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ABSTRACT
The RISC-V ISA and ecosystem have been becoming an increas-
ingly popular in both industry and academia. gem5 is a widely used
powerful simulation platform for computer architecture research.
Previous works have added single-core and multi-core RISC-V sup-
port to gem5 but only for system call emulation. The full-system
simulation of gem5, on the other hand, provides accurate analysis of
systems as an actual system software is loaded and run on the hard-
ware platform modelled in gem5. However, full-system simulation
support in gem5 for RISC-V ISA is currently not available.

This paper presents our recent work on supporting RISC-V full-
system simulation in gem5. After describing the implementation de-
tails of supporting extensible target system and debugging method-
ology for overcoming major challenges, we share our experiments
of full-system simulations.
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1 INTRODUCTION
RISC-V is a free, open-source ISA [6][5] which has recently gained
popularity from both the academia and the industry. RISC-V is
designed to be simple, efficient yet future-proof by avoiding the
pitfalls of existing ISAs and allowing extension of the instruction
set. The RISC-V ISA also adopts a modular approach where vendors
can implement any chosen set of the RISC-V ISA extensions. As
such, this ISA is friendly to academic research and low volume
applications, but powerful enough to be extended to warehouse-
scale applications.

gem5 is a powerful open-source simulator [1] [2] widely used in
computer architecture research. It strives to achieve a balance be-
tween speed, accuracy and development time. Its users can choose
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between different CPU models, system modes and memory sys-
tems to achieve system configurations with desired level of trade-
offs. Such configurations can be easily setup up through gem5’s
Python interface, while performance-critical simulation logic is
implemented in C++.

For each ISA, gem5 offers two modes of simulation: syscall em-
ulation (SE) and full system (FS) simulation. With previous work
[3, 4], gem5 is able to support most RISC-V instructions and system
calls in SE mode where system calls are emulated. This mode pro-
vides a simplified method to run and analyze user-space workloads.
FS simulation is needed for accurate analysis of system components
and devices as an actual system software (often Linux kernel) is
loaded by gem5.

Research areas which are made possible by FS simulation include
virtual memory, virtualization, distributed systems , storage stack
performances and network-related studies. However, the use of
RISC-V for those areas was limited due to the lack of FS simulation
support. This paper addresses this gap.

In this paper, we present our work of adding support for RISC-V
full-system simulation, which has been included with a GNU/Linux
Busybox distribution with kernel version 5.10 in the official gem5-
21.0 release. We describe the target system setup and major chal-
lenges in Section 2, followed by the implementation details of new
device models and platform in Section 3. Section 4 explains our
debugging methodology. Finally, Section 5 presents validation and
testing results using the full system setup.

2 DEVELOPMENT TARGET AND
CHALLENGES

In this section, we first show the target system setup and then
discuss the challenges to overcome for successful gem5 RISC-V
full-system support.

2.1 Target System
The goal is to build a baseline RISC-V system which can be easily
extended based on user needs. This target system has a core set of
hardware sources including a minimum set of peripherals. It is able
to run the system software, for example, one with bootloader and
Linux kernel.

The hardware configuration of target system is shown in Figure
1, where only modules of interests are presented. Besides bus sub-
system, there are two major sub-systems: CPU and HiFive Platform.
The blocks represented by orange boxes are the devices newly
added in our work for successful booting of system software.

In CPU sub-system, an extra MMU component, PMA checker,
is added. The HiFive platform is based on SiFive’s HiFive series
of board and contains the minimal set of critical peripherals. The
Core Local Interrupt Controller (CLINT) handles software and timer
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Figure 1: Hardware Configuration of Target System

interrupts via a MMIO interface. The Platform Level Interrupt Con-
troller (PLIC) is responsible for routing interrupts from external
sources and peripheral devices to the hardware threads based on
a priority scheme. The UART and VirtIOMMIO are not necessary
for kernel boot-up but are essential for a usable operating system.
UART provides an interactive command line terminal while the Vir-
tIOMMIO provides a copy-on-write root filesystem which contains
the workload scripts and operating system binaries.

Figure 2 shows the stack consisting of several software layers
in gem5 full-system simulation. The gem5 (FS) block in the figure
contains the hardware modules of system with desired configura-
tion. It also models the interactions between hardware modules.
CPU model with RISC-V ISA decoder handles the instructions from
OS layer or user applications, which could be at different privi-
leged modes. A gem5 FS simulation starts with parsing Python
configuration script and building simulator executable based on
configurations. Then, the simulator loads bootloader and Linux
kernel to boot up the system. When kernel is up, user applications
can be executed in background or via terminal.

Our gem5 RISC-V FS simulation also supports a hypervisorwhich
doesn’t need hardware-assistant virtualization, i.e., RISC-V H ex-
tension. Diosix is such a hypervisor.

2.2 Challenges
Compared to the SE mode, the FS simulation has a more complex
configuration consisting of aforementioned newly added hardware
components and software components such as the kernel and boot-
loader payloads. During a boot process, a fault can occur in any
of the above components, even in interactions with the existing
CPU models and memory models due to wrongly implemented
privileged instructions and newly added device models.

Figure 2: Software Layers of gem5 FS simulation

There could be multiple possible reasons for a failure during a
FS simulation as below. The DTB configuration errors can cause
bootloader run into an erroneous status after parsing device-tree.
In FS simulation, interrupt mechanism plays a critical role to keep
the system running. The wrong privileged ISA implementation,
interrupt triggering mechanism, or the interrupt handling logic
within CPU and interrupt controller can lead to faults in simulation.
As we found during debugging, in the complex scenarios, there
were even errors due to CPU pipeline squashing andmemory access
of peripheral devices.

Finding out the root cause of a fault in above mentioned gem5 FS
simulation is challenging due to the various reasons and complex
scenarios. Identifying the code or instructions within bootloader or
kernel that trigger the fault is more challenging because of the code
size of them and the entrance into an infinite loop of process where
the bootloader or the kernel enters a panic function and ends up in
an idle loop when an error occurs. When that happens, millions of
assembly instructions could have executed in simulation and it is
impossible to trace the root cause manually. Therefore, a method
of effective backtrace through millions of assembly instructions to
locate the origin of an error is needed.

Additionally, gem5 is an event-driven simulator which simulates
the desired tick-by-tick behaviour of the hardware. However, this
introduces complexities to the debugging as call-stack information
is limited to calls within the same simulation tick. Events such
as memory read request and response would not be visible under
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the same call stack. Hence, we would need a method of analyzing
beyond the scope of current tick.

To smooth our work of supporting RISC-V FS simulation in gem5,
in addition to enhancing traditional remote GDB debugging, we
developed a sophisticated tool kit (a set of Python scripts) to ana-
lyze the instruction execution trace of a gem5 simulation together
the comparison of the corresponding execution trace in Qemu. In
Section 4, we will elaborate on our debugging methodology and
how to apply it to overcome the above challenges.

3 IMPLEMENTATION DETAILS
In this section, we present the implementation details of the newly
added devices or hardware modules. The UART module is built-
in in gem5 while the VirtIOMMIO model is ported over from the
ARM setup. The focus is put on the platform and other devices like
CLINT, PLIC and PMAChecker.

We also talk about the other fixes on privileged instructions and
CPU models. This section is closed by supports for checkpointing
and device tree.

3.1 HiFive Platform
In gem5, system configurations are organized into container classes
called platforms. A Platform class is a parent class with a standard-
ized set of peripherals and utility functions that can be extended
in a hierarchical manner to customize the setup to a specific board
/ system. In ARM, the common Platform class is RealView while
in X86, the common Platform class is PC. In RISC-V, we name the
platform HiFive, which corresponds to SiFive’s HiFive series of
board. The memory map conventions and peripheral addresses
are chosen based on the SiFive U54MC SoC datasheet. The HiFive
platform contains the minimal set of peripherals upon which other
non-critical peripherals can be added to. Such a base configuration
is used not only on HiFive boards but also on other SoCs such as
the Kendryte K210.

The HiFive platform is designed to be easily extendable, with
minimal changes needed to be made to port over devices from other
ISAs. A PlicIntDevice class is provided to allow easy connection
of a peripheral to the PLIC interrupt controller. A set of utility
functions within the HiFive platform class also allows users to add
new devices to a list and have the necessary connections made
automatically.

3.2 CLINT
CLINT, as introduced earlier, handles software and timer interrupts.
RISC-V hardware threads can set timer interrupts or send inter-
processor interrupts to other threads bywriting tomemory-mapped
registers of CLINT in machine mode.

In SiFive’s setup, CLINT is often connected to an external RTC
clock signal that increments the MTIME register, which then trig-
gers interrupts based on the MTIMECMP register values for each
hardware thread. In the current setup, a dummy RTC model is con-
structed to allows for a configurable clock frequency but is not yet
implemented as a MMIO device. Aside from timer interrupts, the
MTIME register also supplies the value for the RDTIME instruction.

Software interrupts in CLINT are posted and cleared using an
MMIO interface. In machine modes, inter-processor interrupts (IPI)

are made possible by allowing access to the MSIP register address
of other cores.

3.3 PLIC
PLIC is responsible for routing of external interrupts to different
contexts, each of which corresponds to an interrupt pending bit
in a certain privilege mode. PLIC can route interrupts from up to
1023 external sources (1 to 1023) to up to 15872 contexts. A context
in PLIC can corresponding to a hardware thread, or a (hardware
thread, privilege level) tuple depending on the hardware implemen-
tation. In the current gem5 implementation, each hardware thread
corresponds to two contexts, one for M mode and one for S mode.

Each source will be assigned a 32-bit priority and each context
can enable or disable interrupts from any sources. At the same time,
each context can also set a threshold on the minimum interrupt
priority to trigger an external interrupt. A simplified working ex-
ample of PLIC is illustrated in Figure 3. In accordance with the
specifications, a 3-cycle delay is simulated between the interrupt
sources and the external interrupt signals.

Claiming and completion of external interrupts are also imple-
mented via MMIO. The gem5 implementation ensures that any
external interrupt can only be claimed by one context and that a
context cannot claim multiple interrupts before completing the last
claimed interrupt.

3.4 PMAChecker
Aside from the MMIO devices, the RISC-V ISA also requires the
implementation of a Physical Memory Attribute (PMA) checking
mechanism for checking attributes of the memory address such
as atomicity, memory-ordering, coherence, cacheability and idem-
potency. The RISC-V specification suggests possible memory at-
tributes to check for but does not specify any standards on the
implementation on this hardware component.

As such, the gem5 implementation of the PMA checker is an
abstract components which adds certain flags and attributes to
the memory request after address translation. Currently, the PMA
checker only checks for uncacheability but further checks can be
implemented easily when the need arises. This unit is necessary
for the proper functioning of all MMIO peripherals as it ensures
that memory requests to these devices will not be cached.

3.5 Fixes on Privileged Instructions and CPU
Models

Prior to this paper’s work, the RISC-V ISA is already mostly sup-
ported in SE mode. However, a few fixes were made by us on the
CSR instructions and interrupt handling logic. The current ISA
supports still has some minor discrepancy with the RISC-V ISA
specifications but these discrepancies should not affect the func-
tionality of the system.

In order to support full system booting on MinorCPU and De-
rivO3CPU, the following changes were made in our work. Firstly,
PLIC avoids posting interrupt to hardware threads which are al-
ready handling an external interrupt. This should not be necessary
in real hardware but was needed for MinorCPU support. MinorCPU
lacks the internal logic to prevent receiving interrupt signals while
it is inside an interrupt handler. Secondly, a pipeline squash was
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Figure 3: PLIC Illustration

forced after CSR writes to the SATP register. This is necessary such
that AUIPC instructions in the pipeline do not use a wrong PC
value when the MMU is activated.

3.6 Checkpointing and Device Tree
Besides a command line interface, another essential feature of a
full system we added in gem5 is the ability to store and restore
checkpoints. Booting a full system simulation can be very time con-
suming, especially when multiple peripheral devices are connected
to the system. As such, researchers often use a fast CPU model
such as AtomicSimpleCPU for the boot process and checkpoint the
system after boot-up. Subsequently, researchers can run benchmark
using more accurate CPU models by restoring from the checkpoint
without the need to boot up the system. In our gem5 RISC-V full
system support, we have tested and verified the checkpointing
functionality on all CPU models.

Our full system support also comes with devicetree generation
functionality. In Linux systems, the device and peripheral setup is
made known to the kernel using a devicetree. Since gem5 systems
are configured using a Python interface, it is necessary to modify
the devicetree binary passed to the kernel everytime the system
configuration is modified. In our full system support, we have
added devicetree generation feature to each peripheral device such
that users can avoid the trouble of having to manually match the
devicetree binary with the Python configuration.

4 DEBUGGING METHODOLOGY
To overcome the challenges mentioned in Section 2, we enhance
remote GDB support and introduce the methodology of trace anal-
ysis. In this section, we present details of them and share how they
were applied in debugging FS simulation.

4.1 Remote GDB and Trace Analysis
A remote GDB stub is commonly attached to the workload running
on the simulator. Using breakpoints and stack information, the
origin of an error can be quickly traced. Prior to our work, RISC-V
remote GDB in gem5 only supports printing values of integer regis-
ters. Support for printing values of float-point and CSR registers is
added to allow for more efficient checking of privileged instruction
implementation and errors.

Whenever a boot attempt of FS simulation fails, the method
of remote GDB cannot be directly applied because it is difficult to
identify the instruction causing trouble. Different from the common
user workloads, the kernel and bootloader do not exit on an error
like a typical workload. Instead, a panic function is called, which
eventually goes into an idle loop. Given the size and complexity
of the kernel and bootloader, together with the large number of
simulation instructions (could be millions), it is not feasible to
iteratively backtrack till the origin of the error using remote GDB
in a forward-straight way.

We introduce the method of trace analysis and develop a toolkit
which consists of several Python scripts for trace analysis. In order
to avoid manual inspection of millions of lines of the output traces,
we used QEMU as a reference for the exactly same execution path.
Using the same system setup described in a same DTS file, we boot
QEMU emulator and gem5 full-system simulator side-by-side and
collect both execution traces which are in different formats. We
then use the toolkit to parse both traces and perform comparisons
on the execution path to find the location of the translation block
where the two traces diverges. Subsequently we use aforementioned
enhanced remote GDB to automatically insert breakpoints into the
blocks to identify where errors come from.
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Table 1: Simulated Run-time (in milliseconds) of Running Multhreading Benchmarks Using Four O3 Cores

Number of PARSEC Benchmark
threads blackscholes canneal freqmine streamcluster swaptions

1 39.0 754.0 1363 160 431
2 20.0 392.0 777 - 218
4 10.1 257.9 - - -

4.2 Experience of Debugging FS Simulation
Using the above debugging methods together with gem5 build-in
debugging log, we were able to effectively locate and fix any errors
that occur during gem5 FS simulations.

An example of such errors is an incorrect return value from a load
instruction, which was caused by the incorrect implementation of a
peripheral device or the accidentally caching of the MMIO address
range. By trace comparison with QEMU, we quickly identified
the instruction that caused the panic condition. Looking into the
instruction, we figured out the reason for the fault.

In some cases, trace analysis helps identify the location but
cannot reveal the root cause. We can further leverage the remote
GDB functionality to check or write to the interrupt pending and
enable bits. Take the debugging of interrupt trigger mechanism for
instance. The remote GDB functionality allowed us to efficiently
verify the trigger conditions and timing behaviour of interrupt
devices such as PLIC and CLINT. It also helped in debugging the
interrupt handling logic in gem5 RISC-V CPUs by checking through
the register state changes in desired clock cycles.

Aside from the above tools trace analysis and remote GDB,
gem5’s built-in debug logs were extensively used as well. They
are helpful for printing out the internal states of targeted gem5
devices. For example, by enabling the debug logs of DerivO3CPU,
we were able to inspect the behaviour of the pipeline stages in
each clock cycle and thus identify issues such as accidentally trig-
gered squashes. After fixing CLINT and SATP write side effects,
DerivO3CPU is supported in RISC-V FS simulation.

5 EXPERIMENTS OF FS SIMULATION
5.1 Full-System Linux Boot-up
To verify our implementation, we booted up the target system in
Section 2 using the Berkeley bootloader together with the Linux
kernel v5.10. For simplicity, the system consists of four CPU cores,
each with one hardware thread. The filesystem used is a port of the
BusyBox disk image.

The Linux system has been successfully booted under all widely
used four CPU models offered by gem5: Atomic Simple, Timing
Simple, Minor and DerivO3.We further logged in the system and ex-
ecuted commands using terminal. The commands within BusyBox
can be run without errors. Checkpoint and restore functionalities
have also been tested with switching CPU models.

This correct functionality of commands shows that the kernel’s
process management and scheduler is working. Since the scheduler
relies on CLINT’s timer interrupts, we are sure that CLINT’s timing
functionality is implemented correctly. The ability to read, write
and move files also demonstrates the correct functionality of the file
system, which is controller by the VirtIOMMIO device. Furthermore,

Table 2: Benchmark Blackscholes Simulated Run-time (in
milliseconds) Using 1 Core

CPU Number of Threads Linux Linux on top of Diosix

O3

8 38.948 94.468
4 38.053 92.420
2 36.959 91.781
1 36.236 91.219

the proper functioning of the interactive terminal shows that the
UART and PLIC models are correctly configured.

The most important components of Linux OS, including pro-
cess management, memory management, device drivers and inter-
process communication, have been checked to work correctly. We
are confident that the target system and FS simulation support have
been correctly implemented.

5.2 Running Multi-threaded Workloads
We created an instance of target system with Symmetric Multi-
Processing (SMP) configuration. This configuration has four O3
CPU cores (each with one hardware thread) and 1024M DRAM. We
further created a port of the PARSEC benchmark and selected five
benchmarks. During experiments, we run multiple multi-threaded
workloads on above Linux platform using different numbers of
threads to see how this SMP configuration works.

Table 1 shows the simulated run-time taken to complete each
execution of benchmarks under different thread counts. As some
simulations are still running when this paper is submitted, a few
cells are filled with "-" to indicate that the related data could NOT
be included in camera ready paper.

As shown in the table, when a workload with a same data set
to be handled by different numbers of threads, the execution with
2X threads could reduce the simulated run-time, i.e., the execution
time of workload in simulation, roughly by half, compared to the
one with 1X thread(s). For example, benchmark Blackscholes takes
39ms to finish the execution using 1 thread. After using 4 threads,
it only needs 10.1ms to complete. The speed-up is close to 4. For
other benchmarks, there are speed-up more or less. Hence, we
can conclude that our full-system setup has successful support
for running multi-threaded workloads on SMP configuration with
multiple hardware threads.

5.3 Running Workloads on Linux as Guest OS
of Diosix Hypervisor

Our full-system setup also allows for analysis of more complicated
system setups. We created an instance of target system with the
hardware configuration of 1 CPU core, which has one hardware
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thread. This hardware configuration boots up two software config-
urations: 1) Linux FS; and 2) Diosix (a M mode hypervisor) with
Linux as one of its Guest OS. Table 2 shows comparison of the
simulated run-time for the blackscholes benchmark under different
simulation runs using different numbers of software threads.

From the third column, we can see that the simulated run-time
is increased following the increase of number of threads used to
run the benchmark. This shows the thread context switch overhead
on a CPU core with single hardware thread.

By comparing the numbers on a same row, we can see that the
number on the third column is much less than the one on the fourth
column. The extra delay is caused by Diosix for 1) intercepting and
running system calls from benchmark; and 2) scheduling other
guest OSes running on top of Diosix.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented our work on adding support for
gem5 RISC-V FS simulation. We have implemented a core extensible
target system for gem5 FS simulation by adding new devices and
fixing errors in privileged instructions and CPU models. We further
elaborate on our debugging methodology which is beneficial to
other developers as well. At last, we share our experiments of FS
simulations in 1) booting up Linux system, 2) running workloads
on top of the system and 3) booting up Diosix hypervisor with two
guest OSes and running workloads on one of the guest Linux OS.

Our gem5 FS simulation support provides the essential infras-
tructure to a multitude of future research topics on the RISC-V ISA.
We give several examples as below.

gem5 FS simulation is crucial in the analysis of the virtual mem-
ory system architecture. The FS simulation allows the modelling
of the system with virtual memory that integrates proposals such
as page based attributes mechanism and new address translation
modes for RISC-V in the OS kernel.

Security research involves multiple components of the system:
the cores, the bus, the secure enclave, the external devices, the OS
and the firmware. FS simulation can be used to evaluate proposals
implemented in gem5 at system level.

The hardware-assistant virtualization technique is critical to
high-performance processors in HPC and cloud domains. The RISC-
V H extension and KVM support can be added on top of the gem5
FS simulation so as to enhance the capability of system-level per-
formance evaluation.
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