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ABSTRACT
Security-related side-channel attacks, such as Spectre and Melt-
down, exploit edge cases in microarchitectural execution. This class
of attacks have been enabled by modern performance features com-
mon on many microprocessors. Identifying potential vulnerabilities
during the design process requires functional verification capable
of exploring all possible hardware states for security holes. Given
the requirements of many of today’s applications, the commer-
cial markets are demanding that these side-channel exposures be
remedied. Leveraging formal verification tools during the design
process comes with significant engineering resource investment
and these costs will increase as microarchitectural design features
are introduced and complexity continues to grow.

We present our initial efforts to enable security-oriented verifi-
cation during the microarchitectural design process for complex
RISC-V microarchitectures. We have pursued this goal by integrat-
ing bounded microarchitectural verification with Akita, a state-
of-the-art simulation framework designed for cycle-based perfor-
mance evaluation. This approach will allow computer architects
to evaluate and trade-off new and existing performance features,
while evaluating their security implications using a single frame-
work. This paper presents how to build a logical bridge between
formal verification and Akita event-based modeling that enables
this integration. We demonstrate a strategy on how to decompose
Akita models into basic components that can be reassembled as an
axiomatic model for formal verification.
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1 INTRODUCTION
The discovery of covert side-channels in modern microarchitec-
tures has highlighted that billions of existing computing devices
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are susceptible to leaking data across program boundaries. Current
microprocessors are supposed to be designed to ensure safe execu-
tion for concurrently executing programs. Researchers have shown
that speculative execution [12], fault resolution [13], and hierar-
chical memory [14] can provide attack surfaces for side-channel
and covert-channel data leakage on today’s microarchitectures. To
ensure tomorrow’s computing devices are capable of safeguard-
ing sensitive information, architects must make security a major
priority when designing new high-performance microprocessors.

In the wake of these discoveries, computer architects have devel-
oped microarchitectural defenses to be employed in future pipeline
designs. Such defense techniques include hardening caches [10, 17,
24] and TLBs [9]. Unfortunately, there are other data stores that
still leak information [4]. Some catch-all defenses, such as those
that leverage dynamic information flow tracking (DIFT) [20, 25],
allow the processor to refrain from committing tainted data until
preceding speculation is resolved.

Despite these efforts, researchers continue to develop attacks for
newmicroarchitectures, designed to resist prior known attacks [19].
Such cases are indicative of inadequacies in current design verifica-
tion techniques to handle the complexity of modern performance
features, which serve as attack surfaces that can be exploited. Prior
work has described security verification tools capable of detecting
these vulnerabilities before fabrication [16, 23]. We take a similar
path, though our focus is to evaluate both security and performance
together. We want to help computer architects catch vulnerable per-
formance features duringmicroarchitecture design. Our approach is
to tightly integrate these verfication tools with current performance
evaluation tools.

This paper presents our initial efforts to integrate a RISC-Vmodel
developed with Akita [22], a state-of-the-art microarchitectural sim-
ulator targeting performance evaluation, and CheckMate [23], a
design verification toolset capable of detecting vulnerable execution
patterns in hardware. This integration will provide computer archi-
tects with a holistic perspective of microarchitectural performance
and security when testing new design features. This evaluation tech-
nique has the potential to mitigate side-channel attacks on future
microarchitecture designs. This paper provides the following:

(1) a side-by-side comparison of the execution modeling abstrac-
tions provided by both Akita and CheckMate, identifying
similarities which enable us to integrate these tools;

(2) methods for the static analysis of a RISC-V-based Akita
model, to extract the information necessary to translate the
model to the CheckMate DSL; and
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(3) a discussion of the remaining challenges to further improve
our static analysis techniques, which, when completed, will
enable seamless integration of these powerful tools.

2 BACKGROUND
2.1 Akita
Akita is an event-driven simulation framework introduced for the
evaluation of cycle-based performance. The first microarchitecture
that was modeled with Akita was a GPU modeling framework
named MGPUSim, a multi-GPU simulator [22]. When using Akita,
a simulation is comprised of a set of components, where each com-
ponent represents a different element in the simulated system.

Akita components execute events to advance the simulation
state. During an event, a component may update its internal state,
schedule future events, or send outgoing messages to other compo-
nents. Upon receiving a message, an Akita component will typically
schedule a future event. Components will choose to schedule fu-
ture events based on the combination of a few types of conditions.
These conditions include receiving incoming messages from other
components, as well as the current state of the component.

2.2 CheckMate
CheckMate utilizes formal methods to identify microarchitectural
event orderings which may comprise transient execution side-
channel attacks [23]. The user specifies a microarchitecture as a
set of first-order relations, which describes all possible event or-
derings during execution. In general, an event corresponds to an
instruction traversing a microarchitectural location. CheckMate
can then enumerate all possible event sequences, according to the
user provided constraints. A generalized event sequence is shown
in the happens-before graph in Figure 1.

CheckMate searches all possible event sequences for the target
vulnerability event sequence. Finding a match indicates that the
microarchitecture is vulnerable to an attack. Using this method,
CheckMate demonstrates its ability to detect Spectre, Meltdown,
SpectrePrime, and MeltdownPrime in a 5-stage out-of-order mi-
croarchitecture [23].

3 YORI
Yori [11] is a RISC-V microarchitecture simulation which utilizes
Akita as a simulation engine and targets SonicBOOM [27] as the
reference microarchitecture. SonicBOOM is the reference architec-
ture for this work, as it supports fundamental performance features,
including transient execution. Prior work has exploited these per-
formance features to reproduce a Spectre [12] attack on an FPGA
model of SonicBOOM [7].

The Yori simulator is comprised of three Akita simulation compo-
nents: 1) the Instruction-Fetch Unit (IFU), 2) the Execution Backend,
and 3) the Memory Unit. The IFU and Memory Units are currently
implemented as abstract models in the interest of focusing develop-
ment time on detailed models in the Execution Backend. The IFU
and Memory Units are responsible for delivering instructions to
the pipeline and handling memory requests, respectively.

The Execution Backend consists of multiple SonicBOOMpipeline
stage models that are responsible for instruction processing and

Loc. A

Instruction 1

Loc. B

Loc. C

Loc. A

Instruction 2

Loc. B

Loc. C

Figure 1: A CheckMate happens-before graph consists of a
sequence of instructions, representing possibleworkload ex-
ecution. Each instruction traverses microarchitectural loca-
tions as it executes. A happens-before node represents an
(instruction,location) pair. The temporal relationships be-
tween each node in the graph is described by the directed
edges, where the source node "happens-before" the destina-
tion node.

retirement. These pipeline stages include Decode, Register-Rename,
Reorder-Buffer, Issue, Register-Read, and Execute.

In its current configuration, Yori is capable of scalar out-of-order
execution for 64-bit integer RISC-V binaries. Yori supports transient
execution, where mispeculated instructions complete before the
corresponding branch is resolved. However, the average number
of transient instructions per mispeculated branch differs between
Yori and SonicBOOM. Our ongoing work is focused on updates to
Yori to ensure a faithful reproduction of execution on SonicBOOM.

In the following sections, we use Yori’s IFU model to explain the
bridge between Akita models and CheckMate. Figure 2 shows some
of the possible events, the conditions that trigger these events, and
the results of each event for the IFU model.

In this model, the Generate Packet Response (GenPacketRsp)
event can be triggered by the reception of a Packet Request (Packe-
tReq) message, or it can be scheduled during the Write Instruction
Cache (WriteICache) and Cancel Request (CancelReq) events. The
GenPacketRsp event may result in the IFU sending one of two mes-
sage types. If the requested instruction exists in the Instruction
Cache, then the component will send a Packet Response (Pack-
etRsp) message during event execution. If the requested instruction
does not exist in the Instruction Cache, the component will send a
Memory Read Request (MemReadReq) message.

4 BRIDGING AKITA TO CHECKMATE
Given the flexible modelling capabilities of Akita, Akita simulation
events can map directly to CheckMate happens-before nodes, mak-
ing translation from Akita to CheckMate possible [11]. Doing so
requires the user to implement simulation events at a granularity
similar to the IFU shown in Figure 2. This translation effort requires
a tool that can extract the fundamental modelling constructs of
CheckMate from an Akita model, which include:

(1) Intra-instruction happens-before relationships
(2) Inter-instruction happens-before relationships
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Figure 2: The IFU model utilizes the Instruction Cache and
the Program Counter to deliver instructions that will be ex-
ecuted by the next stages in the pipeline. Facilitating this
functionality requires the ability to read and write the in-
struction cache and to generate instruction packets for the
the next stages. Each event is triggered by a combination
of incoming messages and the component’s state. An event
may trigger future events or outgoingmessages to other sim-
ulated components.

(3) The translation of imperative conditions to first-order rela-
tions of event orderings

Akita simulations are written using the Go programming lan-
guage. We use Go’s static analysis toolset [6] to extract the Check-
Mate modelling constructs from the Yori’s model of SonicBOOM.

4.1 Akita Static Analysis Method
The first level of abstraction that we use to convert an Akita simu-
lation to a CheckMate model is the logical model shown in Figure 2.
Our static analyzer uses two functions as the entry point to each sim-
ulated component: 1) the incoming message notification function
and 2) the event handling function. These functions are common to
all simulated Akita components. Each component employs a unique
implementation that is specific to the component’s functionality.
These two entry-points are the only functions that are externally
triggered by the simulation engine in Yori’s configuration of the
Akita framework. Therefore, all lines of code that can update simu-
lation state will be reachable by the static analyzer through these
functions.

The incomingmessage notification (NotifyRecv) function is called
when a component receives amessage from another component dur-
ing simulation. A generalized implementation is shown in Listing 1.
The component can choose to schedule a future event, depending
on the type of incoming message and a condition variable testing
the current state of the component.

The abstract syntax tree (AST) for this function is shown in
Figure 3. Each message type node, labeled "Type 1" or "Type 2" in
the figure, corresponds to a case of the switch statement in Listing 1.

Listing 1: Simulated components are notified of incoming
messages when this function is called by source of the mes-
sage. The receiving component schedules a simulation event
that corresponds to the incoming message and the current
state of the component.
func Not i f yRecv ( po r t Po r t ) {

msg : = po r t . R e t r i e v e ( )
switch msg . ( type ) {

case msgTypeOne :
i f c o n d i t i o n I s T r u e {

eng ine . S chedu l e ( eventTypeOne )
} e l se {

eng ine . S chedu l e ( eventTypeThree )
}

case msgTypeTwo :
i f c o n d i t i o n I s T r u e {

eng ine . S chedu l e ( eventTypeTwo )
}

}
}

Msg Assign

NotifyRecv

Msg Type Switch

...

Type 1

If Stmt

Cond. Body Else

Sched. Event 1

Sched. Event 3

Type 2

If Stmt

Cond. Body Else

Sched. Event 2

Terminate Insn....

Figure 3: The AST for the NotifyRecv simulation compo-
nent function, shown in Listing 1, is a graph representation
of the program statements. The dashed-outline boxes rep-
resent sub-trees corresponding to the Go code which com-
prises the condition variable for the if statement. The AST
nodes in bold correspond to event and message nodes in the
IFU logical model, shown in Figure 2.

Each node contains a sub-tree of nodes corresponding to program
statements that schedule future events. These sub-trees are visually
similar to parts of the IFU logical model, as shown in Figure 2.

The message type nodes of the AST correspond to the input mes-
sage nodes of the IFU, and are denoted as PacketReq, MemReadRsp,
and PCJmp. The event scheduling nodes of the AST correspond
to the event nodes of the IFU, shown as WriteICache, CancelReq,
and GenPacketRsp. Therefore, the AST for the NotifyRecv function
contains some parts of the information comprising the IFU logical
model.

Note, that the AST sub-trees, identified by the dashed-outline
nodes, represent program statements corresponding to the genera-
tion of the condition variables for if statements. These sub-trees are
discussed further in Section 4.3.
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Listing 2: The simulation engine calls this function to trig-
ger the execution of the event that is passed as an argument.
The component chooses the execution behavior based on the
event type.
func Handle ( ev Event ) {

switch ev . ( type ) {
case eventTypeOne :

handleEventOne ( ev )
case eventTypeTwo :

handleEventTwo ( ev )
}

}

To complete the necessary information to formulate the IFU
logical model, we can analyze the Akita event handling (Handle)
function. The Handle function is triggered by the simulation engine
when a scheduled event is ready to execute on the component. The
generalized implementation, shown in Listing 2, calls a function
corresponding to the type of event that is executing. Within these
functions, the component may update its internal state, send mes-
sages to other components, or schedule future events. These actions
are shown in the AST in Figure 4.

The event type nodes of the AST, shown as "Case 1" and "Case 2",
correspond to cases in the switch statement in Listing 2. Each node
contains sub-trees which correspond to the execution behavior for
each event type. The event scheduling node and message sending
node represent the results of the event execution that is observable
by the simulation engine.

Each of these nodes can map directly to a node in the logical
model for the IFU, as shown in Figure 2. A case node in the AST
corresponds to a possible event in the IFU, such as WriteICache. Ac-
cording to Figure 2, the WriteICache event results in the scheduling
of a GenPacketRsp event. This corresponds to an event scheduling
node in the AST. By combining the information obtained from the
static analysis of the NotifyRecv and Handle functions, we have
the necessary information to generate a full logical model of the
Yori IFU. This technique is extensible to all types of Akita compo-
nents that model execution at a granularity similar to Yori’s IFU
implementation.

4.2 Intra-Instruction Happens-Before
Relationships in Akita

Intra-instruction happens-before relationships describe the order
of microarchitectural locations traversed by a single instruction in
CheckMate [23]. In Akita, these locations correspond to simulation
events that may occur through multiple Akita components. The
information needed to construct this location traversal path is ap-
parent in a system of logical models. Consider the Yori simulation,
consisting of the IFU in Figure 2 and the Memory Unit in Figure 5.

We can connect the logical models through their corresponding
input and output messages. For example, the MemReadReq output
message of the IFU connects to the MemReadReq input message of
the Memory Unit. This allows us to generate the intra-instruction
event graph flowing through both components, as shown in Figure 6.

Handle

Event type switch

Case 1 Case 2

Handle 1

Sched. Event X Send Msg

Handle 2

... ...

Figure 4: Simplified AST for the generalized Handle simu-
lation component function shown in Listing 2. The dashed-
outline nodes represent sub-trees corresponding to the Go
code which determines the scheduling of further simula-
tion events, or the sending of messages to other simulation
components. The nodes in bold correspond to the event exe-
cution results that correspond to future events or outgoing
messages in Figure 2.

Memory

Mem ReadReq Mem WriteReq

TickEvent

Mem ReadRsp WriteDoneRsp

Figure 5: This basic memory unit implements only a generic
Ticking Event (TickEvent) that handles both read and write
requests. The logical model for this component shows both
types of requests as possible triggers for the TickEvent and
the respective response types as possible results.

This figure is conceptually equivalent to one instruction path in
the generic CheckMate happens-before graph, shown in Figure 1.

4.3 Translation Challenges
Beyond the extrapolation of intra-instruction happens-before re-
lationships from an Akita model, we must also be able to extract
inter-instruction happens-before relationships and translate im-
perative conditions to first-order relational constraints on event
orderings.

An inter-instruction happens-before relationship refers to the
temporal relationship between happens-before nodes of different in-
structions [23]. These are shown as horizontal edges in the happens-
before graph in Figure 1. This type of relationship is necessary to
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Inst ruct ion-Fetch-Unit

GenPacketRsp

Memory

TickEvent

Inst ruct ion-Fetch-Unit
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GenPacketRsp

Figure 6: The logical models for the IFU and the Memory
Unit can be connected by using simulation messages as
an interface. This allows us to follow instruction traversal
through multiple Akita components and construct a com-
plete intra-instruction happens-before graph for a single in-
struction.

covey the out-of-order completion of instructions at a microarchi-
tectural location, which occurs in microarchitectures vulnerable to
side-channel attacks.

However, simulation conditions that dictate inter-instruction
execution order in an Akita component are not encoded in the
logical model in Figure 2. These conditions are represented in List-
ing 1 as the conditionIsTrue variable and by the dashed-outline AST
sub-tree nodes in Figure 3 and Figure 4. These conditions are for-
mulated by the current state of the simulated component, which is
the combined result of the preceding simulation events. This prob-
lem is further complicated by the diversity of Akita components,
each of which will formulate these conditions differently for each
implementation.

As of now, we understand that this will require a robust static
analysis technique that is capable of tracing the effects of preceding
simulation events on the current state of the Akita component.
We can simplify this problem by standardizing the formulation of
these condition variables for all Akita components with a common
software interface. However, this strategy must be implemented
using a conservative approach to ensure that Akita’s primary role
as a flexible microarchitectural simulator is not impacted by the
CheckMate translation.

5 RELATEDWORK
Prior work has explored side-channel attack reproduction and de-
fense characterization on microarchitectural simulators. Zsim is
an event-driven microarchitectural simulator intended to scale in
simulation performance for many-core systems [18]. Researches
have used ZSim to test a defense against cache timing side-channel
attacks [10]. FireSim [8] is an FPGA-accelerated simulator used
in prior work to reproduce Spectre attacks [7] on the BOOM mi-
croarchitecture [5]. Gem5 [2] is a microarchitecture simulation

framework capable of CPU-GPU simulation for multiple ISA’s, in-
cluding RISC-V. Prior work simulates Spectre attacks on an ARM
microprocessor to evaluate the difference between the simulated
attack and an actual attack on reference hardware [1].

EMSim [21] facilitates electromagnetic side-channel simulation
given a detailed model of the target microarchitecture. Similar to
our approach, this work provides the means to detect one class of
side-channel attack using a cycle-based simulator. However, EMSim
performs measurements at simulation runtime while we aim to
provide attack detection through static analysis.

Alternative approaches to CheckMate for microarchitecuture
vulnerability detection include Coppelia [26] and Speculator [16].
Coppelia translates RTL to C++ and uses Klee[3] to verify security
constraints in the hardware-description language through symbolic
execution. Unlike CheckMate, this tool does not target transient
execution side-channel attacks. Speculator tracks the speculative
execution of instructions on hardware using run-time performance
counters [16]. This enabled researchers to discover two variants of
Spectre-v2.

Prior work discusses the widening of the gap between microar-
chitecture design complexity and the capabilities of available de-
sign verification tools [15]. The authors present transaction graphs
which convey the distinct states in execution and the conditions
that cause an instruction to move from one state to the next. These
transactions graphs are used for design verification and are struc-
turally similar to our logical model shown in Figure 2.

6 CONCLUSION AND FUTUREWORK
In this paper, we have discussed our initial efforts to improve design-
time microarchitectural security verification by integrating the
CheckMate verification tool with the cycle-based performance sim-
ulator Akita. This effort is motivated by the constant threat of new
transient execution side-channel attacks which exploit fundamen-
tal microarchitectural performance features, even on the newest
microprocessors. We observed that Akita and CheckMate model
execution using similar constructs which enables the automated
translation from an Akita simulation to a CheckMate model.

To explore a solution for framework translation, we developed
Yori, a cycle-based model of the SonicBOOM RISC-V microarchi-
tecture. We chose to target a state-of-the-art open-source ISA and
microarchitecture for this work so we can leverage the wealth of
novel design features proposed by other researchers and evaluate
their performance in the context of our integrated toolset.

The extraction of intra-instruction happens-before relationships
from Yori is well understood. However, we continue to work on
solutions to extract inter-instruction happens-before relationships.
This involves the process of understanding the effects of preceding
simulation events on the state of the modeled system using static
analysis. This will allow us to translate the formulation of condition
variables from an imperative Akita model to first-order relations
between events in CheckMate.

Solving these remaining problems should provide the necessary
information to facilitate complete translation between the frame-
works. The resulting tool will equip the user with the ability to
detect transient execution side-channel attacks within microarchi-
tectures modelled with Akita.
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