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ABSTRACT
With the growing interest in RISC-V systems and the endless possi-
bilities of creating customized hardware architectures, we introduce
the first proof of concept (PoC) implementation of ChamelIoT, the
first open-source agnostic hardware operating system (OS) frame-
work for reconfigurable Internet of Things (IoT) low-end devices. At
this stage, ChamelIoT, leveraging the Rocket Custom Co-Processor
Interface (RoCC), provides hardware acceleration support for thread
management and scheduling of three different OSes: RIOT, Zephyr,
and FreeRTOS. This paper overviews the overall ChamelIoT archi-
tecture and describes the implementation details of the current PoC
deployment. Our first experiments were carried out on a Xilinx
Arty-35T FPGA Evaluation kit and the preliminary results are very
promising, showing that the desired agnosticism and flexibility can
be achieved with determinism and performance advantages at a
reasonable cost of hardware resources.
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1 INTRODUCTION
The Internet of Things (IoT) is revolutionizing the Internet of the
future by connecting countless smart devices over amassive and col-
laborative network infrastructure. With the ever-growing interest
in this topic, the variety of use cases, constraints, and requirements
is considerably increasing [20, 23]. To cope with such diversity, and
due to the lack of turn-key solutions for low-end IoT devices, the
software and hardware development processes face several trade-
offs regarding performance, power consumption, form-factor, just
to name a few. Such trade-offs are often dictated by the software
application, usually an embedded operating system (OS), whose
architecture and design decisions (e.g., kernel and scheduling mech-
anisms) have a big impact on the overall system behavior [14, 22].

The migration of OS kernel services to hardware is not a new en-
deavor since it provides several advantages in terms of performance,
predictability, and determinism [1, 2, 12, 15, 16, 18]. These services
can be implemented following two well-established approaches:
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(i) tightly-coupled, where the accelerator is embedded with the
main core datapath [9, 12]; or (ii) loosely-coupled, which implies
the accelerator to be implemented outside the core, connected by
standard communication buses [11, 18]. Despite each approach pro-
viding several advantages, they fell short in getting traction in the
industry due to the several issues steamed by proprietary ISAs and
closed-source architectures, e.g., Arm [18].

RISC-V is a novel open-source instruction set architecture (ISA)
that follows a reduced instruction set computer (RISC) design [4, 26].
It was created to be very modular and customizable, allowing it to
scale from tiny microcontrollers to powerful processors. Moreover,
RISC-V is gaining more attention from the industry by enabling
the development of specialized solutions that attended to the het-
erogeneity of requirements and constraints across different applica-
tions and use cases [6, 7, 10, 24]. The open-source model of RISC-V
creates new opportunities to explore innovative approaches of ac-
celerating OS services in hardware, which can be easily integrated
with any standard RISC-V core.

ChamelIoT is a framework for reconfigurable IoT platforms that
aims at building an agnostic hardware OS framework. By leveraging
the RISC-V architecture, ChamelIoT plans to solve challenges that
once hampered the adoption of hardware-accelerated OSes, while
providing increasing determinism, performance, and real-time guar-
antees. The ChamelIoT architecture is composed of hardware ac-
celerators that can be instantiated in a tightly- or loosely-coupled
configuration. These accelerators are designed to support OS ser-
vices such as the scheduling process, thread management, time
control, and synchronization mechanisms.

This paper details the first proof-of-concept (PoC) implementa-
tion of the ChamelIoT framework. Currently, it is being deployed
on a tightly-coupled approach, resorting to the Rocket Custom
Co-Processor Interface (RoCC) to instantiate the co-processor in
hardware, accessible through custom instructions. At this stage,
ChamelIoT encompasses the acceleration of the scheduling process
and part of the thread management of three different IoT OSes:
RIOT, Zephyr, and FreeRTOS. The preliminary results are quite
promising, showing that the desired agnosticism and flexibility can
be achieved with determinism and performance advantages at a
reasonable cost of hardware resources.

2 GOALS
Reconfigurable technology, namely Field Programmable Gate Ar-
rays (FPGA), is gaining special attention in the embedded IoT
arena thus providing augmented capabilities for implementing re-
programmable and customized hardware accelerators for a wide
range of applications, e.g., machine learning, networking, security
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Figure 1: Standard hardware-software stackwithChamelIoT
accelerator.

[8, 13, 19, 25]. Embedded FPGAs such as the ones provided by Quick-
Logic or low-power FPGAs from the Lattice portfolio are seeing
increasing applicability in low-end IoT devices due to the possi-
bility of developing, in a single semiconductor, multiple adjacent
market segments, while constraining the size, weight, power, and
cost (SWaP-C). ChamelIoT vision is aligned with such platforms
and aims at providing:
Real-Time and Determinism. ChamelIoT shall be able to provide
hard real-time guarantees and bounded worst-case execution time.
Predictability shall not be dependent on the number and priorities
of threads/tasks existing in the system.
Performance. ChamelIoT shall be able to execute accelerated OS
services in a smaller amount of time than the ones provided by
standard IoT OSes.
Agnosticism. ChamelIoT shall be able to run unmodified appli-
cations from different IoT OSes while providing a software ab-
straction layer (i.e., ChamelIoT wrappers / API) for creating retro-
compatibility among them.
Flexibility. ChamelIoT shall be able to provide a widely config-
urable architecture and an easy-to-use tool so that it can be (i)
adapted to a wide variety of architectures and platforms and (ii)
tuned to fit specific application’s requirements.
Power Consumption. ChamelIoT shall present a reduced or equiv-
alent power consumption than standard IoT OSes. Accelerated OS
services are expected to create additional idle times, which shall be
used to explore advanced low-power modes.

3 ARCHITECTURE
Figure 1 depicts a standard hardware-software stack with the RISC-
V processor and the ChamelIoT accelerators. The RISC-V processor
is based on Rocket [3], which is a 64-bit implementation that inte-
grates both L1 and L2 data caches and provides the RoCC interface
[17]. The RoCC interface was specially designed to help in attach-
ing accelerators to Rocket, accessible through a standard R-type
instruction format. The main goal of ChamelIoT is to provide hard-
ware support to OS services and libraries, such as the scheduling

process, thread management, synchronization, networking, and
security. This custom hardware-software architecture is managed
from an external tool that allows the configuration of the hardware
components, such as the RISC-V core and the ChamelIoT accelera-
tor, and the software layer that is responsible to interface different
implementations of OS components with ChamelIoT services.

The current PoC supports the ChamelIoT co-processor connected
through the RoCC interface, accessed through custom instructions
added to the RISC-V ISA. At this stage, ChamelIoT supports priority-
based scheduling algorithms and multiple thread management with
ready-queues. To provide these hardware-based services to an OS,
we modified the OS’s internals, by remapping software-based com-
ponents to agnostic ChamelIoT functions.

3.1 Operating Systems for the IoT
Among the list of available OSes that can best serve low-end IoT
devices [14, 22], we selected RIOT, Zephyr, and FreeRTOS, due
to (i) their broad popularity and applicability in IoT applications
and (ii) the continuous support from their respective open-source
communities. Moreover, such OSes provide enough variability with
regard to the main design points we consider important to evaluate
and provide support with ChamelIoT.
RIOT implements a microkernel-like architecture resorting to a
tickless preemptive scheduler based on descending priorities [5].
To fulfill the real-time requirements, RIOT also guarantees the exe-
cution of kernel tasks and inter-process communication (IPC) with
limited interrupt latency (around 50 clock cycles) and provides low
overhead multi-threading support. Designed with the IoT ecosys-
tem in mind, its main features are real-time capabilities, support to
low-power wireless devices, and a built-in network stack compliant
with many standards and protocols.
Zephyr implements a microkernel-based architecture with a tick-
less scheduler and descending priorities scheme. The scheduler’s
ready queue can be further configured as simple linked-list, red/black
tree, and traditional multi-queue. These bring several configurations
that result in different trade-offs between binary size, memory foot-
print, performance, and determinism. Zephyr’s state mechanism
is based on a set of seven flags that are assigned in the scheduling
process and each thread can have multiple active flags, allowing
for multiple states at the same time. Zephyr also provides a built-in
network stack for connectivity.
FreeRTOS is one of the most widely available OSes due to its porta-
bility, open-source community, and focus on providing real-time
capabilities. FreeRTOS follows a preemptive tick-driven schedul-
ing policy that dictates the thread scheduling according to their
assigned (ascending) priorities. This OS follows a simple state ma-
chine where each thread is assigned with one of four unique states,
two of which imply the thread is ready to be executed. Network
stack support is provided as software libraries and upstreamed as a
single package in the Amazon FreeRTOS.
Table 1 summarizes key design points of the internals of each
OS. These three OSes offer a good degree of variability, especially
considering their scheduling algorithms and thread management,
which is the focus of the current PoC. While Zephyr offers different
options to implement the ready queue mechanism, to the extent
of this PoC we just support the default multi-queue, where each
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Table 1: Key aspects of each OS regarding their scheduling
policy implementation.

Key aspects RIOT Zephyr FreeRTOS
Ready Queue Multi-queue Multi-queue Multi-queue
States 14 8 4
Scheduling Points Tickless Tickless Tick-based
Priority Descending Descending Ascending

priority level has its own linked list. FreeRTOS is the single OS with
a tick-driven scheduler, using ascending priorities.

3.2 RISCV-V Core
ChamelIoT is currently deployed on the open-source SiFive E300
platform featuring an E31 RISC-V core (RV32-IMAC), which sup-
ports atomic (A) and compressed (C) instructions, for higher per-
formance and better code density, respectively. This core is imple-
mented with the Rocket chip generator and provides a single-issue
in-order 32-bit pipeline, with a peak sustained execution rate of one
instruction per clock cycle [21]. Additionally, it provides a platform-
level interrupt controller (PLIC), a debug unit, and a wide variety of
peripherals. Lastly, the E300 platform contains two TileLink inter-
connection interfaces, one of which can be used to attach custom
accelerators. ChamelIoT leverages the RoCC interface to provide
specialized hardware OS services tightly-coupled to the E31 core.

The RoCC interface is further divided into sub-interfaces that
allow for communication between co-processors and the core while
providing direct access to the first level of the data cache. To com-
municate with the core, RoCC defines an extension to the RISC-V
ISA by introducing a custom instruction that follows the R-type for-
mat, depicted in Figure 2. The bit fields on this instruction specify
the target co-processor and operation. The opcode field can only be
assigned with one of four predefined values that are allocated to
each co-processor. The fields rd, rs1, and rs2 specify the destination
(rd) and source (rs1 and rs2) registers, used to transfer data with
the co-processor. Respectively, the xd, xs1, and xs2 bits are set to
identify which of corresponding registers, rd, rs1, and rs2, are being
used. The last field, funct7, is a set of bits that, together with the
software, are used to indicate what function the co-processor has
to execute, acting as a specific opcode for each co-processor.

funct7 rs2 rs1 xd xs1 xs2 rd opcode
31                    25 24          20 19            15  14     13    12  11               7 6                        0 

Figure 2: RoCC instruction format.

4 PROOF-OF-CONCEPT IMPLEMENTATION
At this stage of development, ChamelIoT is focusing on proving
support to the scheduling service of the selected OSes. Since it is
currently deployed as a co-processor through the RoCC interface in
a 32-bit Rocket core, it presents some limitations on the amount of
data transferred on an instruction-basis scheme. Therefore, and as
depicted in Figure 2, the accelerator’s input data width is only two
32-bit words, while the output data is a single 32-bit word. Moreover,
the amount of data related to each thread managed by ChamelIoT

ROCC I/O Interface

Control Unit

Next Entry

Priority Queue

Highest Prio.

Active Thread

Previous Node

Node 
Tables

Next 
Nodes

Root 
Nodes

Last 
Nodes

S
ta

tu
s
 R

e
g

is
te

rs

Node Arrays

Figure 3: ChamelIoT hardware architecture.

also has to be limited in order to save hardware resources. For this
reason, it is still to be understood the trade-offs of providing full
support for each Thread Control Block (TCB) in hardware. Thus,
at the moment, each OS is still responsible for managing its TCB
implementation. Nonetheless, since the thread state and priority
play a major role in the scheduling process, these elements are
currently managed at the hardware.

ChamelIoT provides support for the multiple ready-queues by
implementing a linked list per priority level. Thus, an hardware
infrastructure is required to properly add or remove each thread
from the correct linked list when needed, without incurring ad-
ditional performance penalties to the system. This often implies
resource allocation to save information about each list and other
relevant information. Lastly, ChamelIoT provides a control unit to
manage the communications interface and data translation coming
from the CPU. At the moment, ChamelIoT expects the software to
fully manage the operation of adding and removing threads and
the timing of each scheduling point.

4.0.1 Hardware Architecture.
The co-processor architecture can be divided into three main

blocks: (1) the Control Unit; (2) Status Registers; and (3) Node Arrays,
as illustrated by Figure 3. The Control Unit is responsible for man-
aging the interaction with the RoCC I/O interface, parsing the data
needed on each instruction, decoding the funct7 field, and control-
ling the remaining blocks to execute the required function. Each
element from the Status Registers block contains information that
needs to be accessible at the beginning of each operation to avoid
introducing any delays. Thus, whenever an operation is issued to
ChamelIoT each element of the Status Registers has to be updated
in the following way:

• TheNext Entry register points to the next available position
in the thread node table;

• PriorityQueue saves the ID of each non-empty ready-queue;
• The Highest Priority register holds the priority value of
the next thread to be executed, according to the OS priority
scheme (ascending or descending);
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• Active Thread holds the Thread ID (TID) of the currently
running thread;

• Previous Node register has the TID of the previous thread
on the linked-list.

The Node Arrays block implements arrays of registers according
to either the maximum number of defined threads and priorities.
The Node Table is the central component of ChamelIoT since it
is where all the information related to each thread is stored and
managed. Each thread present in the system has a corresponding
node in this table with the information shown in Figure 4. The data
field (32-bit width) is used to save the TCB pointer (some OSes,
e.g. FreeRTOS, use a pointer instead of a TID), while the remaining
fields are mostly used in the scheduling and list management tasks:
the dirty bit is used to indicate whether or not that table position
is being used; the next field holds a TID pointer to the next thread
on the specific linked-list; and both the priority and state fields are
updated by the OS and used by ChamelIoT to determine which
task is going to be executed next and if the thread should be in the
ready-queue.

data state priority next dirty
0                                      31

Figure 4: Thread node structure.

The current implementation of ChamelIoT replicates a system
where a linked list is created for each priority defined in the sys-
tem. These lists together form the ready-queue that sets the next
active thread. By default, whenever a new thread is added, it is not
automatically added to the ready-queue, being added to a given
linked list only when its state is changed by the OS flagging the
thread is ready to run. The remaining components of Node Arrays
block are used to manage and iterate each list, containing a set of
registers, one per priority level, that hold the following information:
(i) Next Nodes has the TIDs for the next thread to be executed in
each priority level; (ii) the Root Nodes have the TID of the first node
on each list; and (iii) the Last Nodes contains the last nodes.

With the purpose of executing any instruction provided by soft-
ware without incurring any delay, it is necessary all the information
about all nodes associated with each list. This implementation re-
sults in a trade-off between hardware resources, performance, and
determinism. Alternatively, an implementation similar to a software
linked-list, where each operative is done iteratively, would result in
fewer hardware resources at the cost of performance and determin-
ism. ChamelIoT schedules the next running thread by selecting, on
each priority list, the threads on the ready-queue. Then, according
to the implemented priority scheme (ascending or descending), it
checks which is the next ready node with that priority level and
returns it to the OS, updating its status flags, accordingly. Unless
explicitly demanded by software, once a thread is added to a queue,
it will remain there until its state is updated.

4.0.2 Hardware configurability.
One of the main concerns when deploying a co-processor in

FPGA is the amount of hardware resources that are often required
to accommodate all the necessary logic. With ChamelIoT, such

Table 2: Software functions to interact with ChamelIoT.

Function funct7 rs1 rs2 rd Description

Add 0 priority TCB TID Adds a thread to the table
Remove 1 TID none none Removes a thread from the table
Active PID 2 none none TID Returns the TID of the running

thread
Get TCB 3 TID none TCB Returns the thread TCB
Schedule 4 none none TID Schedules and sets the state of the

next thread; changes the state of
the current active thread

Set State 5 TCB state none Changes the thread state (might
cause ChamelIoT to move the
thread to/from the ready queue)

Get PID 6 TCB none TID Returns the thread PID

resources are highly dictated by the hardware configurations re-
quired by the final solution. For instance, the number of priorities is
directly related to the number of linked-list components that have
to be maintained by ChamelIoT in hardware, and consequently, dic-
tates the number of registers required to store data. Likewise, the
number of threads has an impact on the number of nodes needed
to be allocated in the Node table. Moreover, the number of bits
required by TID-related fields also increases with the number of
threads. Thus, by supporting a customizable number of threads and
priorities, ChamelIoT aims at providing fine-grain customization
per the application and use-case requirements. The current config-
urations available for ChamelIoT are number of supporting threads
and priorities, number of states, ready-queue states, thread default
states, and default priority order.

4.0.3 Software Interface.
The OS interacts with ChamelIoT through a custom instruction

added to the RISC-V ISA, which allows to share data through rs1, rs2,
and rd registers regarding the function specified in the funct7 reg-
ister. Thus, it was required to develop a small set of APIs to provide
an agnostic adaption layer for each OS being able to use ChamelIoT.
Table 2 summarizes the functions currently implemented and acces-
sible by software, as well as the required fields to build the custom
instruction to communicate with the RoCC interface. The Add and
Remove functions provide basic thread management functionalities
used by the OS during the thread creation/deletion process. To add
a thread to the memory table, ChamelIoT requires its priority num-
ber and TCB pointer. To remove a thread, ChamelIoT only needs
the TID, which basically results in clearing the dirty bit associated
with that thread.

One common feature present on each OS is the TID to TCB
translation, and vice-versa. For instance, RIOT uses the TID to
identify and manage threads, while Zephyr and FreeRTOS use TCB
data pointers. Therefore, ChamelIoTmust also support amechanism
to interchange between a TID and a TCB, which is done via the
functions Get PID and Get TCB. Additionally, through the Active PID
function, the OS can request to ChamelIoT the TID of the thread
that is currently running. Regarding the Set State function, it allows
the OS to add or remove a thread from the ready-queue. Whenever
this action is requested to ChamelIoT, the accelerator checks both
thread’s previous and next states to evaluate if the thread should be
removed or added to the ready queue. Lastly, the function Schedule

4
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Table 3: RISC-V core and ChamelIoT (configured with 8
threads and 8 priorities) hardware resources.

Resource Rocket Rocket + RoCC Rocket + ChamelIoT

LUTs 17246 17791 (+3.16%) 21769 (+26.23%)
MMCM 1 1 (+0%) 1 (+0%)
Muxes 381 403 (+5.77%) 485 (+27.3%)
RAM 197 229 (+16.24%) 240 (+21.83%)
SRL 89 89 (+0%) 89 (+0%)
FFs 10096 10362 (+2.63%) 10827 (+7.24%)
IOBUF 58 58 (+0%) 58 (+0%)

must be used by each OS at their scheduling points to request from
the co-processor the TID of the thread that must be executed next.

5 EVALUATION AND PRELIMINARY RESULTS
We deployed and evaluated ChamelIoT PoC implementation on a
SiFive Freedom E300 running at 65MHz in a Xilinx Arty-35T FPGA
board. ChamelIoT was tested with RIOT, Zephyr and FreeRTOS,
configured to support a total maximum of 8 threads and 8 priori-
ties. We focus our preliminary evaluation on hardware resources
(Section 4.1) and determinism and performance (Section 4.2).

5.1 Hardware Resources
Table 3 details the FPGA resources (obtained from Vivado 2020.2)
required to deploy the Rocket RISC-V core (baseline) with and
without ChamelIoT, configured to support 8 threads and 8 priorities.
Furthermore, we have also evaluated the cost of adding the RoCC
interface, which is a major requirement for adding a tightly-coupled
co-processor. Adding the RoCC interface has a small impact in the
overall system, with the major cost on RAM, which represents an
increase of around 16.24% when compared with the Rocket core
without the RoCC interface. For the other resources, the impact is
negligible, e.g., 5.77% Muxes, 3.16% Look-up Tables (LUTs), 2.63%
Flip-Flops (FFs), and 0% for the remaining FPGA components.

When ChamelIoT is added to the system (RoCC interface is also
included), the number of LUTs, Muxes, and required RAM increases
to 26.23%, 27.3%, and 21.83%, respectively. This is due to the fact that
the current implementation of ChamelIoT strongly relies on combi-
national logic components to satisfy the expected performance and
deterministic requirements. A possible approach to minimize the
hardware resources could encompass the exploration of a mixed
approach with both combinational and sequential logic, shifting the
load from LUTs and Muxes to Flip-Flops. Nonetheless, the amount
of resources used by ChamelIoT is just a small portion of the whole
system when taken the Rocket core also into consideration.

For the purpose of understanding the impact of the number of
threads and priorities supported by ChamelIoT in terms of hardware
costs, we have evaluated the co-processor in different configura-
tions, varying the number of threads and the number of priorities.
Figure 5 depicts the hardware resources required by ChamelIoT
with a different number of supported threads and priorities. Since
the most hardware-consuming components are LUTs, Muxes, and
FFs, the other resources were left aside from this comparison.

From Figure 5a, which depicts the hardware consumption when
the system supports a fixed number of priorities but varying the

number of threads (up to 32), it is possible to conclude that increas-
ing the number of threads impacts the FPGA resources. Considering
that the number of bits required to identify each thread is incre-
mented when the maximum number of threads equals a power of
2, it is expected to observe an increase in the hardware resources.
This is mostly reflected in the number of LUTs and Muxes, as the
current PoC is mainly implemented with combinational logic.

To some extent, the same phenomenon can be observed in Figure
5b. When the number of supported threads is fixed at 8 and the
amount of priorities is increasing, it is possible to identify a nearly
linear trend for the number of LUTs and Muxes, while the number
of Flip-Flops presents just a small increase.

Despite the bit count of the priority level being incremented at
certain points, it does not impact the system in the same way as
the thread’s bit count, since the priority does not affect the number
of nodes required to be allocated in the Node Table. In sum, it is
clear that the number of threads causes more impact in terms of
resources than the number of priorities.

5.2 Determinism and Performance
To assess determinism and performance, we have measured the
number of clock cycles required to complete the thread selection
algorithm, both for the software and hardware implementations.
This experiment was repeated 10000 times using the performance
counter MCYCLE available in the RISC-V core, and the gathered
results are summarized in Figure 6.

For the software-based scheduler, Zephyr provides the best re-
sults, followed by RIOT, and FreeRTOS. While Zephyr requires, on
average, 16 clock cycles, RIOT needs 44 clock cycles and FreeRTOS
403. When the scheduling tasks are performed by ChamelIoT, the
required clock cycles are highly reduced: Zephyr and FreeROTS re-
quire 8 clock cycles, while RIOT uses only 4 clock cycles. FreeRTOS
is the OS that more benefits from ChamelIoT, presenting a reduc-
tion of nearly 96%. Regarding the different clock cycles between
RIOT and the others, RIOT benefits from the function Scheduling,
present in Table 2, which returns the TID of the next thread, being
this behavior identical to the RIOT’s kernel. For both Zephyr and
FreeRTOS, it is necessary to convert the TID into the correct TCB
data pointer. This requires to use an extra instruction to interact
with the RoCC, which results in the double of clock cycles.

For the current experiment, it is clear that FreeRTOS and RIOT
are improved by ChamelIoT. However, Zephyr already has a very
optimized scheduling process. Nonetheless, from previous research
[22], we identified that Zephyr’s performance in functionalities like
synchronization is considerably worse than the other OSes. Thus,
we expect ChamelIoT to present advantages for Zephyr in other
dimensions than the ones currently presented in this preliminary
evaluation. In the near future, we plan to undergo an extensive eval-
uation and demonstrate the increasing advantages of ChamelIoT
for performance and determinism.

6 DEVELOPMENT ROADMAP
Despite being currently under development, ChamelIoT aims at
building a complete and mature framework where several OS ser-
vices can be migrated and supported in a hardware, using a tightly-
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Figure 5: Resources consumed by ChamelIoT with different number of supported threads and priorities.

Figure 6: Clock cycles required by the scheduling algorithm
of each OS, with and without ChamelIoT.

and/or loosely-coupled fashion. Hereafter, we plan to follow the de-
velopment in both the hardware and software components, which
includes the following features: (i) thread management, (ii) timing
control, (iii) synchronization and inter-process communication, (iv)
broader OS support, and (v) a configuration tool.

6.1 Hardware
Thread Management: Currently, only a subset of the desired
thread management infrastructure is being implemented, which
supports the control of the priority and state of each thread. Nonethe-
less, we aim at extending this support to more TCB data fields,
which will enable the implementation of extra features like stack
validation or even result in a minimized context switching time.
Timing Control: This improvement will encompass the addition
of a hardware timer fully controlled by ChamelIoT, which will allow
the migration of the timer service functionalities of each OS to the
co-processor. This is expected to improve determinism, in particular
at each scheduling point.
Synchronization and IPC: In the near future, ChamelIoT is ex-
pected to provide hardware support for synchronization mecha-
nisms like mutexes, semaphores, as well ass IPC features.
Loosely-coupled Accelerator: For reconfigurable platforms en-
hanced with hard-cores and programmable logic (i.e., FPGA), we
plan to implement ChamelIoT as a memory-mapped peripheral.
While this approach may slightly hurt predictability, determinism,

and performance, when compared to a tightly-coupled configura-
tion, it will enable the deployment of ChamelIoT on a wider number
of platforms and architectures.

6.2 Software
OS integration: We aim at providing an easy-to-use and thor-
oughly documented API that can be further expanded into any OS
by software developers. Additionally, we plan to extend the native
support of ChamelIoT to other IoT OSes.
Configuration tool: The biggest goal of this work is the realiza-
tion of an open-source agnostic framework for reconfigurable IoT
end-devices, supported by the RISC-V processor architecture. All
configuration steps (both for hardware and software modules), OS
integration, as well as the final board deployment, should be sup-
ported by graphical and user-friendly tools, which will minimize
the efforts to interact and use ChamelIoT on a wide number of
applications.

7 CONCLUSIONS
In this paper, we present ChamelIoT, an open-source agnostic hard-
ware OS framework for reconfigurable IoT devices. By leveraging
the RoCC interface available in a Rocket RISC-V core, we have
designed and implemented ChamelIoT as a tightly-coupled co-
processor. At this stage, ChamelIoT supports the acceleration of
the scheduling process and part of the thread management of RIOT,
Zephyr, and FreeRTOS. The given results have shown that our
framework is able to bring determinism and performance enhance-
ments to the scheduling process at a reasonable hardware cost.
Following the development of ChamelIoT, we will provide support
to a broader number of features and expand such functionalities to
other kernel services and OSes.
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