
NeuralScale: A RISC-V Based Neural Processor Boosting AI
Inference in Clouds

Rongkai Zhan, Xiaobo Fan
{mark,shawn}@streamcomputing.com

Stream Computing Inc.
Beijing, China

ABSTRACT
There has been a tremendous increase inAI chips for cloud comput-
ing over the last few years. Most of the specialized AI chips are de-
signed to optimize specific applications with poor programmabil-
ity and flexibility. In this paper, we present NeuralScale, a RISC-V
based neural processor core architecture for AI inference in clouds
that prompts programmability significantly with RISC-V vector ex-
tensions while retaining competitive performance and efficiency.
Our industrial product P920, implementedwith 32NeuralScale cores,
achieves 256TOPS (INT8) and 128TFLOPS (FP16) peak performance
under a clock frequency of 1.0 GHz in a TSMC 12nm FinFET pro-
cess technology. Evaluation results on typical inference workloads
show that our processor delivers state-of-the-art throughput and
power efficiency performance.

CCS CONCEPTS
• Computer systems organization → Neural networks.

KEYWORDS
RISC-V, vector, extension, processor, AI, inference

1 INTRODUCTION
AI and its diverse applications have seen significant increasing de-
mand for AI computing in clouds over the last few years. Typical
AI-enabled services include image and speech recognition, natural
language processing, medical diagnosis, visual search, and person-
alized recommendations. AI computing in clouds includes two dis-
tinct workloads: training and inference. Training is the process of
creating neural network models and fine-tuning models through a
particular training algorithm with large amounts of relevant raw
data. Inference is the deployment of the trained models for real-
time evaluations of newdata. Both training and inference are compute-
intensive but they require different compute resources. The train-
ing process typically uses 32-bit single-precision floating-point or
64-bit double-precision floating-point data formats and ALUs to
achieve a high level of accuracy. By contrast, the inference pro-
cess can use much lower precision data formats and ALUs like 8-
bit integer, 16-bit integer and 16-bit half-precision floating-point
while introducing a very limited drop in prediction accuracy. It is
reported that the inference workloads constitute more than 95% of
AI computing workloads in clouds [20].

Currently, AI computing workloads in clouds are mainly per-
formed on central processing units (CPUs) and graphics process-
ing units (GPUs). Meanwhile, we have seen significant growth in
FPGA-based accelerators [8] [16] [21] and application-specific in-
tegrated circuits (ASICs) [3] [4] [7] [10] for AI inference in clouds.

CPUs are general-purpose processors with good programmabil-
ity and almost can do anything but are not suitable for compute-
intensive workloads. GPUswithmassively parallel computing abil-
ity are suitable for AI computing and almost all AI models are
trained using GPUs. However, the high-precision floating point
ALUs are redundant for the inferenceworkloadswhich lift the total
cost of ownership and increase power consumption. FPGAs have
flexible programmability which allow developers to create custom
hardware accelerators quickly and can be reprogrammed to adapt
to the evolving AI landscape. On the other hand, the reconfigura-
bility limits the clock frequency, and hence FPGAs are less com-
petitive than GPUs or ASICs in terms of performance and energy
efficiency. ASICs with customized silicon and memory hierarchy
for specific models or algorithms have shown better performance
and energy efficiency than traditional GPUs in AI inference. How-
ever, most ASICs can only perform designed models or algorithms
with poor or even no flexibility and programmability. As AI algo-
rithms are still evolving, new operators and activation functions
may be proposed. It will become a great challenge for ASICs when
migrating to new AI models in the future.

To promote the programmability of ASICs while retaining the
performance and energy efficiency, we propose a general-purpose
neural processor architecture based on the RISC-V ISA [18], as
RISC-V is meant to provide a basis for more specialized instruction-
set extensions or customized accelerators. The sketch map in Fig-
ure 1 shows the key components of the proposed processor archi-
tecture: a RISC-V scalar core, a vector execution unit, and a ma-
trix execution unit. The scalar core acts as the control processor,
fetching and decoding all the instructions. The vector execution

Figure 1: A sketchmap of the proposed general-purpose neu-
ral processor core architecture.



CARRV’21, June 17, 2021 Rongkai Zhan, Xiaobo Fan

unit conducts standard vector operations. The matrix execution
unit conducts matrix operations, e.g. GEMM operation, which is
at the heart of AI inference workloads. An industrial product con-
figured with 32 NeuralScale cores is implemented in a TSMC 12nm
FinFET process technology. Evaluation results on ResNet-50 V1.5
and BERT inference show that our processor achieves state-of-the-
art throughput performance, latency performance, and energy ef-
ficiency for both CNN and NLP models.

2 NEURALSCALE ARCHITECTURE
2.1 Scalar Core
We adopt the AndesCore N25F core [12] as the scalar core, which
is a 32-bit RISC-V CPU IP core with vector extension support. The
scalar core has a 5-stage in-order execution pipeline and separated
instruction and data caches. Features also include dynamic branch
prediction for efficient branch execution. It is capable of deliver-
ing high per-MHz performance and operating at high frequencies
with small gate counts. Figure 2 illustrates a high-level overview of
the NeuralScale architecture. As we can see from the control flow,
the scalar core fetches and decodes all instructions, and divert the
instructions to the correct path based on their types. Scalar instruc-
tions are executed in order in the scalar pipeline while vector in-
structions flow through the scalar pipeline to the neural processor
core.

2.2 Neural Processor Core
The neural processor core combines the features of vector proces-
sors and AI inference accelerators. As shown in Figure 2, the com-
putation components include a MAC vector for executing vector
operations, a MAC matrix for executing matrix operations, and a
POLY module for complex arithmetics like exp, div, and sqrt com-
putations. On-chips memory components include a vector register
file (the REG Bank module) as well as three local buffers, named
L1 Buffer, Data Input Buffer, and Intermediate Buffer respectively.

The neural processor core’s pipeline is divided into 4 stages in
concept: decode, issue, execute, andwrite-back. As the control flow
in Figure 2 shows, the scalar core diverts the vector instructions to
the neural processor core. Vector instructions are further decoded
into micro-ops in the decode unit and then dispatched to the is-
sue unit. The issue unit issues instructions to corresponding execu-
tion units based on their operation types.There are three execution
units, a vector MAC engine (VME), a matrix MAC engine (MME),
and a memory transmission engine (MTE) for different operation
types, as will be explained. The issue unit maintains three instruc-
tion buffers tracking the state of all inflight instructions in each
execution unit. A dispatched instruction from the decode unit will
be buffered according to its operation type and will be removed
once it’s committed by the execution unit. All instructions will be
issued in order, and an instruction can be issued only when there
is no address overlap with inflight instructions. The issue unit can
issue three instructions at most. All three execution units can work
simultaneously in this case, and hence memory latency can be par-
tially hidden by computation, which lifts overall performance. Af-
ter execution, the results will be written back to vector registers or
local buffers.

2.2.1 VME. VME performs all base vector extension instructions
and part of customized vector extension instructionswith theMAC
vector and POLY module. The MAC vector consists of a vector of
multiply-and-add units, which supports both 16-bit half-precision
floating-point (FP16) arithmetics and 8-bit integer (INT8) arithmetics.
The POLY module contains exp, div, and sqrt function units for
the complex arithmetics in activation functions or classifiers dur-
ing the AI inference. As we can see from the data flow, the source
operands for VME may come from vector registers or local buffers,
and the results may be written back to vector registers or local
buffers.When performing base vector extension instructions, VME
reads source operands from specified source vector registers and
writes results back to the destination vector register. For customized
vector extension instructions, VME reads source operands from L1
Buffer or Intermediate Buffer based on the addresses specified by
the source general-purpose registers, and writes results back to L1
Buffer or Intermediate Buffer based on the address specified by the
destination general-purpose register. Final results will usually be
written back to the L1 Buffer.

2.2.2 MME. MME performs customized vector extension instruc-
tions related to matrix or convolution operations with the MAC
matrix. Notice that convolution operations are implemented with
the GEMM algorithm. The MAC matrix is comprised of 𝑚 × 𝑛
multiply-and-add units, with 𝑚 indicates the height of the MAC
matrix and 𝑛 indicates the width of the MAC matrix. Each MAC
unit supports both FP16 and INT8 arithmetics. When fully utilized,
the MAC matrix can compute𝑚 × 𝑛 FP16 arithmetics or 2 ×𝑚 ×
𝑛 INT8 arithmetics simultaneously. That’s why the MAC matrix
is the most important contributor to compute power of AI chips.
MME reads source operands fromData Input Buffer and theWeight
Buffer in L1 Buffer, and writes results back to Intermediate Buffer.
Input buffer fetches data from the Data IO Buffer in L1 Buffer or In-
termediate Buffer depends on the addresses specified by the source
general-purpose register.

Figure 2: A high-level overview of the NeuralScale architec-
ture.



NeuralScale: A RISC-V Based Neural Processor Boosting AI Inference in Clouds CARRV’21, June 17, 2021

Table 1: Customized vector CSRs

Base Address Privilege Register Name Execution Units Function Description

0x400 URW shape_s1 VME [31:16], width of matrix A; [15:0], height of matrix A
0x401 URW shape_s2 VME [31:16], width of maxrix B; [15:0], height of matrix B
0x408 URW conv_FM_in MME [31:16], width of input features; [15:0], height of input features
0x409 URW conv_Depth_in MME [15: 0], depth of input features
0x422 URW mte_shape MTE [31:16], width of transfer matrix; [15:0], height of transfer matrix

2.2.3 MTE. MTE connects local L1 Bufferwith othermemory com-
ponents outside the core through NoCs. Outside memory compo-
nents include remote L1 Buffers in a multi-core scenario and pe-
ripheral memory like the last level buffer (LLB) or external DDR
DRAMs. In the first case, MTE exchanges data between L1 Buffers
in a point-to-point manner. In the second case, MTE can exchange
data between L1 Buffer and LLB in a point-to-point manner, or
broadcast the data in LLB to all corresponding L1 Buffers.

2.3 Instruction-Set Extension
The RISC-V Vector extension (RVV) [19] enables processor cores
based on the RISC-V instruction set architecture to process data ar-
rays, alongside traditional scalar operations to accelerate the com-
putation of single instruction streams on large data sets. The scalar
core adopted in our processor implements the RV32G. Therefore,
we implement standard extensions including the base RVV exten-
sion (v0.8) and customized vector extensions with fixed-width 32-
bit instruction format in our neural processor core. We use the
custom-3 opcode (11111011) in the RISC-V base opcode map as the
major opcode for customized vector extensions, marked asOP-VE.
All customized vector extensions keep the source (rs1 and rs2) and
destination (rd) registers at the same position as the base RISC-V
ISA does to simplify decoding, as shown in Table 2.

Table 2: Format for customized vector extension

31 26 25 24 20 19 15 14 13 12 11 7 6 0
funct6 dmc rs2 rs1 dm opm2 rd 1111011

The opm2 field encodes the source operand types and source
locations, as listed in Table 3. For a vector or matrix operand, the
general-purpose register provides the memory address of the val-
ues, marked as (rsx).

Table 3: opm2[1:0] encoding

opm2[1:0] source operands types source1 source2

00 mm (matrix-matrix) (rs1) (rs2)
01 m (matrix) (rs1) null
10 mv (matrix-vector) (rs1) (rs2)
11 mf (matrix-scalar) (rs1) rs2

The matrix operation directions are encoded using the dmc and
dm fields, as displayed in Table 4. Taking matrix-vector additions
for example, {𝑑𝑚𝑐,𝑑𝑚} = 10 indicates adding a matrix with a row
vector while {𝑑𝑚𝑐,𝑑𝑚} = 01 indicates adding a matrix with a col-
umn vector.

Table 4: dmc and dm encoding

dmc dm Operation directions

0 X matrix operations on full elements
1 0 matrix operations vertically on row vectors
0 1 matrix operations horizontally on column vectors

The funct6 field encodes operation types, including addition,
subtraction, multiplication, accumulation, etc. Some funct6 codes
are listed in Table 5 for illustration. Typical operations such as con-
volutions and activation functions in AI inference workloads are
all covered.

Table 5: funct6 encoding

funct6 Name Descrition

000001 veadd add
000010 vesub subtract
000011 veacc accumulate
000101 veemul element-wise multiply
011001 memul matrix multiply
000110 veemacc element-wise multiply-accumulate
011010 meconv convolution
001001 velkrelu Leaky Relu activation function
001011 mov transfer data with MTE

A total of 53 customized instructions are extended in addition to
the base RVV extension. Formanymatrix-related operations, infor-
mation such as height and width of the matrix cannot be encoded
within the 32-bit fixed-width instruction. Therefore, 22 unprivi-
leged vector CSRs are added to the base RVV extension. Table 1
lists several of them for illustration. Customized vector CSRs can



CARRV’21, June 17, 2021 Rongkai Zhan, Xiaobo Fan

only be updated with CSR instructions defined in the base scalar
RISC-V ISA.The values should be properly set tomatch application
needs.

3 SOC PLATFROM IMPLEMENTATION
Based on the NeuralScale architecture, we implement an industrial
SoC platform named P920 for AI inference in clouds. A complete
toolchain suite including graph compiler, runtime, and driver is
also released for developers.

3.1 Core Configuration
P920 consists of 32 NeuralScale cores and the configuration of each
core is listed in Table 6. The scalar core has a separated L1 Data
Cache and L1 Instruction Cache, each of 64KB. The neural proces-
sor core has a 1MB L1 Data IO Buffer, a 256KB L1 Weight Buffer
and a 256KB Intermediate Buffer.The size of each local buffer in the
neural processor core is selected based on experimental statistics
of typical AI inference workloads, which helps to avoid frequently
exchanging data between on-chip memory and external memory.
The MAC vector in the neural processor core has 64 MAC units,
and the MAC matrix in the neural processor core contains 64 × 32
MAC units. Each MAC unit supports both FP16 and INT8 arith-
metics, which can be dynamically switched according to the oper-
ation type of each instruction.

Table 6: NeuralScale Core Configurations

feature configuration

scalar core L1 Data Cache 64KB
L1 Instruction Cache 64KB

neural processor core

L1 Data IO Buffer 1MB
L1 Weight Buffer 256KB

Intermediate Buffer 256KB
(VLEN, ELEN) (1024, 16)
MAC Vector 64 FP16 MACs
MAC Matrix 64×32 FP16 MACs

3.2 SoC Architecture
Figure 3 shows a high-level overview of the P920 architecture. The
key components include 32 NeuralScale cores, a 32MB last level
buffer (LLB), a hardware synchronization (HSYNC) subsystem, two
PCIe subsystems, four DDR subsystems, a peripheral subsystem,
and a CPU subsystem. All components are connected through an
NoC with a regular 4×6 mesh-based topology. The links between
each component and an NoC router, and the links between NoC
routers are all bidirectional. The NoC separates control flow and
data flow to lift data transmission efficiency. The control bus is 32
bits wide in each direction and the data bus is 512 bits wide in
each direction. At 1.0 GHz, each direction provides up to 64𝐺𝐵/𝑠
bandwidth or 128𝐺𝐵/𝑠 combined.

The 32MB LLB is split up into eight separated small LLBs of
4MB each.The small LLBs are connected to the NoC independently,
providing 1𝑇𝐵/𝑠 memory bandwidth in total. Meanwhile, they are
evenly distributed in the NoC so that other nodes can access an

LLB within a small latency. As there are 32 NeuralScale cores in
total, an HSYNC subsystem is used to manage how these cores
cooperate and synchronize. NeuralScale cores can be divided into
up to 16 groups by the HSYNC subsystems, and the number of
cores in each group is configured by the application. That is to say,
an application can be performed either on one group with 32 cores
or onmultiple groupswith several cores in each group.TheHSYNC
subsystem provides great flexibility and hence an application can
choose the granularity of task division according to its features to
make full use of the NeuralScale cores.

P920 has two PCIe subsystems: PCIE0 and PCIE1. Each PCIe
subsystem supports up to 16 lanes and can be configured as an
endpoint or a root complex. PCIE0 is usually configured as an end-
point, receiving compute tasks and data from the host. PCIE1 is
usually configured as a root complex for scalability, connecting
to other SoC chips to construct a larger-scale compute platform.
In addition, P920 has four DDR subsystems. Each subsystem has
an independent channel of LPDDR4 DRAM, supporting up to 4GB
memory capacity and 4266𝑀𝑇 /𝑠 transfer rate. Therefore, the DDR
subsystems provide 16GBmemory capacity in total and a peak the-
oretical bandwidth of 136𝐺𝐵/𝑠 for AI inference workloads. During
the AI inference process, LLBs need to fetch weights from DRAMs
frequently. In order to improve the data transmission efficiency be-
tween LLBs and DRAMs, high-performance DMA controllers are
integrated into the DDR subsystems. Each DMA controller con-
nects a DDR controller and an LLB through NoCs. As there are
eight LLBs and only four DDR channels, each DDR subsystem in-
tegrates two DMA controllers with independent DMA channels
and data buses.

The peripheral subsystem implements many common hardware
devices including UART, SPI, I2C, PWM, and RTC, which plays an
important role in booting, debugging, and managing the SoC. The
CPU subsystem is implemented with an ARM Cortex-A53 core [5].
It features an in-order, 8-stage, dual-issue pipeline, and supports
PPI interrupts and up to 64 SPI interrupts. The CPU subsystem is
mainly used to initialize a series of devices during the SoC startup,
including PCIe controllers, DDR controllers, SPI controllers, and
other devices. Besides, it also monitors and manages the SoC dur-
ing running.

Figure 3: A high-level overview of the P920 architecture.



NeuralScale: A RISC-V Based Neural Processor Boosting AI Inference in Clouds CARRV’21, June 17, 2021

3.3 Toolchain
We implement an end-to-end inference stack named TensorTurbo
for P920 that enables fast and efficient deployment of customers’
pre-trainedAImodels, as shown in Figure 4. TensorTurbo ismainly
comprised of a graph compiler and a heterogenous program en-
gine (HPE). The graph compiler is based on TVM [2] and has been
deeply customized for NeuralScale architecture. It provides C++
and python inference API for popular deep learning frameworks
including TensorFlow, PyTorch, MxNet, and Keras. Graph inter-
mediate representations (GIRs) from different frameworks are im-
ported as unified TensorTurbo IRs via the inference API.The graph
compiler then applies graph schedule, operators schedule, tiling
strategies within an operator, among other optimizations to find
the fastest implementation leveraging the hardware features at the
most. The HPE provides high-level CUDA-style runtime APIs in
the hardware abstraction layer (HAL), enabling functions like de-
vice management, kernel launch and management, memory man-
agement, etc. The HPE also provides utilities including GDB de-
bug tool, performance profiling tool, and system monitor interface
tool via accessing P920’s debugging features (event logging, per-
formance counters, breakpointing).

Figure 4: Deployment of pre-trained AI models onto P920
with TensorTurbo.

4 EVALUATION
P920 was fabricated using TSMC’s 12nm FinFET technology and
the total area is 400𝑚𝑚2. It delivers 256 TOPS (INT8) and 128 TFLOPS
(FP16) peak compute performance with a thermal design power of
130𝑊 under 1.0 GHz working frequency. We conduct a detailed
performance evaluation of P920with two typical AI inferencework-
loads in clouds: the ResNet-50 CNN model for vision tasks and
the BERT model for NLP tasks. As a comparison, experiments are
also conducted on two GPU devices (Nvidia T4 [13] and Nvidia
V100 [14]) and an AI chip (Habana Goya [9]). All platforms are
installed into a server host through PCIe slots. The deep learning
framework used in our experiment is Tensorflow [1].

4.1 Performance on ResNet-50
The ResNet-50 model [11] is one of the most popular CNN mod-
els for visual tasks including image classification, object localiza-
tion, object detection, and others. It has multiple versions and we

choose the public ResNet-50 v1.5 [17] for Tensorflow to perform
image classification tasks in our experiment.The Nvidia V100 GPU
performs ResNet-50 inference with FP16 computations as it pro-
vides much higher FP16 performance than INT8. The other three
platforms perform ResNet-50 inference with INT8 computations.
Besides, the batch size is properly configured to fully exploit the
compute performance of each platform: 128 for GPUs, 10 for the
Habana Goya chip, and 64 for P920. The performance results in-
clude throughput, power efficiency, and latency of the four plat-
forms are shown in Figure 5. Our P920 chip can process 14442 im-
ages per second (IPS), which is 2.98 times more powerful than the
Nvidia T4 GPU, 1.85 times more powerful than the Nvidia V100
GPU, and nearly the same as Habana Goya chip. With a thermal
design power of 130𝑊 , P920’s power efficiency is 110 IPS/W,which
is 1.59 times of the Nvidia T4 GPU, 4.23 times of the Nvidia V100
GPU, and 1.50 times of the Habana Goya chip. In terms of latency
performance, the Habana Goya chip has the shortest latency with
only 0.87 ms. The latency of P920 is 4.43 ms, 5.87 times shorter
than the Nvidia T4 GPU, and 3.61 times shorter than the Nvidia
V100 GPU.

Figure 5: Performance results on ResNet-50 inference.

4.2 Performance on BERT
BERT [6] is a state-of-the-art language model for NLP tasks includ-
ing text classification, question answering, natural language infer-
ence, and others. The BERT model used in our experiment is fine-
tuned for sentence and sentence-pair classification tasks. Our P920
chip performs BERT inference with FP16 computations due to the
poor accuracy performance of the quantized INT8 BERT model.

The GPUs use INT8 mixed-precision computations and the Ha-
bana Goya chip uses INT16 computations. We select a batch size
of 128 for GPUs, 12 for the Habana Goya chip, and 32 for P920.The
performance results are shown in Figure 6. Our P920 chip can pro-
cess 4192 sentences per second, which is 2.31 times more powerful
than the Nvidia T4 GPU, 1.31 times more powerful than the Nvidia

Figure 6: Performance results on BERT inference.



CARRV’21, June 17, 2021 Rongkai Zhan, Xiaobo Fan

V100 GPU, and 2.37 times more powerful than the Habana Goya
chip. The power efficiency of P920 is 32 sentences per second per
watt, which is 1.14 times of the Nvidia T4 GPU, 2.91 times of the
Nvidia V100 GPU, and 3.56 times of the Habana Goya chip. The
latency of P920 is 7.63 ms, 9.17 times shorter than the Nvidia T4
GPU, 5.24 times shorter than the Nvidia V100 GPU, and very close
to the latency of the Habana Goya chip.

4.3 Trace Analysis
The runtime tool traces the instructions and performance coun-
ters for further profiling using P920’s debugging features. Figure 7
illustrates the profiling results of P920’s performance on BERT in-
ference. During P920’s running, scalar cores process scalar instruc-
tions for control, neural processor cores process compute-intensive
vector instructions, and DMAs transfer data between LLBs and ex-
ternal DRAMs. As expected, processing in neural processor cores
takes up most of the total time, 95%. DMAs work in parallel with
scalar cores or neural processor cores in 96% of its total time, show-
ing that external memory transfers are very well overlapped with
computations in NeuralScale cores.

Inside of the neural processor cores, MME units take up 78% of
the total cycles. MTE units work in parallel with MME units, VME
units or both in 92% of its total time, showing that on-chip memory
transfers between LLBs and L1 Buffers are also well overlapped
with computations. VME units work in serial with MTE units and
MME units in 45% of its total timemainly due to data dependencies
with MME units, which is the focus of our future optimization.

Figure 7: BERT Performance Profile

5 CONCLUSION
In this paper, we present NeuralScale, a neural processor core ar-
chitecture based on RISC-V ISA for AI inference in clouds. Neu-
ralScale takes advantage of customized RISC-V vector extensions
to improve programmability and performance. Evaluations on our
industrial product P920 demonstrate that our processor can achieve
state-of-the-art inference performance on bothCNNandNLP tasks.
Optimizations will be done in future work to further lift overall
performance, including replacing the in-order scalar core with an
out-of-order alternative [15] [22] and adjusting instruction granu-
larity or local buffer design to lift the overlapping ratios of VME
and MME units.

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, MartinWicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). 265–283. https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf

[2] Tianqi Chen,Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA, USA) (OSDI’18).
USENIX Association, USA, 579–594.

[3] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 609–622. https://doi.org/10.1109/MICRO.2014.
58

[4] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Archi-
tecture for Energy-Efficient Dataflow for Convolutional Neural Networks. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). 367–379. https://doi.org/10.1109/ISCA.2016.40

[5] CortexA53 2012. ARM Cortex-A53. Retrieved April 29, 2021 from https:
//developer.arm.com/ip-products/processors/cortex-a/cortex-a53

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Association for Computational Linguistics,
Minneapolis, Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[7] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culur-
ciello, and Yann LeCun. 2011. NeuFlow: A runtime reconfigurable dataflow pro-
cessor for vision. In CVPR 2011 WORKSHOPS. 109–116. https://doi.org/10.1109/
CVPRW.2011.5981829

[8] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay,Michael Haselman, LoganAdams,Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug
Burger. 2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). 1–14. https://doi.org/10.1109/ISCA.2018.00012

[9] HabanaGoya [n.d.]. HabanaGOYA. RetrievedApril 29, 2021 fromhttps://habana.
ai/inference/

[10] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 243–254. https://doi.org/10.1109/ISCA.2016.30

[11] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 770–778. https://doi.
org/10.1109/CVPR.2016.90

[12] N25F [n.d.]. AndesCore N25F. Retrieved April 29, 2021 from http://www.
andestech.com/en/products-solutions/andescore-processors/riscv-n25f/

[13] NVIDIA-T4 [n.d.]. NVIDIA T4 Tensor Core GPU for AI Inference. Retrieved April
29, 2021 from https://www.nvidia.com/en-us/data-center/tesla-t4/

[14] NVIDIA-V100 [n.d.]. NVIDIA V100 Tensor Core GPU. Retrieved April 29, 2021
from https://www.nvidia.com/en-us/data-center/v100/

[15] Karyofyllis Patsidis, Dimitris Konstantinou, Chrysostomos Nicopoulos, and
Giorgos Dimitrakopoulos. 2018. A low-cost synthesizable RISC-V dual-issue
processor core leveraging the compressed Instruction Set Extension. Micropro-
cessors and Microsystems 61 (2018), 1–10. https://doi.org/10.1016/j.micpro.2018.
05.007

[16] Abhinav Podili, Chi Zhang, and Viktor Prasanna. 2017. Fast and efficient imple-
mentation of Convolutional Neural Networks on FPGA. In 2017 IEEE 28th Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP). 11–18. https://doi.org/10.1109/ASAP.2017.7995253

[17] ResNetV15 [n.d.]. ResNet-50 V1.5 Model for Tensorflow. Retrieved April 29,
2021 from https://github.com/IntelAI/models/blob/master/benchmarks/image_
recognition/tensorflow/resnet50v1_5/README.md

[18] RISC-V [n.d.]. RISC-V ISA Specifications. Retrieved April 29, 2021 from https:
//riscv.org/technical/specifications/

[19] RVV [n.d.]. RISC-V Vector Extension Specification. Retrieved April 29, 2021 from
https://github.com/riscv/riscv-v-spec

[20] TIRIAS 2019. Why Your AI infrastructure Needs Both Training and Inference. Re-
trieved April 29, 2021 from https://www.ibm.com/downloads/cas/QM4BYOPP

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2016.40
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/CVPRW.2011.5981829
https://doi.org/10.1109/CVPRW.2011.5981829
https://doi.org/10.1109/ISCA.2018.00012
https://habana.ai/inference/
https://habana.ai/inference/
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-n25f/
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-n25f/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/data-center/v100/
https://doi.org/10.1016/j.micpro.2018.05.007
https://doi.org/10.1016/j.micpro.2018.05.007
https://doi.org/10.1109/ASAP.2017.7995253
https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.md
https://github.com/IntelAI/models/blob/master/benchmarks/image_recognition/tensorflow/resnet50v1_5/README.md
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://github.com/riscv/riscv-v-spec
https://www.ibm.com/downloads/cas/QM4BYOPP


NeuralScale: A RISC-V Based Neural Processor Boosting AI Inference in Clouds CARRV’21, June 17, 2021

[21] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-Based Accelerator Design for Deep Convolutional Neu-
ral Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (Monterey, California, USA) (FPGA ’15). As-
sociation for Computing Machinery, New York, NY, USA, 161–170. https:

//doi.org/10.1145/2684746.2689060
[22] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-

BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060

	Abstract
	1 Introduction
	2 NeuralScale Architecture
	2.1 Scalar Core
	2.2 Neural Processor Core
	2.3 Instruction-Set Extension

	3 SoC Platfrom Implementation
	3.1 Core Configuration
	3.2 SoC Architecture
	3.3 Toolchain

	4 Evaluation
	4.1 Performance on ResNet-50
	4.2 Performance on BERT
	4.3 Trace Analysis

	5 Conclusion
	References

