
RISC-V Microarchitecture Simulation State Enumeration
Griffin Knipe

knipe.g@northeastern.edu
Northeastern University

Boston, Massachusetts, USA

Derek Rodriguez
rodriguez.der@northeastern.edu

Northeastern University
Boston, Massachusetts, USA

Yunsi Fei
yfei@ece.neu.edu

Northeastern University
Boston, Massachusetts, USA

David Kaeli
kaeli@ece.neu.edu

Northeastern University
Boston, Massachusetts, USA

ABSTRACT
Security-related side-channel attacks, such as Spectre and Melt-
down, exploit edge cases in microarchitectural execution. This class
of attacks have been enabled by modern performance features com-
mon on many microprocessors. Identifying potential vulnerabilities
during the design process requires functional verification capable
of exploring all possible hardware states for security holes. Given
the requirements of many of today’s applications, the commer-
cial markets are demanding that these side-channel exposures be
remedied. Leveraging formal verification tools during the design
process comes with significant engineering resource investment
and these costs will increase as microarchitectural design features
are introduced and complexity continues to grow.

We present our initial efforts to enable security-oriented verifi-
cation during the microarchitectural design process for complex
RISC-V microarchitectures. We have pursued this goal by integrat-
ing bounded microarchitectural verification with Akita, a state-
of-the-art simulation framework designed for cycle-based perfor-
mance evaluation. This approach will allow computer architects
to evaluate and trade-off new and existing performance features,
while evaluating their security implications using a single frame-
work. This paper presents how to build a logical bridge between
formal verification and Akita event-based modeling that enables
this integration. We demonstrate a strategy on how to decompose
Akita models into basic components that can be reassembled as an
axiomatic model for formal verification.
ACM Reference Format:
Griffin Knipe, Derek Rodriguez, Yunsi Fei, and David Kaeli. 2021. RISC-V
Microarchitecture Simulation State Enumeration. In Proceedings of Fifth
Workshop on Computer Architecture Research with RISC-V (CARRV ’21).ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The discovery of covert side-channels in modern microarchitec-
tures has highlighted that billions of existing computing devices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CARRV ’21, June 17, 2021, Virtual Event
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

are susceptible to leaking data across program boundaries. Current
microprocessors are supposed to be designed to ensure safe execu-
tion for concurrently executing programs. Researchers have shown
that speculative execution [12], fault resolution [13], and hierar-
chical memory [14] can provide attack surfaces for side-channel
and covert-channel data leakage on today’s microarchitectures. To
ensure tomorrow’s computing devices are capable of safeguard-
ing sensitive information, architects must make security a major
priority when designing new high-performance microprocessors.

In the wake of these discoveries, computer architects have devel-
oped microarchitectural defenses to be employed in future pipeline
designs. Such defense techniques include hardening caches [10, 17,
24] and TLBs [9]. Unfortunately, there are other data stores that
still leak information [4]. Some catch-all defenses, such as those
that leverage dynamic information flow tracking (DIFT) [20, 25],
allow the processor to refrain from committing tainted data until
preceding speculation is resolved.

Despite these efforts, researchers continue to develop attacks for
newmicroarchitectures, designed to resist prior known attacks [19].
Such cases are indicative of inadequacies in current design verifica-
tion techniques to handle the complexity of modern performance
features, which serve as attack surfaces that can be exploited. Prior
work has described security verification tools capable of detecting
these vulnerabilities before fabrication [16, 23]. We take a similar
path, though our focus is to evaluate both security and performance
together. We want to help computer architects catch vulnerable per-
formance features duringmicroarchitecture design. Our approach is
to tightly integrate these verfication tools with current performance
evaluation tools.

This paper presents our initial efforts to integrate a RISC-Vmodel
developed with Akita [22], a state-of-the-art microarchitectural sim-
ulator targeting performance evaluation, and CheckMate [23], a
design verification toolset capable of detecting vulnerable execution
patterns in hardware. This integration will provide computer archi-
tects with a holistic perspective of microarchitectural performance
and security when testing new design features. This evaluation tech-
nique has the potential to mitigate side-channel attacks on future
microarchitecture designs. This paper provides the following:

(1) a side-by-side comparison of the execution modeling abstrac-
tions provided by both Akita and CheckMate, identifying
similarities which enable us to integrate these tools;

(2) methods for the static analysis of a RISC-V-based Akita
model, to extract the information necessary to translate the
model to the CheckMate DSL; and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CARRV ’21, June 17, 2021, Virtual Event Griffin Knipe, Derek Rodriguez, Yunsi Fei, and David Kaeli

(3) a discussion of the remaining challenges to further improve
our static analysis techniques, which, when completed, will
enable seamless integration of these powerful tools.

2 BACKGROUND
2.1 Akita
Akita is an event-driven simulation framework introduced for the
evaluation of cycle-based performance. The first microarchitecture
that was modeled with Akita was a GPU modeling framework
named MGPUSim, a multi-GPU simulator [22]. When using Akita,
a simulation is comprised of a set of components, where each com-
ponent represents a different element in the simulated system.

Akita components execute events to advance the simulation
state. During an event, a component may update its internal state,
schedule future events, or send outgoing messages to other compo-
nents. Upon receiving a message, an Akita component will typically
schedule a future event. Components will choose to schedule fu-
ture events based on the combination of a few types of conditions.
These conditions include receiving incoming messages from other
components, as well as the current state of the component.

2.2 CheckMate
CheckMate utilizes formal methods to identify microarchitectural
event orderings which may comprise transient execution side-
channel attacks [23]. The user specifies a microarchitecture as a
set of first-order relations, which describes all possible event or-
derings during execution. In general, an event corresponds to an
instruction traversing a microarchitectural location. CheckMate
can then enumerate all possible event sequences, according to the
user provided constraints. A generalized event sequence is shown
in the happens-before graph in Figure 1.

CheckMate searches all possible event sequences for the target
vulnerability event sequence. Finding a match indicates that the
microarchitecture is vulnerable to an attack. Using this method,
CheckMate demonstrates its ability to detect Spectre, Meltdown,
SpectrePrime, and MeltdownPrime in a 5-stage out-of-order mi-
croarchitecture [23].

3 YORI
Yori [11] is a RISC-V microarchitecture simulation which utilizes
Akita as a simulation engine and targets SonicBOOM [27] as the
reference microarchitecture. SonicBOOM is the reference architec-
ture for this work, as it supports fundamental performance features,
including transient execution. Prior work has exploited these per-
formance features to reproduce a Spectre [12] attack on an FPGA
model of SonicBOOM [7].

The Yori simulator is comprised of three Akita simulation compo-
nents: 1) the Instruction-Fetch Unit (IFU), 2) the Execution Backend,
and 3) the Memory Unit. The IFU and Memory Units are currently
implemented as abstract models in the interest of focusing develop-
ment time on detailed models in the Execution Backend. The IFU
and Memory Units are responsible for delivering instructions to
the pipeline and handling memory requests, respectively.

The Execution Backend consists of multiple SonicBOOMpipeline
stage models that are responsible for instruction processing and

Loc. A

Instruction 1

Loc. B

Loc. C

Loc. A

Instruction 2

Loc. B

Loc. C

Figure 1: A CheckMate happens-before graph consists of a
sequence of instructions, representing possibleworkload ex-
ecution. Each instruction traverses microarchitectural loca-
tions as it executes. A happens-before node represents an
(instruction,location) pair. The temporal relationships be-
tween each node in the graph is described by the directed
edges, where the source node "happens-before" the destina-
tion node.

retirement. These pipeline stages include Decode, Register-Rename,
Reorder-Buffer, Issue, Register-Read, and Execute.

In its current configuration, Yori is capable of scalar out-of-order
execution for 64-bit integer RISC-V binaries. Yori supports transient
execution, where mispeculated instructions complete before the
corresponding branch is resolved. However, the average number
of transient instructions per mispeculated branch differs between
Yori and SonicBOOM. Our ongoing work is focused on updates to
Yori to ensure a faithful reproduction of execution on SonicBOOM.

In the following sections, we use Yori’s IFU model to explain the
bridge between Akita models and CheckMate. Figure 2 shows some
of the possible events, the conditions that trigger these events, and
the results of each event for the IFU model.

In this model, the Generate Packet Response (GenPacketRsp)
event can be triggered by the reception of a Packet Request (Packe-
tReq) message, or it can be scheduled during the Write Instruction
Cache (WriteICache) and Cancel Request (CancelReq) events. The
GenPacketRsp event may result in the IFU sending one of two mes-
sage types. If the requested instruction exists in the Instruction
Cache, then the component will send a Packet Response (Pack-
etRsp) message during event execution. If the requested instruction
does not exist in the Instruction Cache, the component will send a
Memory Read Request (MemReadReq) message.

4 BRIDGING AKITA TO CHECKMATE
Given the flexible modelling capabilities of Akita, Akita simulation
events can map directly to CheckMate happens-before nodes, mak-
ing translation from Akita to CheckMate possible [11]. Doing so
requires the user to implement simulation events at a granularity
similar to the IFU shown in Figure 2. This translation effort requires
a tool that can extract the fundamental modelling constructs of
CheckMate from an Akita model, which include:

(1) Intra-instruction happens-before relationships
(2) Inter-instruction happens-before relationships

RISC-V Microarchitecture Simulation State Enumeration CARRV ’21, June 17, 2021, Virtual Event

Inst ruct ion-Fetch-Unit

Packet Req

Mem ReadRsp

WriteICache

is cancelled
t rue

PCJm p

CancelReq

t rue

is outstanding Mem ReadReq

GenPacketRsp

in cache
t rue

Packet Rsp Mem ReadReq

Figure 2: The IFU model utilizes the Instruction Cache and
the Program Counter to deliver instructions that will be ex-
ecuted by the next stages in the pipeline. Facilitating this
functionality requires the ability to read and write the in-
struction cache and to generate instruction packets for the
the next stages. Each event is triggered by a combination
of incoming messages and the component’s state. An event
may trigger future events or outgoingmessages to other sim-
ulated components.

(3) The translation of imperative conditions to first-order rela-
tions of event orderings

Akita simulations are written using the Go programming lan-
guage. We use Go’s static analysis toolset [6] to extract the Check-
Mate modelling constructs from the Yori’s model of SonicBOOM.

4.1 Akita Static Analysis Method
The first level of abstraction that we use to convert an Akita simu-
lation to a CheckMate model is the logical model shown in Figure 2.
Our static analyzer uses two functions as the entry point to each sim-
ulated component: 1) the incoming message notification function
and 2) the event handling function. These functions are common to
all simulated Akita components. Each component employs a unique
implementation that is specific to the component’s functionality.
These two entry-points are the only functions that are externally
triggered by the simulation engine in Yori’s configuration of the
Akita framework. Therefore, all lines of code that can update simu-
lation state will be reachable by the static analyzer through these
functions.

The incomingmessage notification (NotifyRecv) function is called
when a component receives amessage from another component dur-
ing simulation. A generalized implementation is shown in Listing 1.
The component can choose to schedule a future event, depending
on the type of incoming message and a condition variable testing
the current state of the component.

The abstract syntax tree (AST) for this function is shown in
Figure 3. Each message type node, labeled "Type 1" or "Type 2" in
the figure, corresponds to a case of the switch statement in Listing 1.

Listing 1: Simulated components are notified of incoming
messages when this function is called by source of the mes-
sage. The receiving component schedules a simulation event
that corresponds to the incoming message and the current
state of the component.
func Not i f yRecv (po r t Po r t) {

msg : = po r t . R e t r i e v e ()
switch msg . (type) {

case msgTypeOne :
i f c o n d i t i o n I s T r u e {

eng ine . S chedu l e (eventTypeOne)
} e l se {

eng ine . S chedu l e (eventTypeThree)
}

case msgTypeTwo :
i f c o n d i t i o n I s T r u e {

eng ine . S chedu l e (eventTypeTwo)
}

}
}

Msg Assign

NotifyRecv

Msg Type Switch

...

Type 1

If Stmt

Cond. Body Else

Sched. Event 1

Sched. Event 3

Type 2

If Stmt

Cond. Body Else

Sched. Event 2

Terminate Insn....

Figure 3: The AST for the NotifyRecv simulation compo-
nent function, shown in Listing 1, is a graph representation
of the program statements. The dashed-outline boxes rep-
resent sub-trees corresponding to the Go code which com-
prises the condition variable for the if statement. The AST
nodes in bold correspond to event and message nodes in the
IFU logical model, shown in Figure 2.

Each node contains a sub-tree of nodes corresponding to program
statements that schedule future events. These sub-trees are visually
similar to parts of the IFU logical model, as shown in Figure 2.

The message type nodes of the AST correspond to the input mes-
sage nodes of the IFU, and are denoted as PacketReq, MemReadRsp,
and PCJmp. The event scheduling nodes of the AST correspond
to the event nodes of the IFU, shown as WriteICache, CancelReq,
and GenPacketRsp. Therefore, the AST for the NotifyRecv function
contains some parts of the information comprising the IFU logical
model.

Note, that the AST sub-trees, identified by the dashed-outline
nodes, represent program statements corresponding to the genera-
tion of the condition variables for if statements. These sub-trees are
discussed further in Section 4.3.

CARRV ’21, June 17, 2021, Virtual Event Griffin Knipe, Derek Rodriguez, Yunsi Fei, and David Kaeli

Listing 2: The simulation engine calls this function to trig-
ger the execution of the event that is passed as an argument.
The component chooses the execution behavior based on the
event type.
func Handle (ev Event) {

switch ev . (type) {
case eventTypeOne :

handleEventOne (ev)
case eventTypeTwo :

handleEventTwo (ev)
}

}

To complete the necessary information to formulate the IFU
logical model, we can analyze the Akita event handling (Handle)
function. The Handle function is triggered by the simulation engine
when a scheduled event is ready to execute on the component. The
generalized implementation, shown in Listing 2, calls a function
corresponding to the type of event that is executing. Within these
functions, the component may update its internal state, send mes-
sages to other components, or schedule future events. These actions
are shown in the AST in Figure 4.

The event type nodes of the AST, shown as "Case 1" and "Case 2",
correspond to cases in the switch statement in Listing 2. Each node
contains sub-trees which correspond to the execution behavior for
each event type. The event scheduling node and message sending
node represent the results of the event execution that is observable
by the simulation engine.

Each of these nodes can map directly to a node in the logical
model for the IFU, as shown in Figure 2. A case node in the AST
corresponds to a possible event in the IFU, such as WriteICache. Ac-
cording to Figure 2, the WriteICache event results in the scheduling
of a GenPacketRsp event. This corresponds to an event scheduling
node in the AST. By combining the information obtained from the
static analysis of the NotifyRecv and Handle functions, we have
the necessary information to generate a full logical model of the
Yori IFU. This technique is extensible to all types of Akita compo-
nents that model execution at a granularity similar to Yori’s IFU
implementation.

4.2 Intra-Instruction Happens-Before
Relationships in Akita

Intra-instruction happens-before relationships describe the order
of microarchitectural locations traversed by a single instruction in
CheckMate [23]. In Akita, these locations correspond to simulation
events that may occur through multiple Akita components. The
information needed to construct this location traversal path is ap-
parent in a system of logical models. Consider the Yori simulation,
consisting of the IFU in Figure 2 and the Memory Unit in Figure 5.

We can connect the logical models through their corresponding
input and output messages. For example, the MemReadReq output
message of the IFU connects to the MemReadReq input message of
the Memory Unit. This allows us to generate the intra-instruction
event graph flowing through both components, as shown in Figure 6.

Handle

Event type switch

Case 1 Case 2

Handle 1

Sched. Event X Send Msg

Handle 2

... ...

Figure 4: Simplified AST for the generalized Handle simu-
lation component function shown in Listing 2. The dashed-
outline nodes represent sub-trees corresponding to the Go
code which determines the scheduling of further simula-
tion events, or the sending of messages to other simulation
components. The nodes in bold correspond to the event exe-
cution results that correspond to future events or outgoing
messages in Figure 2.

Memory

Mem ReadReq Mem WriteReq

TickEvent

Mem ReadRsp WriteDoneRsp

Figure 5: This basic memory unit implements only a generic
Ticking Event (TickEvent) that handles both read and write
requests. The logical model for this component shows both
types of requests as possible triggers for the TickEvent and
the respective response types as possible results.

This figure is conceptually equivalent to one instruction path in
the generic CheckMate happens-before graph, shown in Figure 1.

4.3 Translation Challenges
Beyond the extrapolation of intra-instruction happens-before re-
lationships from an Akita model, we must also be able to extract
inter-instruction happens-before relationships and translate im-
perative conditions to first-order relational constraints on event
orderings.

An inter-instruction happens-before relationship refers to the
temporal relationship between happens-before nodes of different in-
structions [23]. These are shown as horizontal edges in the happens-
before graph in Figure 1. This type of relationship is necessary to

RISC-V Microarchitecture Simulation State Enumeration CARRV ’21, June 17, 2021, Virtual Event

Inst ruct ion-Fetch-Unit

GenPacketRsp

Memory

TickEvent

Inst ruct ion-Fetch-Unit

WriteICache

GenPacketRsp

Figure 6: The logical models for the IFU and the Memory
Unit can be connected by using simulation messages as
an interface. This allows us to follow instruction traversal
through multiple Akita components and construct a com-
plete intra-instruction happens-before graph for a single in-
struction.

covey the out-of-order completion of instructions at a microarchi-
tectural location, which occurs in microarchitectures vulnerable to
side-channel attacks.

However, simulation conditions that dictate inter-instruction
execution order in an Akita component are not encoded in the
logical model in Figure 2. These conditions are represented in List-
ing 1 as the conditionIsTrue variable and by the dashed-outline AST
sub-tree nodes in Figure 3 and Figure 4. These conditions are for-
mulated by the current state of the simulated component, which is
the combined result of the preceding simulation events. This prob-
lem is further complicated by the diversity of Akita components,
each of which will formulate these conditions differently for each
implementation.

As of now, we understand that this will require a robust static
analysis technique that is capable of tracing the effects of preceding
simulation events on the current state of the Akita component.
We can simplify this problem by standardizing the formulation of
these condition variables for all Akita components with a common
software interface. However, this strategy must be implemented
using a conservative approach to ensure that Akita’s primary role
as a flexible microarchitectural simulator is not impacted by the
CheckMate translation.

5 RELATEDWORK
Prior work has explored side-channel attack reproduction and de-
fense characterization on microarchitectural simulators. Zsim is
an event-driven microarchitectural simulator intended to scale in
simulation performance for many-core systems [18]. Researches
have used ZSim to test a defense against cache timing side-channel
attacks [10]. FireSim [8] is an FPGA-accelerated simulator used
in prior work to reproduce Spectre attacks [7] on the BOOM mi-
croarchitecture [5]. Gem5 [2] is a microarchitecture simulation

framework capable of CPU-GPU simulation for multiple ISA’s, in-
cluding RISC-V. Prior work simulates Spectre attacks on an ARM
microprocessor to evaluate the difference between the simulated
attack and an actual attack on reference hardware [1].

EMSim [21] facilitates electromagnetic side-channel simulation
given a detailed model of the target microarchitecture. Similar to
our approach, this work provides the means to detect one class of
side-channel attack using a cycle-based simulator. However, EMSim
performs measurements at simulation runtime while we aim to
provide attack detection through static analysis.

Alternative approaches to CheckMate for microarchitecuture
vulnerability detection include Coppelia [26] and Speculator [16].
Coppelia translates RTL to C++ and uses Klee[3] to verify security
constraints in the hardware-description language through symbolic
execution. Unlike CheckMate, this tool does not target transient
execution side-channel attacks. Speculator tracks the speculative
execution of instructions on hardware using run-time performance
counters [16]. This enabled researchers to discover two variants of
Spectre-v2.

Prior work discusses the widening of the gap between microar-
chitecture design complexity and the capabilities of available de-
sign verification tools [15]. The authors present transaction graphs
which convey the distinct states in execution and the conditions
that cause an instruction to move from one state to the next. These
transactions graphs are used for design verification and are struc-
turally similar to our logical model shown in Figure 2.

6 CONCLUSION AND FUTUREWORK
In this paper, we have discussed our initial efforts to improve design-
time microarchitectural security verification by integrating the
CheckMate verification tool with the cycle-based performance sim-
ulator Akita. This effort is motivated by the constant threat of new
transient execution side-channel attacks which exploit fundamen-
tal microarchitectural performance features, even on the newest
microprocessors. We observed that Akita and CheckMate model
execution using similar constructs which enables the automated
translation from an Akita simulation to a CheckMate model.

To explore a solution for framework translation, we developed
Yori, a cycle-based model of the SonicBOOM RISC-V microarchi-
tecture. We chose to target a state-of-the-art open-source ISA and
microarchitecture for this work so we can leverage the wealth of
novel design features proposed by other researchers and evaluate
their performance in the context of our integrated toolset.

The extraction of intra-instruction happens-before relationships
from Yori is well understood. However, we continue to work on
solutions to extract inter-instruction happens-before relationships.
This involves the process of understanding the effects of preceding
simulation events on the state of the modeled system using static
analysis. This will allow us to translate the formulation of condition
variables from an imperative Akita model to first-order relations
between events in CheckMate.

Solving these remaining problems should provide the necessary
information to facilitate complete translation between the frame-
works. The resulting tool will equip the user with the ability to
detect transient execution side-channel attacks within microarchi-
tectures modelled with Akita.

CARRV ’21, June 17, 2021, Virtual Event Griffin Knipe, Derek Rodriguez, Yunsi Fei, and David Kaeli

REFERENCES
[1] Pierre Ayoub and Clémentine Maurice. 2021. Reproducing Spectre Attack with

Gem5: How To Do It Right?. In Proceedings of the 14th European Workshop on Sys-
tems Security (Online, United Kingdom) (EuroSec ’21). Association for Computing
Machinery, New York, NY, USA, 15–20. https://doi.org/10.1145/3447852.3458715

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (San Diego, California) (OSDI’08). USENIX Association, USA,
209–224.

[4] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses.
In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
Santa Clara, CA, 249–266. https://www.usenix.org/conference/usenixsecurity19/
presentation/canella

[5] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, and Krste
Asanović. 2017. BOOM v2: an open-source out-of-order RISC-V core. Technical Re-
port UCB/EECS-2017-157. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html

[6] Go. 2021. Go Analysis. https://pkg.go.dev/golang.org/x/tools/go/analysis. Ac-
cessed: 05-13-2021.

[7] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and Krste Asanović.
2019. Replicating and Mitigating Spectre Attacks on an Open Source RISC-V
Microarchitecture. In Proceedings of the 3rd Workshop with RISC-V (CARRV-3).
Association for Computing Machinery, New York, NY, USA.

[8] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanović. 2018. Firesim: FPGA-Accelerated Cycle-Exact Scale-out System
Simulation in the Public Cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE
Press, Hoboken, NJ, 29–42. https://doi.org/10.1109/ISCA.2018.00014

[9] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free Speculation. In Proceedings
of the 56th Annual Design Automation Conference 2019 (Las Vegas, NV, USA)
(DAC ’19). Association for Computing Machinery, New York, NY, USA, Article
60, 6 pages. https://doi.org/10.1145/3316781.3317903

[10] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A Defense against Cache Timing Attacks in Speculative
Execution Processors. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture (Fukuoka, Japan) (MICRO-51). IEEE Press, Hobo-
ken, NJ, 974–987. https://doi.org/10.1109/MICRO.2018.00083

[11] Griffin Knipe. 2021. Unifying Performance and Security Evaluation for Microarchi-
tecture Design Exploration. Master’s thesis. Northeastern University. Unpublished.

[12] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). IEEE, Hoboken, NJ, 1–19.

[13] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-
ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User Space.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 973–990. https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp

[14] Yangdi Lyu and Prabhat Mishra. 2018. A survey of side-channel attacks on caches
and countermeasures. Journal of Hardware and Systems Security 2, 1 (2018),

33–50.
[15] Yogesh Mahajan, Carven Chan, Ali Bayazit, Sharad Malik, and Wei Qin. 2007.

Verification Driven Formal Architecture and Microarchitecture Modeling. In
Proceedings of the 5th IEEE/ACM International Conference on Formal Methods and
Models for Codesign (MEMOCODE ’07). IEEE Computer Society, USA, 123–132.
https://doi.org/10.1109/MEMCOD.2007.371235

[16] Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin
Kirda, William Robertson, and Anil Kurmus. 2019. Speculator: A Tool to Analyze
Speculative Execution Attacks and Mitigations. In Proceedings of the 35th Annual
Computer Security Applications Conference (San Juan, Puerto Rico) (ACSAC ’19).
Association for Computing Machinery, New York, NY, USA, 747–761. https:
//doi.org/10.1145/3359789.3359837

[17] Gururaj Saileshwar and Moinuddin K. Qureshi. 2019. CleanupSpec: An "Undo"
Approach to Safe Speculation. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (Columbus, OH, USA) (MICRO
’52). Association for Computing Machinery, New York, NY, USA, 73–86. https:
//doi.org/10.1145/3352460.3358314

[18] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. ACM SIGARCH Computer
architecture news 41, 3 (2013), 475–486.

[19] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 753–768.
https://doi.org/10.1145/3319535.3354252

[20] Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp, Claudio Canella,
and Daniel Gruss. 2019. ConTExT: Leakage-Free Transient Execution. CoRR
abs/1905.09100 (2019). arXiv:1905.09100 http://arxiv.org/abs/1905.09100

[21] Nader Sehatbakhsh, Baki Berkay Yilmaz, Alenka Zajic, and Milos Prvulovic. 2020.
EMSim: AMicroarchitecture-Level Simulation Tool forModeling Electromagnetic
Side-Channel Signals. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, Hoboken, NJ, 71–85.

[22] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, SpencerHance, CarterMcCardwell, Vincent Zhao, Harrison
Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abellán,
John Kim, Ajay Joshi, and David Kaeli. 2019. MGPUSim: Enabling Multi-GPU
Performance Modeling and Optimization. In Proceedings of the 46th International
Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association
for Computing Machinery, New York, NY, USA, 197–209. https://doi.org/10.
1145/3307650.3322230

[23] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2019. Security verifica-
tion via automatic hardware-aware exploit synthesis: The CheckMate approach.
IEEE Micro 39, 3 (2019), 84–93.

[24] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W.
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (Fukuoka, Japan) (MICRO-51). IEEE
Press, Hoboken, NJ, 428–441. https://doi.org/10.1109/MICRO.2018.00042

[25] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Compre-
hensive Protection for Speculatively Accessed Data. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH,
USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA,
954–968. https://doi.org/10.1145/3352460.3358274

[26] Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. 2018. End-to-
end automated exploit generation for validating the security of processor designs.
In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, IEEE Press, Hoboken, NJ, 815–827.

[27] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanović. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. In Fourth Workshop
on Computer Architecture Research with RISC-V (CARRV 2020). Association for
Computing Machinery, New York, NY, USA.

https://doi.org/10.1145/3447852.3458715
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/3316781.3317903
https://doi.org/10.1109/MICRO.2018.00083
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/MEMCOD.2007.371235
https://doi.org/10.1145/3359789.3359837
https://doi.org/10.1145/3359789.3359837
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3352460.3358314
https://doi.org/10.1145/3319535.3354252
https://arxiv.org/abs/1905.09100
http://arxiv.org/abs/1905.09100
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1145/3352460.3358274

	Abstract
	1 Introduction
	2 Background
	2.1 Akita
	2.2 CheckMate

	3 Yori
	4 Bridging Akita to CheckMate
	4.1 Akita Static Analysis Method
	4.2 Intra-Instruction Happens-Before Relationships in Akita
	4.3 Translation Challenges

	5 Related Work
	6 Conclusion and Future Work
	References

