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ABSTRACT 
Microprocessor design, debug, and validation research and 
development are increasingly based on modeling and simulation at 
different abstraction layers. Microarchitecture-level simulators 
have become the most commonly used tools for performance 
evaluation, due to their high simulation throughput, compared to 
lower levels of abstraction, but usually come at the cost of loss of 
hardware accuracy. As a result, the implementation, speed, and 
accuracy of microarchitectural simulators are becoming more and 
more crucial for researchers and microprocessor architects. One of 
the most critical aspects of a microarchitectural simulator is its 
ability to accurately express design standards as various aspects of 
the microarchitecture change during design refinement. On the 
other hand, modern microprocessor models rely on dedicated 
hardware implementations, making the design space exploration a 
time-consuming process that can be performed using a variety of 
methods, ranging from high-level models to hardware prototyping. 
Therefore, the tradeoff between simulation speed and accuracy, 
can be significantly varied, and an application’s performance 
measurements uncertain.  

In this paper, we present a microarchitecture-level simulation 
modeling study, which enables as accurate as possible performance 
modeling of a RISC-V out-of-order superscalar microprocessor 
core. By diligently adjusting several important microarchitectural 
parameters of the widely used gem5 simulator, we investigate the 
challenges of accurate performance modeling on 
microarchitecture-level simulation compared to accuracy and low 
simulation throughput of RTL simulation of the target design. 
Further, we demonstrate the main sources of errors that prevent 
high accuracy levels of the microarchitecture-level modeling. 

CCS CONCEPTS 
• General and reference ® Cross-computing tools and 
techniques ® Performance • Computing methodologies ® 
Modeling and simulation ® Simulation evaluation 

KEYWORDS 
Microarchitecture-level simulation, modeling, RISC-V, gem5, RSD, 
performance, RTL, early design phases 

ACM Reference format: 
Odysseas Chatzopoulos, George-Marios Fragkoulis, George Papadimitriou, 
and Dimitris Gizopoulos. 2021. Towards Accurate Performance Modeling 
of RISC-V Designs. In Proceedings of Fifth Workshop on Computer 
Architecture Research with RISC-V (CARRV 2021). Virtual Event, 8 pages. 

1 INTRODUCTION 
Cycle-accurate (performance) simulators are widely used in the 
early stages of microprocessor design, as well as in several research 
studies, e.g., for performance evaluation, reliability assessment, etc. 
[1] [2] [3] [4]. Microprocessor model validation and accuracy is 
among the most common and significant problems that designers 
and researchers are regularly dealing with. Accurate simulation 
infrastructures are essential for design space exploration to ensure 
that the most efficient solution will be chosen. Since exact 
technology libraries for new microprocessor architectures are not 
available at early design stages, microprocessor architects (and 
researchers) usually simulate their designs using models at 
different abstraction layers, ranging from register-transfer level 
(RTL) to full-system level (microarchitecture level). An RTL model 
can simulate the real hardware design in a cycle-accurate manner, 
making it much more precise than higher-level abstractions, such 
as microarchitecture-level simulations. RTL simulation also allows 
accurate measurements for hardware area, and power 
consumption using commercial Computer-Aided Design (CAD) 
tools without introducing modeling errors [5]. However, RTL 
simulation of a complete microprocessor model using real-world 
applications or benchmarks, adds significant delays on the 
workflow, primarily due to very low simulation throughput of 
RTL. For example, in [6] the authors show that the magnitude of 
difference of execution time of RTL simulation can be as large as 
7x more than the microarchitecture-level simulation time. Figure 1 
summarizes an abstract view of the relative simulation speed and 
accuracy among the most common simulation methods at different 
abstraction layers. 

Figure 1: Simulation speed vs. accuracy for the widely-used 
methods on different abstraction layers and simulation modes. 
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Due to high simulation throughput, microarchitecture-level 
simulators (such as the widely used gem5 simulator [1]) are 
heavily employed [6] [7] [8], mainly for performance evaluation 
studies at the cost of accuracy loss [5]. Microarchitecture-level 
simulators model designs of different architectures at a higher 
abstraction layer than RTL. Consequently, they can evaluate real-
world applications in reasonable simulation time, however, they 
fail to model accurately the real hardware providing design 
inconsistencies, and thus, clock cycle inaccuracies. Black and Shen 
in [7] categorize the sources of simulation errors into three distinct 
groups: (i) modeling errors, when the simulator developers 
incorrectly model the desired functionality; (ii) specification errors, 
when the developers are unaware of the functionality being 
modeled or must speculate about it; (iii) abstraction errors, when 
the developers abstract or fail to incorporate some details of the 
modeled design. Modelling errors can usually be corrected when 
the simulator is gradually improved through its continuous 
maintenance. On the other hand, specification and abstraction 
errors tend to be more persistent and difficult to correct, since 
certain aspects of the system may be unavailable to the public, or 
abstractions may simplify simulator code and speed up simulations 
[5]. However, in case of RISC-V design implementations, 
specification errors can be also overcome (along with the modeling 
errors), since there are several RISC-V open-source designs. 

As shown in Figure 1, there is no ideal simulation method 
which can bridge the gap between simulation speed and accuracy, 
although there have been substantial research efforts trying to 
overcome this challenge, usually by compromising one of these 
two aspects. For example, Graphite multicore simulator [8] aims to 
improve the simulation speed by compromising the simulation 
accuracy. Sniper [9] simulator speeds up simulation by using high 
level models of cores instead of performing cycle accurate 
simulation. Zsim simulator [10] reduces the time for detailed 
simulation by employing dynamic binary translation for 
instruction driven timing models. All these simulators utilize 
system-level description of the design and lack the accuracy of 
RTL. Along the same lines, ExtraTime [11] is a complex simulation 
platform for simulating and modeling power and area at the 
microarchitectural level to investigate the effect of aging. It is also 
based on limited accuracy for critical performance parameters, 
because it lacks the hardware-level accuracy required for 
performance characterization provided by the RTL. 

In this paper, we present a microarchitecture-level simulation 
modeling approach based on gem5 simulator, which enables as 
accurate as possible performance modeling of a RISC-V out-of-
order (OoO) superscalar microprocessor core while retaining the 
high throughput of microarchitecture-level simulation. We 
demonstrate the challenges for adjusting several 
microarchitectural parameters of the microarchitecture model 
based on the widely used gem5 simulator. Considering the RSD 
microprocessor core as our baseline RTL model [12], we show 
which are the main sources of error in performance modeling 
through microarchitecture-level simulation compared to the RTL 
simulation of the target design. RSD is a compact open-source 
RISC-V OoO superscalar microprocessor core, which can be 
synthesized for FPGAs. Further, we demonstrate the benefits and 

high accuracy levels that can be achieved, by avoiding the low 
simulation throughput of RTL simulation. 

The main contributions of this study are: (1) the detailed 
discussion about the challenges and sources of error between 
microarchitecture-level and RTL simulations, and (2) the modeling 
validation of two ISAs with subtle differences, i.e., the 32-bit and 
64-bit RISC-V ISAs. The purpose of this study is to present some 
preliminary evaluation results of such an important problem of the 
validation of microarchitectural simulators, which are the main 
vehicle for the most of the research studied in the field of 
computer architecture.  

2 BACKGROUND & RELATED WORK 
In the early designing phases, new microprocessor designs are 
typically evaluated using RTL or microarchitecture-level 
simulators. Although microarchitecture-level simulators employ 
fast high-level models (i.e., high simulation throughput), they 
usually provide less accuracy compared to RTL models. On the 
contrary, RTL simulators provide cycle-accurate modeling of the 
underlying hardware, but due to their very low simulation 
throughput, it is infeasible to simulate long and realistic 
workloads. In this section, we briefly describe the background and 
motivation of this study and the most recent related works. 

2.1 Background and Motivation 
Computer architects and researchers have widely used cycle-
accurate microarchitectural simulation for several kinds of 
evaluation purposes, such as performance evaluation. 
Microarchitecture-level simulators are modular and simple to use, 
while RTL implementation is difficult to change. As a result, high-
level software simulation is still a valuable tool for guiding system 
design in the early stages, before RTL design begins. However, for 
two major reasons, microarchitecture-level simulation has been a 
bottleneck in several studies. The first reason is that 
microarchitecture-level simulators should be thoroughly tested 
against RTL designs and real-world systems. This is only possible 
if new prototypes share many similarities with the current 
simulated hardware or similar designs from previously tested 
design cycles. Microarchitecture-level simulators should be fine-
tuned whenever any modifications to RTL designs are made. 
Furthermore, microarchitectural simulators should be thoroughly 
tested against silicon implementations that run real-world 
software. Otherwise, the abstraction and modeling of the target 
systems may introduce various types of evaluation errors [5]. 
Hardware design trends developing heterogeneous or other 
complex System on Chips (SoCs) usually using custom hardware 
accelerators have made microarchitecture-level simulator 
validation more challenging as it has become more difficult to find 
an existing device to validate the simulator against. On the other 
hand, RTL simulation provides very low simulation throughput of 
realistic workloads with very complicated hardware designs, when 
complete executions of programs are mandatory. The low 
simulation throughput of RTL is becoming even worse when 
running full-system simulations.  

There are usually two fundamental approaches that are 
commonly used in an effort to overcome the previously defined 
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challenges. First, simulation sampling is a widely-known and 
widely-used method of reducing the simulation time [13]. Through 
an extensive phase analysis on dynamic basic-block traces, 
simulation sampling provides several strictly-defined simulation 
points (usually referred to as simpoints). The underlying 
assumption is that dynamic software execution is made up of short 
periods of phases, with each phase exhibiting similar 
microarchitectural activity, and therefore similar instructions per 
cycle (IPC), when repeated. This approach generates simulation 
points that are based around the most commonly used basic 
blocks. Since these phase periods can be long enough and the 
performance characteristics of each phase can be dependent on the 
system's dynamic state, this assumption cannot provide any 
guarantees that the outcomes will be correct for every single case.  

The other fundamental approach that aims to significantly 
improve the simulation time is the FPGA-accelerated simulation of 
an RTL design [14] [15]. The FPGA-based performance simulators 
are orders of magnitude faster than microarchitecture-level or RTL 
simulators, because execution takes place on a real silicon chip; 
however, they require manually description of abstract models in 
RTL, which may be more difficult than writing the source RTL 
design. Another major challenge is the mapping of simulation 
models into the FPGA platform, including timing and software 
models and the transformation from RTL model. Since any of 
these approaches have several important limitations, in this work, 
we study the microarchitecture-level simulation, which can 
execute long and realistic workloads with very low 
implementation and modeling effort, towards an accurate 
performance modeling, specifically for RISC-V designs. 

2.2 Related Work 
For performance characterization and design modeling, gem5 [1] is 
a commonly used microarchitecture-level simulator. In [16], gem5 
is used to simulate in-order and out-of-order Arm microprocessors. 
In [17], gem5 is extended to support VLIW instruction, and the 
modeling infrastructure is validated using an RTL simulator as a 
reference. Zamn et al. in [6] propose a cross-layer approach using 
the gem5, which enables accurate power estimation by integrating 
components from system-level and RTL simulation of the target 
design. Butko et al. in [1] evaluate the accuracy modeling of gem5 
and show the inaccuracy levels compared to a dual-core ARM 
Cortex-A9 real microprocessor device.  

Similar to these studies, in the context of RISC-V designs, 
Roelke and Stan in [18] implemented the RISC-V ISA in gem5 and 
validate its performance statistics against the Chisel simulation 
and FPGA. Ta et al. in [19] present functional and timing 
validation of multicore RISC-V designs on gem5. Kim et al. in [14] 
and [15] present an FPGA-accelerated methodology for 
simulation-based RTL verification of RISC-V designs and an 
evaluation methodology using RTL designs running real-world 
workloads in FPGA simulation to evaluate performance, power 
and energy. There are also several studies that present the sources 
of errors in microarchitecture-level simulators. Gutierrez et al. in 
[5] validate gem5 simulator and quantify the error magnitude 
against a real hardware platform. Brooks et al. in [2] investigate 
the primary sources of error of microarchitecture-level simulation 

and present how design tradeoff studies can accommodate some 
inaccuracy since relative inaccuracy has no impact on the target 
design. Desikan et al. in [20] verify the accuracy of a high-level 
timing simulator against actual hardware. 

3 MODELING INFRASTRUCTURE  
In this section, we provide an overview about the RSD 
microprocessor core, which is used as the reference RTL model in 
this study, and also discuss about the most important features of 
the gem5 microarchitecture-level simulator.  

3.1 RSD: A Reference Model 
RSD is an open-source RISC-V OoO microprocessor core optimized 
for FPGA, which provides high performance by supporting 
advanced microarchitectural features such as speculative OoO load 
and store execution, a memory dependence predictor, speculative 
scheduling, and a non-blocking cache. RSD improves resource 
efficiency by minimizing the used FPGA resources, by supporting 
multiport RAM arrays for several RAM-based components, like 
Reorder Buffer (ROB), Physical Register File, etc. [12]. The RSD 
pipeline is structured using three basic blocks: (i) the front-end 
block, (ii) the scheduling block, and (iii) the execution block. The 
front-end block of RSD microarchitecture fetches and decodes 
instructions, in an in-order manner according to the program’s 
instruction order, from the L1 instruction cache, and supports the 
gshare branch predictor. For instructions sent from the front-end 
block, the scheduling block provides instruction-level parallelism 
(ILP), and issues instructions to the execution block in an out-of-
order manner. The rename unit, dispatch unit, issue queue, and 
reorder buffer are the main components of the scheduling block. 
Instructions sent from the scheduling block are executed by the 
execution block. The execution block consists of a physical register 
file (of 64 registers count) and a load/store unit, which contribute 
to the execution and speculative execution of memory instructions 
out of program order. Table 1 shows the most important 
microarchitectural parameters of the RSD core. 

Compared to the state-of-the-art RISC-V microprocessors 
models, like Rocket [21], RSD supports a more aggressive design 
since Rocket is an in-order, single-issue scalar microprocessor that 
includes a six-stage integer pipeline. BOOM [22] is another state-
of-the-art RISC-V microprocessor, which is a high-performance 
out-of-order superscalar microprocessor core, providing several 
complex features which make RTL simulations even slower than of 
Rocket’s and RSD’s. BOOM supports a unified physical register file 
with configurable fetch widths, issue widths, and instruction 
window sizes. It supports full branch speculation using a branch 
target buffer, and a parameterizable backing predictor. 

3.2 Gem5 Microarchitectural Simulator 
Gem5 is a widely used open-source microarchitecture-level 
simulator, which supports a variety of instruction set architectures 
(ISA), microprocessor and memory system models. Each 
microprocessor model corresponds to a different abstraction layer, 
and thus, different level of simulation throughput and accuracy. 
For example, the atomic model (as shown in Figure 1) comes with 
low accuracy but high throughput, while the detailed out-of-order 
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model (OoO) provides lower throughput but accurate simulations. 
System-call emulation (SE) and full-system (FS) simulation modes 
are available for gem5 microprocessor models. During the 
simulation in SE mode (which is the one used in this work), gem5 
does not load an operating system, and system calls are emulated 
by the host system. The FS mode, on the other hand, executes both 
user-level and kernel-level instructions when simulating a full 
system by loading an operating system into the simulator. The 
operating system is responsible to simulate all system calls and to 
perform virtual-to-physical address translations. 

3.3 RISC-V ISAs Compatibility 
The base instruction set architectures of RISC-V are RV32I and 
RV64I. RSD implements RV32I, while gem5 implements RV64I. The 
actual difference between these two ISAs is the register width; 
RV32I has 32bit registers, while RV64I has 64bit registers. Both 
ISAs support the same instruction format and width, i.e., all 
instructions are 32-bit and the opcodes are the same between these 
two ISAs. The main difference of the instruction format between 
the two ISAs is the different width of the data (32-bit vs. 64-bit). 
Larger data widths of the RV64I ISA compared to RV32I adds a 
few more instructions on the instruction set to deal with the larger 
data sizes. For example, assume the add instruction, in which the 
same opcode and instruction format is using for both RV32I and 
RV64I, but the former has to deal with 32-bit data sizes, while the 
latter with 64-bit data sizes. Further, RV64I supports more 
instructions (i.e., extra opcodes) to cope with 32-bit data sizes (e.g., 
the addw instruction). In general, RV64I supports additional 
instruction variants for manipulating 32-bit values, indicated by a 
‘W’ suffix to the opcode. The same exists also for load and store 
instruction, which provide the same opcodes and instruction 
format for both RV32I and RV64I, but they have to deal with 32bit 
and 64-bit values, respectively [23].  

Since both 32-bit and 64-bit ISAs share only a few minor 
differences according to the previous discussion, we challenge 
ourselves to validate the microarchitecture-level accuracy of a 64-

bit ISA compared to an RTL which implements the 32-bit ISA of 
RISC-V. These two RISC-V ISAs have subtle differences, 
specifically, they differ only to the data size manipulation. To 
avoid the potential inaccuracies in performance measurements of 
our study, we use programs which use integer numbers of 32-bit 
size for both ISAs and microarchitecture models of this study. 
Further, for both ISAs we use the same version of the RISC-V 
cross-compiler, i.e., gcc v10.2 without any optimizations (-O0). 

4 EXPERIMENTAL METHODOLOGY & RESULTS 
In this section, we first discuss about the experimental 
methodology followed by this study and we present our evaluation 
results. To compare the microarchitecture-level simulation 
accuracy to the RTL reference model (i.e., the RSD in this study), 
we initially configured all the available microarchitectural 
parameters of the gem5 simulator considering the parameters of 
the RSD, as shown in Table 1. By doing so, we can compare the 
two identical models, and provide fundamental observations about 
the potential inaccuracies that can occur due to limited hardware 
details implemented on the gem5. 

4.1 Benchmarks and Simulation Speed 
In this study, we mainly use custom-developed benchmarks, which 
target to specific microarchitectural components. The reason is 
twofold: first, to study and evaluate the microarchitecture-level 
simulation accuracy, and second to retrieve some specific 
microarchitectural parameters of the RSD reference model that 
were not available. For example, for the verification of the integer 
pipeline, we developed the IntegerStress benchmark, which stresses 
the integer functional units only. Along with custom-developed 
benchmarks, we also use 3 benchmarks from MiBench suite (qsort 
and stringsearch with small and large input datasets) [24]. Table 2 
presents the benchmarks used in this study along with a 
representative description which describes each benchmark.  

By using these benchmarks, we first evaluate the simulation 
speed between the gem5 and RSD. Note that in gem5 we use the 
detailed out-of-order mode, while in RSD we rely on the fast and 
cycle-accurate behavioral simulation model, which is significantly 
faster than a detailed timing simulation. As shown in Figure 2, and 
specifically in the dotted line, depending on the workload and the 
application’s characteristics, the speedup of microarchitecture-level 
simulation ranges between 5x and 20x compared to RTL 
behavioral simulation. Specifically, the fewer memory operations a 
program includes, the faster gem5 simulation is. As we discuss in 
the next subsection, the simulated memory system is one of the 
two main obstacles, which contribute to the highest levels of the 
microarchitecture-level simulation inaccuracy. 

4.2 Runtime Accuracy 
The gem5 modeling is as accurate as possible compared to the 
reference RTL model. More specifically, both integer and memory 
pipelines are completely matched. We employ Konata1 to verify 
these features as well as the IntegerStress benchmark described in 

 
1 https://github.com/shioyadan/Konata 

Parameter Value 
Pipeline OoO 

L1 data / instruction cache 4 ΚΒ / 4 KB (2-way) 
Cache line size 8 Bytes 

Replacement policy Tree-PLRU 
L1 hit latency 1 clock cycle 

L1 miss latency 100 clock cycles 
Fetch/Decode/Rename width 2 

Issue width 5 
Writeback width 5 
Commit width 2 
Reorder Buffer 64 
MSHR entries 2 

Branch predictor gshare (2048 History Table) 
Branch Target Buffer entries 1024 
Load/Store Queues entries 16 

Physical Register File 64 registers 

Table 1: Microarchitectural parameters of the RSD 
reference model. 
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the previous subsection that uses only arithmetic instructions 
without any cache misses. Konata is an instruction pipeline 
visualizer, which allows us to pinpoint any divergencies of the 
pipeline flow between gem5 and RSD models. Konata is an 
essential tool which has significantly contributed to this study. 
Figure 3 presents the ratio of clock cycles (left diagram) and the 
ratio of instructions (right diagram), between gem5 and RSD. In 
the rightmost part of each diagram, we can see also the arithmetic, 
geometric, and harmonic means. As we can see, the ideal ratio 
would be equal to 1 (the red horizontal line). On the left diagram 
of Figure 3 we can see that BubblesortC and StringSearchSmall 
benchmarks show the highest difference in clock cycles among all 
benchmarks. In BubblesortC, gem5 reports 36% more clock cycles 
than the RTL model, while in StringSearchSmall gem5 reports 35% 
less clock cycles that the RTL model.  

However, IntegerStress, BranchMisRandom, MemoryRandom, 
and BranchMisNever, show marginal difference in clock cycles (up 
to 6%), since they are all very close to the red horizontal line (i.e., 
the ideal ratio). Considering that the majority of performance 
evaluation studies employ a huge set of benchmarks and usually 
provide an average of the execution times of all benchmarks to be 
easy to compare several features, averaging can be assumed as an 
important factor for a fair comparison. As we can see in Figure 3, 
by averaging all benchmarks (the rightmost columns of the left 
graph), the clock cycle ratio is significantly close to the ideal ratio 
of 1. Note that this is true for any averaging method, such 
arithmetic, geometric or harmonic mean, which are the most 
commonly used methods in the majority of performance studies. 

On the other hand, as we can see in the right diagram of Figure 
3, the committed instruction ratio of both gem5 and RSD are 
virtually the same for the most cases. Perfectly matching the 

committed instructions is a real challenge because we noticed that 
major differences produced due to the different implementations 
of the gshare branch predictor. Therefore, we developed the gshare 
branch predictor in gem5 by directly translating the SystemVerilog 
implementation of RSD into C++ code. To this end, we developed 
the benchmarks targeted to the branch predictor (i.e., 
BranchMisRandom and BranchMisNever). BranchMisRandom 
specifies the branch misprediction latency in combination with 
BranchMisNever benchmark studying the behavior of branches 
with random conditions. By doing so, we were able to match the 
committed instructions between gem5 and RSD to the highest 
extent possible. 

4.3 Abstraction Errors & Error Magnitude 
As we discussed in the previous subsection, although the 
committed instructions of gem5 are very close to RSD’s, the clock 
cycles ratio can show some divergences, even if the two models 
(gem5 and RTL) are as close as possible. To provide observations 
about the differences in clock cycles between gem5 and RTL 
models, it is essential to study the most important performance 
characteristics of the microarchitecture model in a fine-grained 
manner. To this end, we studied several microarchitectural 
statistics, such as branch mispredictions, cache misses, MSHR hits, 
memory latency, etc., in an effort to correlate what is the possible 
factor (or factors) that affects the accuracy of microarchitectural 
modeling. In the majority of the studied statistics, we observed 
that both gem5 and RTL models report the same measurements or 
the same trends. However, a significant observation of our study is 
that the memory system and the branch predictor are the main 
factors which affect the accuracy of the microarchitecture-level 
modeling and the main sources of errors in microarchitecture-level 
performance modeling. Figure 4 presents the number of 
mispredictions per kilo instructions (MPKI) for each benchmark 
correlating to the clock cycles ratio (left diagram), and the memory 
accesses per kilo instructions (MAKI) for each benchmark 
correlating to the clock cycles ratio (right diagram). 

As we can see in Figure 4, the four leftmost benchmarks 
(BubblesortC, FibSlow, Qsort, BubblesortAsm), in which 
microarchitecture-level modeling shows more clock cycles than 
the RTL modeling (i.e., there is a level of inaccuracy), provide the 
highest misprediction rate and the highest memory accesses (the 

Benchmark Description 

Bubblesort C 
Sort a 250-entry array with integer 

values using the Bubblesort algorithm. 
Assembly version of Bubblesort was 

written because C version shows 
considerable difference in committed 

instructions between the two ISAs 
Bubblesort Asm 

MemoryRandom 
Study the behavior of memory on 

random accesses 

FibSlow FibSlow runs for the 20th term of 
Fibonacci sequence. FibFast computes 

all terms in [1,45] and it reduces 
exponential complexity to linear 

FibFast 

IntegerStress Stresses the integer functional units 
BranchMisNever Always taken branch in a loop 

BranchMisRandom 
Specify branch misprediction latency 

studying gshare’s behavior on 
branches using random conditions 

StringSearchLarge Searches for given words in phrases 
using a case insensitive comparison 

algorithm [24] StringSearchSmall 

Qsort 
Sorts a large array of strings into 

ascending order using the quick sort 
algorithm [24] 

Table 2: Benchmarks used in this study along with a brief 
description. 
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between gem5 and RTL simulation. The dotted line shows the 
speedup for each benchmark. 
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yellow dotted line in the two graphs). Furthermore, the three 
rightmost benchmarks (FibFast, StringSearchLarge, 
StringSearchSmall), in which microarchitecture-level modeling 
shows less clock cycles than the RTL modeling (i.e., there is a level 
of inaccuracy), provide very low misprediction rate, but similarly 
to the leftmost benchmarks, very high memory accesses. On the 
other hand, benchmarks in the middle (IntegerStress, 
BranchMisRandom, MemoryRandom, BranchMisNever), which 
show the best accuracy of microarchitecture-level modeling, 
provide extremely low mispredictions and memory accesses rates, 
with MemoryRandom benchmark being an outlier. Led by these 
observations, we conclude that branch predictor and memory 
system are the most significant factors which can affect the 
accuracy levels of the microarchitecture-level modeling (these are 
both belong to the abstraction errors; meaning that the developers 
of the microarchitectural simulator abstract or fail to incorporate 
some details of the modeled design, as we discussed in Section 1). 
Both factors can contribute the most to the total performance of 
the microprocessors, and thus, implementation divergences 
between microarchitecture-level and RTL simulation can affect the 
accuracy of the modeling, and in many times, not in an obvious 
way. Therefore, it should be further investigated the reasons about 
how the branch predictor and memory system can be improved. 

5 CONCLUSION & FUTURE WORK 
In this paper, we focus on the accuracy validation of performance 
modeling of microarchitecture-level simulation by employing a 
state-of-the-art RISC-V RTL design. We presented our 
methodology and the main characteristics of the gem5 simulator 

and the RSD design, which are both used as the main vehicle of 
this study. The scope of this work is to present the challenges of 
performance modeling using the microarchitecture-level 
simulation, in the context of accuracy. Through our experimental 
results, we show that although gem5 is accurately configured 
based on the microarchitectural characteristics of RSD, the clock 
cycles of some benchmarks, between gem5 and RSD, can be 
different up to 36% and 18% on average among all benchmarks due 
to the abstraction errors of microarchitecture-level modeling. 
However, the arithmetic, geometric and harmonic mean show that 
considering all benchmarks, the average of clock cycles of 
microarchitecture-level simulation can be as accurate as the RTL 
simulation. Further, we show that the main sources of error in the 
performance differences between gem5 and RSD seem to be the 
behavior of the branch prediction unit and the memory system. In 
future work, we primarily intend to investigate the way that these 
sources of errors affect the microarchitecture-level accuracy, and 
to provide solutions about the changes need to be performed to 
eliminate the differences compared to RTL simulation. Moreover, 
another future work direction will be the accuracy validation of 
performance modeling of microarchitecture-level simulation of an 
RTL design (e.g., BOOM/SonicBOOM [25]), using the full-system 
setup (i.e., with operating system support), and running longer and 
more representative workloads. 
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Figure 3: Clock cycles ratio (left) and instruction ratio (right) between gem5 and RTL simulation for RSD model. 
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Figure 4: Mispredictions per kilo instructions (MPKI) in correlation to the clock cycles ratio (left diagram) and memory accesses per 
kilo instructions in correlation to clock cycles ratio (right diagram). 
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