (CBC),
and Counter (CTR) [13]. ECB runs the cipher on each 16-byte in-
put block independently, which allows parallelizing encryption or
decryption across many threads at a block granularity; however,
ECB fails to conceal plaintext patterns and is vulnerable to replay
attacks [33].

CBC avoids these weaknesses first by using a pseudorandom
initialization vector, and second by XORing the previous block’s ci-
phertext with the current block’s plaintext before encrypting. CBC
decryption thus involves XORing the previous block ciphertext
with the output of the inverse cipher on the current block [33]. Al-
though CBC decryption still allows for block-level parallelism, CBC
encryption introduces an unfortunate data dependency between
adjacent data blocks, requiring encryption to be performed serially.

CTR, however, permits full block-level parallelism while still pro-
viding better security than ECB. For both encryption and decryp-
tion, it runs the forward AES cipher on an initially-pseudorandom
16-byte counter that increments for every block, XORing the re-
sult with the input block [33]. Note this makes the encryption and
decryption routines identical.

2.4 GPUs as Cryptographic Accelerators
Cook et al. published the earliest work on accelerating cryptog-
raphy with GPUs [11]. The authors accelerated both stream and
block ciphers using OpenGL with the goal of achieving accelera-
tion with hardware found in many consumer systems, rather than
more obscure specialized cryptography-specific hardware. How-
ever, even the authors’ sophisticated strategies for executing por-
tions of stream and block ciphers (namely XORs and S-Boxes) on
GPU graphics pipelines could not overcome the inherent hardware
and API limitations, and performance suffered, with their optimized
C AES implementation performing nearly double the throughput of
their GPU-based implementation. Harrison and Waldron compare
strategies for improving the performance, but none surpass AES
on a CPU [20].

Shortly after Nvidia released CUDA, Manavski improved on this
work by writing an optimized CUDA kernel that outperformed
implementations of AES running on CPUs by nearly 20 times [25].
Later, Gilger et al. implemented an open-source OpenSSL engine
that GPU-accelerates a variety of block ciphers, including AES, by
up to 10 times over CPU-based implementations [17].

Researchers have used GPUs for cryptographic hash functions as
well. To generate pseudorandom noise, Tzeng andWei implemented
MD5 on a GPU using OpenGL shaders, achieving both high perfor-
mance and high scores on statistical tests [36]. Later, researchers
implemented CUDA kernels for MD5, achieving high throughput
[21, 24]. Today, a major usage of cryptographic hash functions on
GPUs is cryptocurrency mining, at which GPGPUs excel [4, 22].
However, despite the usefulness of GPUs for cryptography, we
failed to find examples of GPUs equipped with cryptography hard-
ware acceleration.

2.5 Cryptographic Acceleration and RISC-V
Stoffelen published the first paper on RISC-V cryptography opti-
mizations, providing open-source, optimized 32-bit RISC-V software
implementations of various cryptographic algorithms, including
two different approaches for AES implementation: table-based and
bitslice-based [35]. The former involves effecting rounds of AES
using lookups into 4 KiB tables, which may lead to vulnerability to
timing attacks depending on cache configuration [12]. The latter,
on the other hand, slices a given bit of every state byte across eight
registers and resists timing attacks by performing the S-Box using
bitwise instructions on these bitvectors [23]. Stoffelen estimates
the performance benefits of instructions in possible RISC-V exten-
sions, for instance finding that a rotation instruction would improve
bitsliced AES performance by 7%.

For the purpose of accelerating the signature scheme XMSS,
Wang et al. implemented a discrete SHA-256 accelerator that com-
municates with a RISC-V CPU [37]. While their work yields an
impressive 3.8x speedup for SHA-256 on an FPGA, Fritzmann et



Cryptography Acceleration in a RISC-V GPGPU

al. note that the remote accelerator strategy used by Wang et al.
causes expensive data transfers to and from the accelerator, needs
“large buffers to store the input and output” of the accelerator, and
suffers from overall inflexibility [16].

Recently, Marshall et al. evaluated multiple robust approaches
for AES acceleration in RISC-V [28]. Based on an analysis of per-
formance and hardware complexity, for 32-bit RISC-V systems, the
authors recommend a “hardware-assisted T-tables” ISA extension
originally proposed by Saarinen [32] which behaves similar to the
popular table-based strategy, except computing table entries in
hardware at runtime instead of looking them up in memory. The
draft specification for RISC-V cryptography extensions uses this
strategy for 32-bit RISC-V, defining the following instructions [39]:

• aes32esi rt, rs2, bs:
To encrypt, perform SubBytes on the bsth byte (where 0 <=
bs <= 3) of the column contained in register rs2. XOR result
into rt. Carefully choosing the source and destination regis-
ters (columns) allows effectively performing ShiftRows.

• aes32esmi rt, rs2, bs:
Same as the previous instruction, except also allow for
MixColumns by performing shifts as needed; this way, after
XORing all shifted source column values into the destination
column register, we have effectively performed MixColumns.
This is a separate instruction from aes32esi because
MixColumns is not used on the last AES round.

• aes32dsi rt, rs2, bs:
Same as aes32esi except in reverse, for decryption.

• aes32dsmi rt, rs2, bs:
Same as aes32esmi except in reverse, for decryption.

For SHA-256, the draft RISC-V cryptography extension speci-
fication also defines four new instructions corresponding to the
four SHA-256 sigma subroutines mentioned in Section 2.1 [39].
Each consists solely of bitwise operations on a single operand,
with sha256sum0, sha256sum1, sha256sig0, and sha256sig1 per-
forming Σ0, Σ1, 𝜎0, and 𝜎1 respectively. The specification does not
implement Ch or Maj (Equations 1 and 2 in Section 2.1) as instruc-
tions, saying “as ternary functions they are too expensive in terms
of opcode space” [39].

In addition to the instructions we have mentioned, the draft
specification contains instructions for gathering entropy, AES on
64-bit RISC-V, other functions in the SHA-2 family, the SM3 and
SM4 cryptographic algorithms, and some bitwise instructions use-
ful for cryptography. All its bitwise instructions overlap with those
already defined in “Bitmanip,” an overlapping draft specification
for RISC-V bit manipulation instructions [6]. These bit manipula-
tion instructions include rori rd, rs1, imm, which cyclically
rotates the bits in register rs1 according to the immediate value
imm, placing the result in rd.

2.6 RISC-V on a GPGPU
There is a “V” (Vector) proposal for vector extensions to RISC-V
[5]. However, this provides only a limited SIMD execution model
best for CPUs. Collage designed a RISC-V GPGPU with a SIMT
execution model but only implemented a limited proof-of-concept
[10]. In this paper, we use Vortex, a complete GPGPU using the
RISC-V architecture [15]. It implements RV32IMF, that is, 32-bit

RISC-V with the base integer instruction set, the multiplication
extension, and the floating point extension.

3 HARDWARE IMPLEMENTATION
We have implemented a subset of the version 0.9 draft of the spec-
ification for cryptographic extensions to RISC-V [39] in Vortex.
Our subset consists of the AES-specific instructions aes32esi,
aes32esmi, aes32dsi, and aes32dsmi; the SHA-256–specific in-
structions sha256sum0, sha256sum1, sha256sig0, and sha256sig1;
and the bit rotation instruction rori. Please see Section 2.5 for func-
tional details on these instructions.

To support these instructions in Vortex, we added a new cryp-
tography execution unit, shown in Figure 1, to each Vortex core
and adjusted the decode and execute pipeline stages to direct in-
structions to it. Unfortunately, version 0.9 of the draft specification
uses an encoding of the AES instructions that interprets the rs1
field in the standard RISC-V R-type instruction format as the desti-
nation register instead of rd, complicating our decoding logic. This
inconsistent design choice was intended to save opcode space by
using rd as a future opcode extension [39] but we find it puzzling.
The specification editor has stated he plans to revert to the three-
operand design originally proposed by Saarinen [32] in a future
version [26], but we chose to follow the current draft specification
nonetheless.

We built the AES portion of our cryptography execution unit
from the Verilog reference implementation of the draft specification
[27]. For S-Boxes, it uses the lightweight scheme proposed by Boyar
and Peralta [9], which consists of three layers: a separate outer layer
for each of the forward and inverse S-Boxes, a shared middle layer,
and an outer layer again separated for forward and inverse. The
result is only 128 gates, 16 deep, for the forward S-Box and 127
gates, also 16 deep, for the inverse S-Box [9], but we duplicate this
hardware for every thread. To avoid stretching the cycle time of
Vortex, we pipelined the S-Box, adding a buffer between the first
two layers and the outer layer, as seen in Figure 1.

We have synthesized ourmodifiedVortex design and programmed
it on an Arria 10 FPGA, generally maintaining the frequency of the
original Vortex design (more details in Section 5.4). We have posted
our implementation publicly on GitHub [3].

4 SOFTWARE IMPLEMENTATION
4.1 Pure Software Implementations
To measure the speedup offered by the native instructions we imple-
mented for AES and SHA, we wrote pure software Vortex kernels
for SHA-256 and AES-2561. The SHA implementation is based off a
naïve reading of the specification [29], and the AES implementation
uses the lookup table strategy mentioned in Section 2.5, except with
a single lookup table as proposed by Daemen and Rijmen [12]. Our
software table-based strategy showed an average 1.35× speedup
over our original naïve software implementation that it replaced.

For AES, we implemented the ECB, CBC, and CTR cipher modes.
Due to the data dependence highlighted in Section 2.3, CBC encryp-
tion executes serially in a single thread; all other kernels evenly
spread work across all available threads.
1To simplify debugging, we first tested our code for these algorithms on a CPU. We
have posted this code publicly as well [2].



Austin Adams, Pulkit Gupta, Blaise Tine, and Hyesoon Kim

Figure 1: Cryptography execution unit added to Vortex

4.2 Accelerating SHA-256
In addition to the software implementation, to test the new SHA-
256 instructions, we created a “native” kernel for SHA-256. The
implementation is straightforward: for the sigma functions listed
in Section 2.1, we invoke the four new SHA-specific instructions
instead of our software versions in C. To insert the instructions
into generated code without making compiler modifications, we
used the asm syntax provided by the GNU C compiler [1]. To get
an idea of the impact of the new SHA-256–specific instructions
compared to more generic cryptography-friendly instructions, we
also implemented a “hybrid” SHA kernel that incorporates rori
into the software sigma functions instead of replacing them entirely.

4.3 Accelerating AES
To evaluate the new AES instructions, we wrote a “native” AES
kernel that uses the four new AES instructions. Listing 2 shows our
assembly for an AES encryption round, which consists of four load
instructions followed by sixteen aes32esmi instructions, one for
each byte of the state. We assume register a0 initially contains the
address of the entry in the key schedule for that round, registers
s0-s3 contain the current state columns, and registers t0-t3 will
hold the new state columns. These instructions can effectively
replace lines 9-15 in Listing 1.

Listing 2: AES round assembly [28]
1 lw t0, 0(a0)

2 lw t1, 4(a0)

3 lw t2, 8(a0)

4 lw t3, 12(a0)

5 aes32esmi t0, s0, 0

6 aes32esmi t0, s1, 1

7 aes32esmi t0, s2, 2

8 aes32esmi t0, s3, 3

9 aes32esmi t1, s1, 0

10 aes32esmi t1, s2, 1

11 aes32esmi t1, s3, 2

12 aes32esmi t1, s0, 3

13 aes32esmi t2, s2, 0

14 aes32esmi t2, s3, 1

15 aes32esmi t2, s0, 2

16 aes32esmi t2, s1, 3

17 aes32esmi t3, s3, 0

18 aes32esmi t3, s0, 1

19 aes32esmi t3, s1, 2

20 aes32esmi t3, s2, 3

The AES instructions listed in Section 2.5 were intended for
use in the cipher and inverse cipher, but we have used them to
accelerate parts of the key expansion as well. To avoid having to
store the S-Box in memory for the SubWord calls the key expansion
routine makes, we wrote a function that invokes aes32esi four
times, once for each byte of the word.

More subtly, the equivalent inverse cipher explained in Section
5.3.5 of [14], which the aes32dsi and aes32dsmi instructions im-
plement [28], requires 13 new InvMixColumns invocations to be
added into the key expansion routine. We cannot use aes32dsmi
on its own for InvMixColumns as it also performs InvSubBytes.
As a workaround, we first perform sixteen additional aes32esi
instructions to perform SubBytes, which the sixteen aes32dsmi
instructions then undo via InvSubBytes, resulting in the required
InvMixColumns operation.

Finally, we created a “hybrid” AES kernel that uses only rori to
accelerate the 7 calls to RotWord in key expansion and none of the
AES-specific instructions.

5 EVALUATION AND ANALYSIS
To evaluate the speedup provided by our implementation, we ex-
ecuted our AES-256 and SHA-256 kernels on our modified Vor-
tex programmed onto an Intel Arria 10 GX 1150 FPGA. We fed
the SHA-256 and AES-256 kernels 1 MiB and 2 MiB (respectively)



Cryptography Acceleration in a RISC-V GPGPU

Table 1: Cycle and Instruction Counts in Our Experiments

Algorithm Configuration Instructions Cycles
(×1000) (×1000)

SHA-256 Software 84335 2137
SHA-256 Hybrid 64642 1707
SHA-256 Native 49503 1331

AES ECB encrypt Software 451057 22269
AES ECB decrypt Software 450046 21878
AES ECB encrypt Native 64741 2469
AES ECB decrypt Native 62422 2727

AES CBC encrypt Software 7235197 2798349
AES CBC decrypt Software 451754 22596
AES CBC encrypt Native 1012945 398312
AES CBC decrypt Native 64521 4534

AES CTR encrypt Software 456585 14979
AES CTR decrypt Software 456585 14985
AES CTR encrypt Native 70159 2883
AES CTR decrypt Native 70165 2767

Figure 2: SHA-256 cycle count speedup, with Software nor-
malized to 1

of CPU-generated pseudorandom data, which the kernels spread
evenly across 256 threads, with 4 warps of 4 threads on each of the
16 cores.

5.1 SHA-256 Results
Figure 2 shows the results of our SHA-256 experiments, in which
we assigned each of 256 threads two messages to hash, each 2 KiB
of CPU-generated pseudorandom data. The hybrid implementation,
which uses the rori instruction in a software implementation of the
sigma functions mentioned in Section 2.1, offers a 1.25× speedup
over our pure software implementation. The native instructions for
the sigma functions provide a 1.30× speedup over hybrid, giving
them an overall 1.60× speedup over software.

Figure 3: AES-256 key expansion speedup, with software
normalized to 1

5.2 AES Key Expansion Results
We evaluate acceleration of AES key schedule generation separately
from AES cipher acceleration since it occurs only once for all cipher
calls using the same key. Figure 3 shows our results. For key ex-
pansion: “Software” uses only our C code and no new instructions;
“Hybrid” uses rori for the RotWord calls; “Native” uses our new
AES instructions for SubWord and InvMixColumns as described in
Section 4.3; and “Native+Hybrid” combines “Native” and “Hybrid.”

Key expansion for decryption with native instructions clearly
shows the strongest speedup. We attribute this to the cost of the
software implementation of InvMixColumns, which the AES Equiv-
alent Inverse Cipher adds to key expansion, as described in Section
4.3.

5.3 AES-256 Results
For each combination of software and native implementations with
block cipher modes ECB, CBC, and CTR, we tasked 256 threads
with either decrypting or encrypting 512 16-byte blocks each of
CPU-generated pseudorandom data. We have plotted our results in
Figure 4.

As mentioned in Section 4.1, AES encryption in the CBC mode
is serialized across blocks and must be performed in a single Vortex
thread. Thus, the cycle count for encryption with CBC is 125.7
to 161.3 times larger than the cycle count for ECB encryption, as
shown in Table 1; we believe the 256 threads used in ECB versus
the 1 thread used in CBC encryption explain this.

In Figure 4, we see that CTR achieves a 5.2× and 5.4× speedup
for encryption and decryption, respectively (as mentioned in Sec-
tion 2.3, both are identical). By contrast, the serialized workload
for the CBC mode extends the runtime so severely that even the
respective 7.0× and 5.0× speedups for encryption and decryption
cannot compensate.

5.4 Physical Characteristics
In Table 2, we see that our modified GPGPU still fits in the Intel
Arria 10 GX 1150 FPGA we use for the baseline Vortex model. For
small core counts, our modification decreases the frequency by
a marginal amount, but with larger core counts, the frequency
decreases further. This is likely due to synthesis or place and route
issues that may be mitigated by optimizing our initial design. We
were able to naïvely reduce the area cost of the rori instruction



Austin Adams, Pulkit Gupta, Blaise Tine, and Hyesoon Kim

Figure 4: AES-256 cycle count speedup, with software nor-
malized to 1

Table 2: Characteristics on FPGA (427,200 ALMs)

Configuration Core(s) Area Usage (%) Frequency (MHz)

Baseline 1 12.86 220
+ Crypto Unit 1 13.12 218

Baseline 4 26.48 213
+ Crypto Unit 4 27.82 208

Baseline 16 80.24 192
+ Crypto Unit 16 85.78 177

to allow it to fit in the area with the large core count, and expect
there may be easy gains elsewhere as well.

5.5 Implementation Recommendations
In regards to a physical implementation of this work for applications
such as the use-case mentioned in Section 1, we believe that the
AES encryption speedup and the throughput gains of GPUs make it
highly advisable to utilize a hardware accelerator for cryptography
in a GPGPU. Additionally, for systems operating on many files at
once with a longer latency requirement, CBC encryption is still
viable, and on systems where files are accessed less often and with
shorter latency requirements, CTRmode is advisable. Also, a system
targeting only CTR could save hardware by implementing only AES
encryption instructions, as CTR decryption does not use the inverse
cipher (see Section 2.3).

The limited speedup in SHA-256 workloads is not as convinc-
ing since dedicated SHA-256 accelerators have significantly better
speedup and throughput over our implementation [37]. The mar-
ginal performance improvement of the rotate instruction in SHA
and AES key schedule generation leave the hardware cost of rori
undesirable as well, unless other workloads are able to better utilize
it.

While it may be tempting to implement the draft specification
in its entirety, thereby including many more instructions than the
ones we have implemented, the increase in area and complexity
are likely warranted mainly for CPU implementations. However, if
a subset of the specification is known to be applicable to a popular

Table 3: Estimates for AES CTR encryption execution time
speedup over 16 non-accelerated cores, on various crypto-
accelerated core counts

Cores Speedup at Supported Speedup at 192 MHz
Freq.

1 0.37 0.32
2 0.73 0.65
3 1.08 0.97
4 1.42 1.30
5 1.75 1.62
6 2.07 1.95
7 2.39 2.27
8 2.69 2.60
9 2.98 2.92
10 3.27 3.25
11 3.55 3.57
12 3.81 3.90
13 4.07 4.22
14 4.32 4.54
15 4.56 4.87
16 4.79 5.19

workload, then the small increase in area and logical complexity is
not insurmountable. In our case of only supporting AES, SHA-256,
and rori instructions, the area increase and frequency decrease are
within reasonable tolerances of the unmodified GPGPU. In an area
constrained environment, our estimates in Table 3 show that run-
ning the FPGA at the maximum supported frequency (192 MHz),
using only four crypto-accelerated cores would exceed the perfor-
mance of sixteen unmodified cores. Based on this, we believe that
the crypto modification can be made on a subset of the cores on a
Vortex GPGPU, leaving the rest unmodified. If we add use 4 crypto
cores and 12 unmodified cores in the GPGPU, the area should only
increase by 1.5% while allowing for accelerated performance of
crypto tasks when necessary.

6 FUTUREWORK
Future work should consider the throughput of our work compared
to other GPGPUs and CPUs, with and without native instructions
such as AES-NI or Intel SHA Extensions in x86 [18, 19]. Additionally,
we attempted to optimize our software implementations, in partic-
ular for AES, but we do not use advanced software optimization
methods such as those proposed by Bertoni et al. [8] or Bernstein
and Schwabe [7]. Future work should determine if applying these
advanced software strategies reduces the speedup provided by the
instructions we implemented. On the hardware side, future work
could analyze whether our implementation is vulnerable to hard-
ware attack vectors such as timing attacks, and also conduct a more
robust analysis of the impacts of our design on the 15nm Vortex
chip as described by Elsabbagh et al. [15].

ACKNOWLEDGMENTS
This research was supported in part through research infrastruc-
ture and services provided by the Rogues Gallery testbed [31, 38]



Cryptography Acceleration in a RISC-V GPGPU

hosted by the Center for Research into Novel Computing Hier-
archies (CRNCH) at Georgia Tech. The Rogues Gallery testbed
is primarily supported by the National Science Foundation (NSF)
under NSF Award Number 2016701. Any opinions, findings and
conclusions, or recommendations expressed in this material are
those of the author(s), and do not necessarily reflect those of the
NSF.

This research was supported in part through research cyberin-
frastructure resources and services provided by the Partnership
for an Advanced Computing Environment (PACE) at the Georgia
Institute of Technology, Atlanta, Georgia, USA [30].

REFERENCES
[1] 2021. Extended Asm (Using the GNU Compiler Collection (GCC)), Version 12.0.0.

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html.
[2] Austin Adams. 2021. GitHub: AES-256 and SHA-256 Implementations. https:

//github.com/ausbin/vortex-crypto-algos.
[3] Austin Adams and Pulkit Gupta. 2021. GitHub: Cryptography Instructions for

Vortex. https://github.com/ausbin/vortex/tree/crypto.
[4] Mahdi Kh. Alkaeed, Zaid Alamro, Muhammed Samir Al-Ali, Hasan Abbas Al-

Mohammed, and Khaled M. Khan. 2020. Highlight on Cryptocurrencies Mining
with CPUs and GPUs and their Benefits Based on their Characteristics. In 2020
IEEE 10th International Conference on System Engineering and Technology (ICSET).
67–72. https://doi.org/10.1109/ICSET51301.2020.9265386 ISSN: 2470-640X.

[5] AlonAmid, Krste Asanovic, Allen Baum, Alex Bradbury, Tony Brewer, Chris Celio,
Aliaksei Chapyzhenka, Silviu Chiricescu, Ken Dockser, Bob Dreyer, Roger Espasa,
Sean Halle, John Hauser, David Horner, Bruce Hoult, Bill Huffman, Nicholas
Knight, Constantine Korikov, Ben Korpan, Hanna Kruppe, Yunsup Lee, Guy
Lemieux, Grigorios Magklis, Filip Moc, Rich Newell, Albert Ou, David Patterson,
Colin Schmidt, Alex Solomatnikov, Steve Wallach, Andrew Waterman, and Jim
Wilson. 2021. RISC-V Vector Extension. https://github.com/riscv/riscv-v-spec/
releases/tag/v0.10.

[6] Jacob Bachmeyer, Allen Baum, Ari Ben, Alex Bradbury, Steven Braeger, Ro-
gier Brussee, Michael Clark, Ken Dockser, Paul Donahue, Dennis Ferguson,
Fabian Giesen, John Hauser, Robert Henry, Bruce Hoult, Po-wei Huang, Ben Mar-
shall, Rex McCrary, Lee Moore, Jiri Moravec, Samuel Neves, Markus Oberhumer,
Christopher Olson, Nils Pipenbrinck, Joseph Rahmeh, Xue Saw, Tommy Thorn,
Avishai Tvila, Andrew Waterman, Thomas Wicki, and Claire Wolf. 2021. RISC-V
Bitmanip Extension. https://github.com/riscv/riscv-bitmanip/releases/tag/v0.93.

[7] Daniel J. Bernstein and Peter Schwabe. 2008. New AES Software Speed Records.
In Progress in Cryptology - INDOCRYPT 2008 (Lecture Notes in Computer Science),
Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das (Eds.). Springer,
Berlin, Heidelberg, 322–336. https://doi.org/10.1007/978-3-540-89754-5_25

[8] Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti, and
Stefano Marchesin. 2003. Efficient Software Implementation of AES on 32-Bit
Platforms. In Cryptographic Hardware and Embedded Systems - CHES 2002 (Lecture
Notes in Computer Science). Springer, Berlin, Heidelberg, 159–171. https://doi.
org/10.1007/3-540-36400-5_13

[9] Joan Boyar and René Peralta. 2012. A Small Depth-16 Circuit for the AES S-Box.
In Information Security and Privacy Research (IFIP Advances in Information and
Communication Technology), Dimitris Gritzalis, Steven Furnell, and Marianthi
Theoharidou (Eds.). Springer, Berlin, Heidelberg, 287–298. https://doi.org/10.
1007/978-3-642-30436-1_24

[10] Caroline Collange. 2017. Simty: generalized SIMT execution on RISC-V. In
CARRV 2017: First Workshop on Computer Architecture Research with RISC-V.
https://hal.inria.fr/hal-01622208

[11] Debra L. Cook, John Ioannidis, Angelos D. Keromytis, and Jake Luck. 2005.
CryptoGraphics: Secret Key Cryptography Using Graphics Cards. In Topics in
Cryptology – CT-RSA 2005 (Lecture Notes in Computer Science), Alfred Menezes
(Ed.). Springer, Berlin, Heidelberg, 334–350. https://doi.org/10.1007/978-3-540-
30574-3_23

[12] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael. Springer Berlin
Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04722-4

[13] Morris Dworkin. 2001. Recommendation for Block Cipher Modes of Operation:
Methods and Techniques. Technical Report NIST Special Publication (SP) 800-38A.
National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.
800-38A

[14] Morris J. Dworkin, Elaine B. Barker, James R. Nechvatal, James Foti, Lawrence E.
Bassham, E. Roback, and James F. Dray Jr. 2001. Advanced Encryption Standard
(AES). (Nov. 2001). https://www.nist.gov/publications/advanced-encryption-
standard-aes Last Modified: 2021-03-01T01:03-05:00.

[15] Fares Elsabbagh, Blaise Tine, Priyadarshini Roshan, Ethan Lyons, Euna Kim,
Da Eun Shim, Lingjun Zhu, Sung Kyu Lim, and Hyesoon Kim. 2020. Vortex:

OpenCL Compatible RISC-V GPGPU. arXiv:2002.12151 [cs] (Feb. 2020). http:
//arxiv.org/abs/2002.12151 arXiv: 2002.12151.

[16] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. 2020. RISQ-V: Tightly
Coupled RISC-V Accelerators for Post-Quantum Cryptography. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems (Aug. 2020), 239–280.
https://doi.org/10.13154/tches.v2020.i4.239-280

[17] Johannes Gilger, Johannes Barnickel, and Ulrike Meyer. 2012. GPU-Acceleration
of Block Ciphers in the OpenSSL Cryptographic Library. In Information Security
(Lecture Notes in Computer Science), Dieter Gollmann and Felix C. Freiling (Eds.).
Springer, Berlin, Heidelberg, 338–353. https://doi.org/10.1007/978-3-642-33383-
5_21

[18] Shay Gueron. 2010. Intel Advanced Encrypt Standard (AES) New Instruction Set.
Technical Report.

[19] Sean Gulley, Vinodh Gopal, Kirk Yap,Wajdi Feghali, Jim Guilford, and GilWolrich.
2013. Intel SHA Extensions. Technical Report. https://www.intel.com/content/
www/us/en/develop/articles/intel-sha-extensions.html

[20] Owen Harrison and John Waldron. 2007. AES Encryption Implementation and
Analysis on Commodity Graphics Processing Units. In Cryptographic Hardware
and Embedded Systems - CHES 2007 (Lecture Notes in Computer Science), Pascal
Paillier and Ingrid Verbauwhede (Eds.). Springer, Berlin, Heidelberg, 209–226.
https://doi.org/10.1007/978-3-540-74735-2_15

[21] Guang Hu, Jianhua Ma, and Benxiong Huang. 2009. High Throughput Imple-
mentation of MD5 Algorithm on GPU. In Proceedings of the 4th International
Conference on Ubiquitous Information Technologies Applications. 1–5. https:
//doi.org/10.1109/ICUT.2009.5405734 ISSN: 1976-0035.

[22] Alexandr Kuznetsov, Kyryl Shekhanin, Andrii Kolhatin, Diana Kovalchuk, Vi-
talina Babenko, and Iryna Perevozova. 2019. Performance of Hash Algorithms on
GPUs for Use in Blockchain. In 2019 IEEE International Conference on Advanced
Trends in Information Theory (ATIT). 166–170. https://doi.org/10.1109/ATIT49449.
2019.9030442

[23] Emilia Käsper and Peter Schwabe. 2009. Faster and Timing-Attack Resistant AES-
GCM. In Cryptographic Hardware and Embedded Systems - CHES 2009 (Lecture
Notes in Computer Science), Christophe Clavier and Kris Gaj (Eds.). Springer,
Berlin, Heidelberg, 1–17. https://doi.org/10.1007/978-3-642-04138-9_1

[24] Changxin Li, Hongwei Wu, Shifeng Chen, Xiaochao Li, and Donghui Guo. 2009.
Efficient implementation for MD5-RC4 encryption using GPU with CUDA. In
and Identification in Communication 2009 3rd International Conference on Anti-
counterfeiting, Security. 167–170. https://doi.org/10.1109/ICASID.2009.5276924
ISSN: 2163-5056.

[25] Svetlin A. Manavski. 2007. CUDA Compatible GPU as an Efficient Hardware
Accelerator for AES Cryptography. In 2007 IEEE International Conference on
Signal Processing and Communications. 65–68. https://doi.org/10.1109/ICSPC.
2007.4728256

[26] Ben Marshall. 2021. Re: Some issues for discussion. https://lists.riscv.org/g/tech-
crypto-ext/message/473

[27] Ben Marshall. 2021. RISC-V Crypto RTL. https://github.com/riscv/riscv-crypto/
tree/f5db502dd266666a800875b3b5ffa0158d08aae2/rtl.

[28] Ben Marshall, G. Richard Newell, Dan Page, Markku-Juhani O. Saarinen, and
Claire Wolf. 2021. The design of scalar AES Instruction Set Extensions for RISC-
V. IACR Transactions on Cryptographic Hardware and Embedded Systems (2021),
109–136. https://doi.org/10.46586/tches.v2021.i1.109-136

[29] National Institute of Standards and Technology. 2015. Secure Hash Standard
(SHS). Technical Report Federal Information Processing Standard (FIPS) 180-4.
U.S. Department of Commerce. https://doi.org/10.6028/NIST.FIPS.180-4

[30] PACE. 2017. Partnership for an Advanced Computing Environment (PACE). http:
//www.pace.gatech.edu

[31] Will Powell, Jason Riedy, Jeffrey S. Young, and ThomasM. Conte. 2019. Wrangling
Rogues: A Case Study on Managing Experimental Post-Moore Architectures. In
Proceedings of the Practice and Experience in Advanced Research Computing on
Rise of the Machines (Learning) (Chicago, IL, USA) (PEARC ’19). ACM, New York,
NY, USA, Article 61, 8 pages. https://doi.org/10.1145/3332186.3332223

[32] Markku-Juhani O. Saarinen. 2020. A Lightweight ISA Extension for AES and
SM4. arXiv:2002.07041 [cs] (Aug. 2020). http://arxiv.org/abs/2002.07041 arXiv:
2002.07041.

[33] Bruce Schneier. 2015. Applied Cryptography: Protocols, Algorithms and Source
Code in C (20th edition ed.). Wiley, Indianapolis, IN.

[34] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
2017. The First Collision for Full SHA-1. InAdvances in Cryptology – CRYPTO 2017
(Lecture Notes in Computer Science), Jonathan Katz and Hovav Shacham (Eds.).
Springer International Publishing, Cham, 570–596. https://doi.org/10.1007/978-
3-319-63688-7_19

[35] Ko Stoffelen. 2019. Efficient Cryptography on the RISC-VArchitecture. In Progress
in Cryptology – LATINCRYPT 2019 (Lecture Notes in Computer Science), Peter
Schwabe and Nicolas Thériault (Eds.). Springer International Publishing, Cham,
323–340. https://doi.org/10.1007/978-3-030-30530-7_16

[36] Stanley Tzeng and Li-Yi Wei. 2008. Parallel white noise generation on a GPU
via cryptographic hash. In Proceedings of the 2008 symposium on Interactive 3D
graphics and games (I3D ’08). Association for Computing Machinery, New York,

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://github.com/ausbin/vortex-crypto-algos
https://github.com/ausbin/vortex-crypto-algos
https://github.com/ausbin/vortex/tree/crypto
https://doi.org/10.1109/ICSET51301.2020.9265386
https://github.com/riscv/riscv-v-spec/releases/tag/v0.10
https://github.com/riscv/riscv-v-spec/releases/tag/v0.10
https://github.com/riscv/riscv-bitmanip/releases/tag/v0.93
https://doi.org/10.1007/978-3-540-89754-5_25
https://doi.org/10.1007/3-540-36400-5_13
https://doi.org/10.1007/3-540-36400-5_13
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-642-30436-1_24
https://hal.inria.fr/hal-01622208
https://doi.org/10.1007/978-3-540-30574-3_23
https://doi.org/10.1007/978-3-540-30574-3_23
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38A
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
http://arxiv.org/abs/2002.12151
http://arxiv.org/abs/2002.12151
https://doi.org/10.13154/tches.v2020.i4.239-280
https://doi.org/10.1007/978-3-642-33383-5_21
https://doi.org/10.1007/978-3-642-33383-5_21
https://www.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html
https://www.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html
https://doi.org/10.1007/978-3-540-74735-2_15
https://doi.org/10.1109/ICUT.2009.5405734
https://doi.org/10.1109/ICUT.2009.5405734
https://doi.org/10.1109/ATIT49449.2019.9030442
https://doi.org/10.1109/ATIT49449.2019.9030442
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1109/ICASID.2009.5276924
https://doi.org/10.1109/ICSPC.2007.4728256
https://doi.org/10.1109/ICSPC.2007.4728256
https://lists.riscv.org/g/tech-crypto-ext/message/473
https://lists.riscv.org/g/tech-crypto-ext/message/473
https://github.com/riscv/riscv-crypto/tree/f5db502dd266666a800875b3b5ffa0158d08aae2/rtl
https://github.com/riscv/riscv-crypto/tree/f5db502dd266666a800875b3b5ffa0158d08aae2/rtl
https://doi.org/10.46586/tches.v2021.i1.109-136
https://doi.org/10.6028/NIST.FIPS.180-4
http://www.pace.gatech.edu
http://www.pace.gatech.edu
https://doi.org/10.1145/3332186.3332223
http://arxiv.org/abs/2002.07041
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-030-30530-7_16


Austin Adams, Pulkit Gupta, Blaise Tine, and Hyesoon Kim

NY, USA, 79–87. https://doi.org/10.1145/1342250.1342263
[37] Wen Wang, Bernhard Jungk, Julian Wälde, Shuwen Deng, Naina Gupta, Jakub

Szefer, and Ruben Niederhagen. 2020. XMSS and Embedded Systems. In Selected
Areas in Cryptography – SAC 2019 (Lecture Notes in Computer Science), Kenneth G.
Paterson and Douglas Stebila (Eds.). Springer International Publishing, Cham,
523–550. https://doi.org/10.1007/978-3-030-38471-5_21

[38] Jeffrey S. Young, Jason Riedy, Thomas M. Conte, Vivek Sarkar, Prasanth Chatarasi,
and Sriseshan Srikanth. 2019. Experimental Insights from the Rogues Gallery. In

2019 IEEE International Conference on Rebooting Computing (ICRC). 1–8. https:
//doi.org/10.1109/ICRC.2019.8914707

[39] Alexander Zeh, Andy Glew, Barry Spinney, Ben Marshall, Daniel Page, Derek
Atkins, Ken Dockser, Markku-Juhani O. Saarinen, Nathan Menhorn, Richard
Newell, and Claire Wolf. 2021. RISC-V Cryptographic Extension Proposals
Volume I: Scalar & Entropy Source Instructions. https://github.com/riscv/riscv-
crypto/releases/tag/v0.9.0-scalar.

https://doi.org/10.1145/1342250.1342263
https://doi.org/10.1007/978-3-030-38471-5_21
https://doi.org/10.1109/ICRC.2019.8914707
https://doi.org/10.1109/ICRC.2019.8914707
https://github.com/riscv/riscv-crypto/releases/tag/v0.9.0-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v0.9.0-scalar

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Secure Hash Algorithm 2 (SHA-2)
	2.2 Advanced Encryption Standard (AES)
	2.3 Block Cipher Modes for AES
	2.4 GPUs as Cryptographic Accelerators
	2.5 Cryptographic Acceleration and RISC-V
	2.6 RISC-V on a GPGPU

	3 Hardware Implementation
	4 Software Implementation
	4.1 Pure Software Implementations
	4.2 Accelerating SHA-256
	4.3 Accelerating AES

	5 Evaluation and Analysis
	5.1 SHA-256 Results
	5.2 AES Key Expansion Results
	5.3 AES-256 Results
	5.4 Physical Characteristics
	5.5 Implementation Recommendations

	6 Future Work
	Acknowledgments
	References

