Supporting CUDA for an extended RISC-V GPU architecture

Ruobing Han
hanruobing@gatech.edu
Georgia Institute of Technology

Jaewoong Sim
jaewoong@snu.ac.kr
Seoul National University

ABSTRACT

With the rapid development of scientific computation, more and
more researchers and developers are committed to implementing
various workloads/operations on different devices. Among all these
devices, NVIDIA GPU is the most popular choice due to its compre-
hensive documentation and excellent development tools. As a result,
there are abundant resources for hand-writing high-performance
CUDA codes. However, CUDA is mainly supported by only com-
mercial products and there has been no support for open-source
H/W platforms. RISC-V is the most popular choice for hardware
ISA, thanks to its elegant design and open-source license. In this
project, we aim to utilize these existing CUDA codes with RISC-V
devices. More specifically, we design and implement a pipeline that
can execute CUDA source code on an RISC-V GPU architecture. We
have succeeded in executing CUDA kernels with several important
features, like multi-thread and atomic instructions, on an RISC-V
GPU architecture.

KEYWORDS
CUDA, RISC-V, Code Migration

ACM Reference Format:

Ruobing Han, Blaise Tine, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim.
2021. Supporting CUDA for an extended RISC-V GPU architecture . In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

RISC-V is the most popular choice for researchers in the aca-
demic community and engineers in hardware companies. The most
important reason is its open-source spirit. These open-source li-
censes encourage many researchers to devote themselves to the
development of a mature ecology for RISC-V, and thus, in turn,
more and more people are willing to join the community, as there
are existing fancy codes, hardware designs, and so on.

In the RISC-V ecology, the software support is the bottleneck for
the blooming of the RISC-V community. Although OpenCL is an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Blaise Tine
blaisetine@gatech.edu
Georgia Institute of Technology

Jaewon Lee
jaewon.lee@gatech.edu
Georgia Institute of Technology

Hyesoon Kim
hyesoon@cc.gatech.edu
Georgia Institute of Technology

open platform for heterogeneous computing, due to the stability and
software tool chain support, CUDA has been used widely. Unfortu-
nately, CUDA source code can only be compiled and then executed
on NVIDIA’s devices, which is a major obstacle to using RISC-V for a
wide range of applications, especially high-performance computing
and machine learning workloads.

One way to solve this dilemma is to use code migration[8, 10, 13].
Instead of using the default method to compile CUDA source code
with NVIDIA’s compiler, some researchers try to parse and modify
the source code to other high-level languages; more detail is shown
in Sec. 2.1. However, because these methods highly rely on the high
similarity between CUDA and the target high-level languages, they
are not general solutions. Another solution is to build a compiler
that directly compiles high-level CUDA language into a low-level
RISC-V binary file. To the best of our knowledge, although there
are translators that support generating RISC-V, none of them can
handle CUDA source code.

Thus, in this project we propose and build a pipeline to support
an end-to-end CUDA migration: the pipeline accepts CUDA source
codes as input and executes them on an extended RISC-V GPU
architecture. Our pipeline consists of several steps: translates CUDA
source code into NVVM IR[4], converts NVVM IR into SPIR-V IR
[7], forwards SPIR-V IR into POCL[5] to get RISC-V binary file,
and finally executes the binary file on an extended RISC-V GPU
architecture. We choose to use an intermediate representation (SPIR-
V) for two reasons 1) RISC-V is still in development and has a lot of
extensions, so we should not directly convert CUDA into RISC-V,
as it will make supporting new features in the future difficult for
our pipeline; 2) we want to make our pipeline more general so that
we can support CUDA as front-end and RISC-V as back-end. Our
pipeline is represented by Fig. 1.

In conclusion, the main contributions of our paper include the
following:

e propose and implement a pipeline for executing CUDA source
code on RISC-V GPU;

e build a translator support translating from NVVM to SPIR-
vi

e pipeline that is easy to maintain and further support other
front-end languages and back-end devices.

e pipeline that is lightweight, which can be executed without
NVIDIA GPUs

o extend existing POCL to support RISC-V back-end

The rest of this paper is organized as follows. Section 2 pro-
vides a survey that describes various attempts to migrate CUDA

Lhttps://github.com/gthparch/NVPTX-SPIRV-Translator

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

NVVM-SPIR-V

lang

DA c translator

cu g NVVM IR SPIR-V
source code SN (Sec. 3.3)

SPIR-V-OpenCL
translator

(Sec. 3.4)

Ruobing Han, Blaise Tine, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim

POCL

OpenCL i Vortex
" M) Object file o (RisC-vGPU)

1

Figure 1: Overview of pipeline. The red part (NVVM-SPIR-V translator and RISC-V library) is developed in this work.

source code and introduces the current Available frames used in our
pipeline. Section 3 uses a simple example to go through the entire
pipeline to give a brief introduction of each phase in the pipeline.
Section 4 records how to support several important features in
CUDA. Finally, our concluding thoughts are in Section 5.

2 BACKGROUND AND RELATED WORK

2.1 Program migration

Many existing works[1, 14] aim to migrate from CUDA to other
representations for different back-end devices.

HIPIFY? is a tool to translate CUDA source code into portable
HIP C++, another high-level language proposed for AMD devices.
HIPIFY has two methods to translate CUDA to HIP C++: hipify-perl
and hipify-clang. Hipify-perl is quite straightforward; it heavily uses
regular expressions to translate CUDA keywords to corresponding
HIP C++ keywords. Instead of word-to-word replacement, Hipify-
clang uses a more complex method: it adds an adaptor in Clang.
It uses Clang’s syntax analysis, converts CUDA source code into
an abstract syntax tree, uses transformation matchers to convert
this syntax tree, and finally generates HIP C++. Both methods
can only be used for HIP C++ or other source languages whose
grammars are highly closed to CUDA. HIPIFY is a translator from
a high-level language to another high-level language, as most of its
workload is done at the lexical level. To support executing CUDA
on AMD devices, users need to first use HIPIFY to convert CUDA
into HIP C++ and then compile the generated code with the HIP
C++ compiler. We cannot use the same method to migrate CUDA on
RISC-V devices, as there is not a corresponding high-level language
for RISC-V.

SYCL[6, 15], proposed by the Khronos group, is another project
that focuses on deploying source kernels on different devices. It is a
high-level programming model that aims to improve programming
productivity on various hardware accelerators. It can be regarded
as a series of libraries of C++. These libraries provide APIs needed
to write programs that can be deployed and executed in various
back-end devices without modifying the code. This is much like
OpenCL, which also uses C/C++ for high-level users, and generates
host/device programs and executes them automatically for different
back-end devices. Compared with OpenCL, SYCL is at a higher level;
it provides primitives to support users to implement programs for
devices directly, instead of regarding the code as a string and directly
forwarding it to back-end devices’ drivers. Thus, SYCL is highly
portable thanks to its high-level abstraction. However, SYCL cannot

Zhttps://github.com/ROCm-Developer-Tools/HIPIFY

solve our dilemma, as it does not support CUDA. SYCL can not
migrate the existing CUDA source code to execute it with RISC-V.
Instead, it requires users to re-implement it with APIs provided by
SYCL.

2.2 Intermediate Representation

In modern compiler design, a compiler can always generate ob-
ject files for different back-end devices with various input languages.
To support multiple source languages with multiple back-end de-
vices, compilers first compiles different source languages to a stan-
dard intermediate representation (IR) and then emits this IR into
different binary files according to our target back-end devices. Our
pipeline has three involved IRs: NVVM IR, SPIR-V, and OpenCL IR.
In Fig. 2, we show how these three IRs represent a vecadd example.
IRs in Fig. 2(a) and (c) have similar format, most of instructions are
same except some call instructions. These is due to the difference
between NVVM and OpenCL IR is only for built-in functions: they
have different built-in function(llvm.nvvm.read.ptx.srge.tid.x and
getjocal;d) for a same primitive (get the x-dim thread index). SPIR-
V IR is total different with NVVM and OpenCL IR, not only for
different built-in functions, but also different instructions for load/-
store/binary op etc.

2.2.1 NVVM. NVVM IR[4], proposed by NVIDIA, is a compiler
IR used to represent GPU compute kernels. In the general case, to
execute CUDA source code on NVIDIA GPUs, we need to call nvce
to compile CUDA into NVVM IR, and the GPU driver will further
translate the NVVM IR into a binary code that can be run on the
processing cores of NVIDIA GPUs. NVVM IR is highly compatible
with LLVM[11]; it supports a subset of LLVM IR along with a defined
set of the build-in functions used to represent GPU programming
concepts.

2.2.2 SPIR-V. SPIR-V [7] is the fifth version of SPIR. SPIR (Standard
Portable Intermediate Representation) is an intermediate represen-
tation (IR) used for expressing parallel computation and GPU-based
graphics. SPIR is a general IR that can allow high-level users to
use various front-end’s programming languages. SPIR-V can be
used as an isolation layer that departs the front-ends programming
language (e.g. MLIR, OpenCL, OpenGL) and low-level compute
architecture. With SPIR, we first compile the source code into SPIR
IRs and forward these IRs to devices. Thus, we can eliminate the
need for high-level language front-end compilers in device drivers.
This will also relieve the kernel launch time, as we do not deal
with complex and abstract high-level languages, but rather the
hardware-friendly SPIV IR. Besides, with SPIR as an isolation layer,

https://github.com/ROCm-Developer-Tools/HIPIFY

Supporting CUDA for an extended RISC-V GPU architecture

define dso_local void @_zZ6vecaddPiS_S_(i32* %a, i32* %b, i32* %c) {

%9 = OpTypeFunction %void

%_ptr_Function_uint

%_ptr_Function_uint

%_ptr_Function_uint
%__spirv_BuiltinLocallnvocationld = OpVariable %_ptr_Input_v3ulong Input

Conference’17, July 2017, Washington, DC, USA

define spir_kernel void @_zZ6vecaddPiS_S_(i32* %a, i32* %b, i32* %c) {
entry:

entry:
%0 = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() #2, Irange 10
%idxprom8 = zext i32 %0 to 64
%arrayidx = getelementptr inbounds i32, i32* %a, 164 %idxprom8
%1 = load i32, i32* %arrayidx, align 4, !tbaa 111
%arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %idxprom8
%2 = load 32, i32* %arrayidx2, align 4, !tbaa 111
%add = add nsw i32 %2, %1
%arrayidx4 = getelementptr inbounds i32, i32* %c, i64 %idxprom8
store i32 %add, i32* %arrayidx4, align 4, !thaa 111
ret void
} OpStore %arrayidx4 %add Aligned 4
OpReturn
OpFunctionEnd

%10 = OpFunction %void None %9

%17 = OpUConvert %uint %16

%add = OplAdd %uint %22 %20

declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() #1

(a) NVVM

915 = OpLoad %v3ulong %__spirv_BuiltinLocallnvocationid
9%16 = OpCompositeExtract %ulong %15 0

%idxprom8 = OpUConvert %ulong %17

%arrayidx = OpInBoundsPtrAccessChain %_ptr_Function_uint %a %idxproms
%20 = OplLoad %uint %arrayidx Aligned 4

%arrayidx2 = OplnBoundsPtrAccessChain %_ptr_Function_uint %b %idxproms
%22 = Opload %uint %arrayidx2 Aligned 4

9%arrayidx4 = OpInBoundsPtrAccessChain %_ptr_Function_uint %c %idxproms

(b) SPIR-V

%0 = call spir_func i64 @_Z12get_local_idj(i32 0) #1

%1 = trunc i64 %0 to i32

%idxprom8 = zext i32 %1 to i64

%arrayidx = getelementptr inbounds i32, i32* %a, 64 %idxprom8
%2 = load i32, i32* %arrayidx, align 4

%arrayidx2 = getelementptr inbounds i32, i32* %b, i64 %idxprom8
%3 = load i32, i32* %arrayidx2, align 4

%add = add i32 %3, %2

%arrayidx4 = getelementptr inbounds i32, i32* %c, i64 %idxprom8
store i32 %add, i32* %arrayidx4, align 4

ret void

}

declare spir_func i64 @_Z12get_local_idj(i32) #1

(c) OpenCL IR

Figure 2: Implementation of vecadd in NVVM/SPIR-V/OpenCL IR

high-level users do not care about low-level hardware; they can
choose to use any programming language they like without worry
about the reliability and portability of their programs. For hardware
researchers, they can only focus on the optimization for the SPIR
without worry about front-end language.

2.2.3 OpenCL IR. OpenCL (Open Computing Language) [12] is
a framework for writing programs that execute across heteroge-
neous platforms. It supports several back-end devices: CPUs, GPUs,
FPGAs, and so on. Although OpenCL can support using the native
language (CUDA, HIP C++ etc.) to implement the kernel for each
back-end device, it also provides OpenCL C programming language,
a series of high-level APIs used for high-performance computing.
This language provides a rich set of built-in functions for scalar
and vector operations. These functions support scalar and vector
argument types and can be used to implement high-performance
programs for different back-end devices. When we refer to LLVM-
IR, we generally refer to LLVM bc format of LLVM-IR.

2.3 Current Available Frames

2.3.1 OpenCL-SPIR-V translator. The Khronos Group developed a
Bi-Directional translator? that supports converting between OpenCL
IR and SPIR-V files. Although it generates SPIR-V, which can further
be deployed and executed with RISC-V back-end devices, it only
accepts OpenCL IR as input. In our project, we add some extensions
based on the original translator to support its handling NVVM. As
described in Sec. 2, NVVM is a subset of LLVM IR along with a
defined set of the built-in functions. The translator cannot handle
these NVVM-specific built-in functions. For example, in Fig. 2, (c)
is an OpenCL IR and can be translated by the translator. However,
(a) is an NVVM IR and has an NVVM-specific built-in function,
llvm.nvom.read.ptx.srge.tid.x(). When we pass this NVVM to the
translator, it will raise an error, as it does not recognize this built-in
function, but only recognize get_local_id in OpenCL IR.

2.3.2 POCL. POCL (Portable Computing Language) [5] is being
developed as an efficient implementation of the OpenCL standard.
POCL is a framework that accepts SPIR-V binary files for input.
POCL will first convert SPIR-V into OpenCL IR, using the translator
mentioned above, links the converted OpenCL IR with the runtime

3https://github.com/KhronosGroup/SPIRV-LLVM-Translator

library, and finally emits the object file. POCL can support several
back-end devices, like x86, CUDA, MIPS, etc. POCL is highly exten-
sible; to support a new back-end device, researchers only need to
provide a runtime API library for OpenCL IR, and this library will
be used to link when emitting object files. Although original POCL
does not support RISC-V, other researchers [3] have supported RISC-
V on POCL and executed these file on several back-end devices. In
our experiment, we use this version of POCL.*

2.3.3 Vortex. Vortex”[3] is an open-source RISC-V-based GPGPU
processor. Vortex implements a SIMT architecture with a mini-
mal ISA extension to RISC-V (tmec: activate threads, wspan: spawn
a waive-front (or warp), split/join: divergent branch handling in-
structions, bar : stall waive-front). Currently, Vortex can execute
OpenCL IR through POCL runtime systems. Thus, we can directly
execute our generated object file on Vortex. We also use Vortx’s
RISC-V library in the linkage phase in POCL.

3 OVERVIEW OF THE PIPELINE

In this section, we show how to execute a simple vector add
CUDA source code (Code. 1) on an RISC-V GPU.

3.1 Input CUDA source code

CUDA can be regarded as an extension of standard C++. The
only difference is that CUDA has some other extra features, like
definitions of memory hierarchy and some unique built-in functions.
As it’s quite easy to execute C++ on RISC-V back-end devices, the
only part we need to handle is the extra part specific for CUDA. For
example, in our example, only two CUDA specific features do not
belong to standard C++: __global__ and threadldx.x. __global__
is a CUDA C keyword that says the function should be called from
the host. threadldx.x can be regarded as a built-in function that
records the work-item’s local index in x-dim.

Code 1: VectorAdd CUDA source code

__global__ void vecadd (int =a,
int gid = threadldx.x;
clgid] = a[gid] + b[gid];

int «b, int =c) {

PPN

*https://github.com/vortexgpgpu/pocl
Shttps://vortex.cc.gatech.edu/

https://github.com/KhronosGroup/SPIRV-LLVM-Translator
https://github.com/vortexgpgpu/pocl
https://vortex.cc.gatech.edu/

Conference’17, July 2017, Washington, DC, USA

function name detail

llvm.nvvm.read.ptx.sreg.ctaid get the block index

llvm.nvvm.read.ptx.sreg.ntid get the block dimension

llvm.nvvm.read.ptx.sreg.tid get the thread index

llvm.nvvm.barrie

synchronize threads within a block

llvm.sqrt calculte the square root

llvm.fabs calculate the absoulte value

llvm.nvvm.d2i narrowing convertions

llvm.fma fused multiply-add

Table 1: Built-in functions that are widely used in high-
performance computing programs.

3.2 Compile to NVVM

Our pipeline will directly use the CUDA toolkit to compile CUDA
source code into NVVM IRs. Thus, we can get the following NVVM
IR (Code. 2)(For clarity, we remove some unimportant content):

Code 2: NVVM VectorAdd IR

target triple = "nvptx64-nvidia-cuda”

1

2

3 define dso_local void @vecadd(

4 i32+ nocapture readonly %a,

5 i32+ nocapture readonly %b,

6 i32+ nocapture %c) {

7 entry:

8 ; see Fig. 2(a) for deatil code
o}

10 declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()

12 !nvvm.annotations = !{!3}
13 13 = !{void (i32+, i32«, i32+) «@vecadd,
14 !"kernel", i32 1}

At the beginning, the IR has a meta-data variable target triple.
This meta-data records the target back-end device, which is used
for further code generation to emit object files. For NVVM, it will
always have value "noptx64 — nvidia — cuda”.

nvvm.annotations is another important meta-data. It records the
kernel function of this program. As mentioned in Sec. 3.1, CUDA
has a special keyword, __global__, to mark a function as a kernel
function. As we cannot use this keyword in NVVM, we have to use
an extra meta-data to record this information.

This NVVM IR has a function [lvom.nvom.read.ptx.srge.tid.x,
which is declared but not defined. This is a built-in function that
will be linked with CUDA libraries. As these libraries can only be
used for NVIDIA GPUs, we have to replace these built-in functions
in the next phase. In Table. 1, we show several built-in functions
that are widely used in high-performance computing programs.

3.3 Translate NVVM to SPIR-V

In Fig. 3, we show an overview of our translator. The input NVVM
IR comprises three components: metadata (e.g. device version, func-
tion property), NVVM built-in function declaration (e.g. functions
for getting thread index), and device-independent instruction.

3.3.1 Meta-data. Meta-data is used to record information like func-
tion name, data layout, and address length. Most meta-data are in-
dependent with back-end devices; thus we can directly copy them.

Ruobing Han, Blaise Tine, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim

Translate with
OpenCL-SPIR-V
translator

NVVM IR SPIR-V IR

Device independent
instruction

Device independent
instruction
Translate with
NVVM-SPIR-V

translator

NVVM built-in SPIR-V built-in

function declaration function declaration
meta-data information Rsalalaal Meta-data information

(For NVWM) (For SPIR-V)

Figure 3: An overview of our translator.

Thus, in our vecadd example, we remove all meta-data except these
back-end related meta-data. For a target triple, we have to modify
it to the corresponding SPIR-V triple. As for some CUDA-specific
meta-data, we have to either directly drop it or translate it to corre-
sponding SPIR-V meta-data. In NVVM, nvvm.annotations is used to
denote the kernel function for the whole program, which is marked
with __global__ in CUDA source code. However, for SPIR-V, it uses
a different method to record the kernel functions: these functions
that have meta-data kernel_arg_type. Thus, for each given NVVM,
we have to record the functions recorded by nvvm.annotations, re-
move this meta-data, and add a new meta-data kernel_arg_type for
these functions. Finally, some meta-data are not needed in NVVM
due to some CUDA’s hypotheses. However, these hypotheses do
not exist in SPIR-V. Thus, we have to add these meta-data explicitly.
For example, in CUDA, when the input variables are pointer, they
should always point to the global memory. So there is no meta-data
to represent the memory hierarchy for each input pointer. While
SPIR-V does not have this limitation, we have to add an extra meta-
data kernel_arg_addr_space to record this information, to tell the
compile and back-end devices that these pointers are all point to
the address in global memory.

3.3.2 Built-in function. Built-in functions are functions that are
special for the given back-end devices or framework. They are the
key for each device, as they can be regarded as primitives of frame-
works. Although for the Single-Instruction-Multiple-Data protocol,
all devices have the same primitives: for getting threads’ indexes,
getting blocks’ indexes, getting the length of each dimension, and
so on. They have different built-in functions to implement these
primitives.

For example, in NVVM, programs directly call a built-in function
[lvm.nvom.read.ptx.srge.tid.x to get the global thread index in x-
dimension for a thread. SPIR-V uses a different method; in SPIR-V,
a variable GlobalInvocationld records a thread’s index in different
dimensions. To get the index, we have to first load this variable
from memory and then extract the index for a special dimension.

3.3.3 Device independent instruction. In the above two sections,
we modify contents that are different between NVVM and OpenCL
IR, which cannot be translated by the existing OpenCL-SPIR-V
translator. However, usually only a small part of a program belongs
to these two classes, and most instructions are device independent.
For these instructions, we can directly use the existing OpenCL-
SPIR-V translator. For example, in Fig. 4, we have four instructions
in NVVM IR. Only the first instruction (shown with red text) is

Supporting CUDA for an extended RISC-V GPU architecture

NVVM-specific and has to be translated with the NVVM-SPIR-V
translator. The rest instructions (shown with green text) are device
independent can be translated with the existing OpenCL-SPIR-V
translator.

Separately handling device-dependent/independent instructions
can avoid duplication of workload, as we do not implement the
workload already existing in the OpenCL-SPIR-V translator when
we develop the NVVM-SPIR-V translator. We show a diagram of
the handling instructions in NVVM IR in Fig. 5. After translating,
we can get SPIR-V IR shown in Fig. 2(b).

3.4 Translate SPIR-V to OpenCL IR

We need this phase for two reasons: 1) we want to execute SPIR-
V on Vortex, and Vortex only accept the OpenCL IR as input; 2)
SPIR-V is not human-readable; in other words, it’s hard to debug.
Thus, we add this phase to translate SPIR-V to OpenCL IR. In this
phase, we directly invoke the LLVM-SPIRV translator, described in
Sec. 2.3.1. After this step, we will get the OpenCL IR shown in Fig.

2(c).

3.5 Execute OpenCL IR with Vortex

The final step is to execute OpenCL IR with Vortex. For this
phase, we have a customized host code (host code is running on
x86 while Kernel programs are running on RISC-V or extended
RISC-V) to prepare for input data, set the arguments’ types for
the kernel function, allocate the memory buffer for the input and
output, invoke Vortex’s corresponding kernel launch function, and
finally get the results and verify them.

4 DETAILED DESCRIPTION AND
EXPERIMENTS

In this section, we describe the detailed information about what
we need to do to support executing several CUDA features.

4.1 Support built-in functions

4.1.1 Grid/Block information. One of the most important features
for CUDA is that it is SIMD.The key to implementing SIMD is to
assign a different index for multiple threads, using a unique APIL
Although we have described how to support getting threadldx.x in
CUDA on RISC-V, some detailed information still needs to explicitly
be discussed. NVVM will invoke different functions (Code. 3) to get
the index for different dimensions.

Code 3: NVVM built-in function for getting index

1 ; get block index, from x-z

2 @llvm.nvvm.read.ptx.sreg.ctaid.x()
3 @llvm.nvvm.read.ptx.sreg.ctaid.y()
4 @llvm.nvvm.read.ptx.sreg.ctaid.z()
5 ; get thread index, from x-z

6 @llvm.nvvm.read.ptx.sreg.tid.x()
7 @llvm.nvvm.read.ptx.sreg.tid.y()
8 @llvm.nvvm.read.ptx.sreg.tid.z()

While SPIR-V will first load a global variable from memory and
then extract different position for different dimensions, as shown
in Code. 4.

Code 4: OpenCL built-in function for getting index

Conference’17, July 2017, Washington, DC, USA

get block index, from x-z
variable = load BuiltInWorkgroupld;
extract global_variable , 0;
extract global_variable , 1;
extract global_variable , 2;
get thread index, from x-z
variable = load BuiltInLocallnvocationld;
extract global_variable , 0;
extract global_variable , 1;
10 extract global_variable, 2;

[Y T RN

To translate from an NVVM built-in function to SPIR-V, we have
to replace the @Ilvm.nvom.read.ptx.sreg.ctaid.x()’s call instruc-
tion with two consecutive instructions: load instruction and extract
instruction. Besides, we have to analyze the function name of the
call instruction to get the dimension the instruction needs and for-
ward this dimension as an argument for the extract instruction. If
this function name ends with x, it is for dimension 0. While function
name ends with y or z for dimension 1 or 2.

4.1.2 barrier. NVVM has a simple API (Code. 5) to implement
synchronization among all threads within a block.

Code 5: NVVM built-in function for synchronization

1 call void @llvm.nvvm. barrier0 ()

OpenCL’s synchronization function, barrier, has a different proto-
type; it requests an argument for the memory address space needed

to synchronize: CLK_LOCAL_MEM_FENCE for local memory and

CLK_GLOBAL_MEM_FENCE for global memory. In fact, OpenCL’s
barrier is a function to ensure the correct ordering of memory op-
erations to global/local memory, not an actual synchronization

barrier as barrier0 in NVVM. For NVVM, it barrier0 is used to syn-
chronize all threads within a block to a same line. As the threads

within a block can visit both global memory and local memory

(share memory), we have to make sure they have the same order

for these two memories. Thus, we translate the NVVM barrier to

OpenCL’s barrier with a parameter to ensure the ordering for both

local and global memory, as shown in Code. 6.

Code 6: OpenCL built-in function for synchronization

1 call void @barrier(i32
2 CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM _FENCE)

4.1.3 Atomic. Several atomic operations are provided by CUDA,
suck as atomicAdd, atomicSub, atomicExch, and so on. In NVVM,
all these operations will be presented by the atomicrmw instruction
with different operations for add, sub, exchange, etc. (Code. 7).

Code 7: NVVM atomic operations

;atomicAdd(&data[0], 1);

%0 = atomicrmw add i32+ %data ,
;atomicSub(&data [0], -1);

%1 = atomicrmw add i32+ %data, i32 -1 seq_cst
;atomicExch(&data[0], 1);

%2 = atomicrmw xchg 132+« %data, i32 1 seq_cst

i32 1 seq_cst

NI S C R

In OpenCL, these atomic operations are regarded as normal
function calls (Code. 8). To translate from NVVM to OpenCL IR,
our pipeline needs to extract the operation in each atomicrmw
instruction, and use this operation to choose the corresponding

Conference’17, July 2017, Washington, DC, USA

e _ %15 = OplLoad %v3ulong %__spirv_BuiltinLocalinvocationld
%0 = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() | Translate with NVWM-SPIR-V translator %16 = OpCompositeExtract %ulong %15 0
l %17 = OpUConvert %uint %16

Ruobing Han, Blaise Tine, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim

%idxprom8 = zext i32 %0 to i64]'
| | Translate with OpenCL-SPIR-V translator [idxprom8 = OpU rt %ulong %17

inbounds 32,
proma

%arrayidx = getele
i32% %

ptr inbounds i32 ‘ ’Ziarr;yicxe = getele

Figure 4: For NVVM specific built-in function, we have to handle the corresponding instructions (red text) with NVVM-SPIR-V
translator. While for device independent instructions (green text), we can directly translate them with existing OpenCL-SPIR-

V translator

isacCall
Instruction?

find corresponding
SPIR-V built-in
function

%
generate a Call Instruction
for SPIR-V's built-in
function

move 1o next instruction

Figure 5: Our translators will reuse the OpenCL-SPIR-V
translator, except when a instruction calls NVVM built-in
function.

OpenCL’s function name. After that, it directly copies the parame-
ters in NVVM’s instruction to OpenCL’s instruction, as they have
the same argument prototype (first argument: pointer, second ar-
gument: int32).

Code 8: OpenCL atomic functions

1 %0 = call i32 @atomic_add(i32+ %data, i32 1)
2 %1 = call i32 @atomic_add(i32+ %data, i32 -1)
3 %2 = call i32 @atomic_xchg(i32+ %data, i32 1)

4.2 Benchmark Experiments

We also try to translate benchmarks. In Table. 2, we record the
translating results for applications in Rodinia[2]. After we support
features for grid/block information, barrier, and atomic instruc-
tions, we can succeed in translating most applications. However,
there are still some applications we have not yet supported. These
applications use either texture or some mathematical functions.

application feature support?
b+tree - yes
bfs - yes
cfd double3 type yes
huffman atomic yes
pathfinder | memory hierachy yes
gaussian - yes
hotspot - yes
hotspot3D - yes
lud memory hierachy yes
nw - yes
streamcluster - yes
particlefilter dai on going
backprop __logaf on going
lavaMD d2i on going
kmeans texture no
hybrid sort texture no
leukocyte texture no

Table 2: Translating applications in Rodinia benchmark

5 CONCLUSION

We have demonstrated a way to execute CUDA source code on
an RISC-V back-end devices. To validate the feasibility, we build a
pipeline that can succeed in executing multiple CUDA source codes
with multiple features, including multi-thread,multi-block, atomic,
and synchronization. Our pipeline comprises four steps: compiles
CUDA source code into NVVM, translates NVVM and SPIR-V, uses
modified POCL to emit object file, and finally, executes the gener-
ated object file on an open-source RISC-V GPU architecture. Except
for the CUDA toolkit, which is required to compile NVVM, all other
components are open-source and can be easily found in Github.

We also build a translator that supports translating NVVM into
SPIR-V. This translator is lightweight and only relies on LLVM. It
can be executed without the CUDA toolkit and GPUs. Our experi-
ment results show that our translator can support most applications
in Rodinia. In the future, we will try to support the remaining appli-
cations. In detail, we will support texture memory and mathematical
functions, not only to convert from NVVM to SPIR-V, but also to
support these corresponding libraries which will be needed when
executing our generated SPIR-V on RISC-V GPUs.

Supporting CUDA for an extended RISC-V GPU architecture

REFERENCES

(1]

[2

=

Michal Babej and Pekka Jaaskeldinen. 2020. HIPCL: Tool for Porting CUDA
Applications to Advanced OpenCL Platforms Through HIP. In Proceedings of the
International Workshop on OpenCL. 1-3.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). leee, 44-54.

Fares Elsabbagh, Blaise Tine, Priyadarshini Roshan, Ethan Lyons, Euna Kim,
Da Eun Shim, Lingjun Zhu, Sung Kyu Lim, et al. 2020. Vortex: OpenCL Compatible
RISC-V GPGPU. arXiv preprint arXiv:2002.12151 (2020).

Vinod Grover and Yuan Lin. 2012. Compiling CUDA and other languages for
GPUs. In GPU Technology Conference (GTC).

Pekka Jaaskelainen, Carlos Sanchez de La Lama, Erik Schnetter, Kalle Raiskila,
Jarmo Takala, and Heikki Berg. 2015. pocl: A performance-portable OpenCL
implementation. International Journal of Parallel Programming 43, 5 (2015), 752—
785.

Ronan Keryell, Ruyman Reyes, and Lee Howes. 2015. Khronos SYCL for OpenCL:
a tutorial. In Proceedings of the 3rd International Workshop on OpenCL. 1-1.
John Kessenich, Boaz Ouriel, and Raun Krisch. 2018. SPIR-V Specification.
Khronos Group 3 (2018).

Kostas Kontogiannis, Johannes Martin, Kenny Wong, Richard Gregory, Hausi
Miiller, and John Mylopoulos. 2010. Code migration through transformations:

[10

[11

[12

[14

[15

Conference’17, July 2017, Washington, DC, USA

An experience report. In CASCON First Decade High Impact Papers. 201-213.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097-1105.

Evgeny Kuznetsov and Vladimir Stegailov. 2019. Porting CUDA-Based Molecular
Dynamics Algorithms to AMD ROCm Platform Using HIP Framework: Perfor-
mance Analysis. In Russian Supercomputing Days. Springer, 121-130.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75-86.

Aaftab Munshi. 2009. The opencl specification. In 2009 IEEE Hot Chips 21 Sympo-
sium (HCS). IEEE, 1-314.

Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N Nguyen. 2016. Mapping
API elements for code migration with vector representations. In 2016 IEEE/ACM
38th International Conference on Software Engineering Companion (ICSE-C). IEEE,
756-758.

Hugh Perkins. 2017. CUDA-on-CL: a compiler and runtime for running NVIDIA®
CUDA™ C++ 11 applications on OpenCL™ 1.2 Devices. In Proceedings of the 5th
International Workshop on OpenCL. 1-4.

André Silveira, Rafael Bohrer Avila, Marcos E Barreto, and Philippe
Olivier Alexandre Navaux. 2000. DPC++: Object-Oriented Programming Applied
to Cluster Computing.. In PDPTA.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Program migration
	2.2 Intermediate Representation
	2.3 Current Available Frames

	3 Overview of the pipeline
	3.1 Input CUDA source code
	3.2 Compile to NVVM
	3.3 Translate NVVM to SPIR-V
	3.4 Translate SPIR-V to OpenCL IR
	3.5 Execute OpenCL IR with Vortex

	4 Detailed Description and Experiments
	4.1 Support built-in functions
	4.2 Benchmark Experiments

	5 Conclusion
	References

