
RISKA: Towards an Open-source RISC-V based Domain-specific
System-on-Chip for SKA Data Processing

Arunkumar M. V.

Harshal G. Hayatnagarkar
∗

arunkumar.mv@thoughtworks.com

harshalh@thoughtworks.com

Engineering for Research

ThoughtWorks Technologies India

Pune, Maharashtra, India - 411006

ABSTRACT
The Square Kilometre Array, the largest radio telescope once com-

pleted, is one of the poster examples of computing in and beyond

the exascale era. The computing performance and energy efficiency

are required to be at least a couple of orders of magnitude better

than the current top supercomputers. To meet these requirements,

GPUs and FPGAs accelerators have been explored time and again,

but these are yet to meet their promised potential due to limitations

rooted in the algorithmic and architectural characteristics of the

solutions.

For the SKA data processing to be done within meaningful time

and resources, we therefore believe that a clean-slate approach

could be useful. In this position paper, we propose RISKA, an open-

source domain-specific system-on-chip to be designed specifically

for SKA’s data processing needs. The scope of the current proposal

is to address the requirements of SKA’s Science Data Processor

supercomputer (SKA-SDP), with an intention for future expansion

to other systems. We discuss a preliminary design of RISKA which

combines open-source RISC-V CPU cores with SKA-SDP specific

custom-designed accelerators and on-chip memory in order to

widen the performance and energy efficiency bottlenecks in the

SKA-SDP. Finally, we propose development of RISKA should be

based on an open-source collaborative model.

ACM Reference Format:
Arunkumar M. V. and Harshal G. Hayatnagarkar. 2021. RISKA: Towards

an Open-source RISC-V based Domain-specific System-on-Chip for SKA

Data Processing. In Proceedings of Fifth Workshop on Computer Architecture
Research with RISC-V (CARRV 2021). ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Square Kilometre Array once completed will be the largest andmost

sensitive radio telescope in the world. It is being constructed at two

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CARRV 2021, June 17, 2021,
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

different sites: SKA-Low Frequency Array and SKA-Survey Array

at an Australian site, and SKA-Mid Frequency Array at a South

African site. It will be commissioned in two phases, SKA Phase-1

(SKA-1) by early 2020s, and thereafter SKA Phase-2 (SKA-2). SKA-1
will be a fraction of the full SKA-2 size. SKA-Survey Array is not

part of the SKA-1 design.

Since its proposal, SKA has stood out among the big science

projects for its ambitious science objectives, enormous data volume

and velocity, and the corresponding exascale data processing chal-

lenges, often mentioned as the big data challenge of the 2020s. But

what sets it apart from many other exascale computing problems,

is that SKA data processing is data-intensive in nature, with the

compounded effect of data volumes and data velocity [13, 46]. The

data volumes streaming from the radio antennae are expected to be

an average of 16 Tb/s together from the SKA-1 Low and SKA-1 Mid

arrays [41]. At this rate, the telescope would generate more than

an exabyte of data per day, making real-time processing necessary

to reduce this data before it can be stored in the data centers for

later use by scientists for their respective research.

SKA data processing is performed by a collection of subsystems.

Data flows from the antenna stations to the Central Signal Proces-
sor (CSP) and then to the Science Data Processor (SDP). The SDP
subsystem transforms the observation data into the data products,

to be later used by the scientists for their research [29]. The most

challenging computing requirements come from a small set of criti-

cal algorithms related to radio interferometry imaging in SDP [46].

In addition, these SKA compute systems are required to consume

much less energy than the most efficient supercomputers available

today [41].

In light of these algorithmic and architectural challenges, this

paper attempts a clean-slate approach via the proposal of RISKA

and its corresponding hypothesis — “Could a System-on-Chip (SoC)
specifically designed for the most time-consuming algorithms of SKA
data processing address its overall challenges?”.

The development of an SoC is a long enough process to rule

out its feasibility for SKA-1 deployment, and hence this proposal

targets requirements only for the SKA-2 deployment. Due to the

overall complexity of the problem, this paper focuses on a small set

of SKA-SDP imaging algorithms mentioned above.

The remainder of the paper is organized as follows. First, we

analyze the SDP compute profile in Section 2 to gain insights about

known bottlenecks and remedies. This is followed by the RISKA

proposal in Section 3. Thereafter in the next Section 4, we describe

a preliminary design of the SoC. Further, in Section 5, we elaborate

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


CARRV 2021, June 17, 2021,
Arunkumar M. V. and Harshal G. Hayatnagarkar

Algorithm 1 Tile-based Gridding

for all tiles in global grid do
for all visibilities in tile do

for 𝑣 dimension in convolution kernel (that overlaps with tile) do
for 𝑢 dimension in convolution kernel (that overlaps with tile) do

convolve visibility value with convolution kernel and add back to grid

on other important issues related to development and evolution.

Finally, we conclude the paper with details of the RISKA source

repository, and a call for collaboration.

2 SDP COMPUTE ANALYSIS
The past work in understanding the challenges to realize SKA-SDP

offers a rich trove of insights into the characteristics of algorithms

on different architectures. Analyzing this compute profile reveals

that three algorithms concerned with image synthesis namely Grid-
ding, Degridding, and Two-dimensional FFT (2D-FFT ) make up a

significant proportion of the overall compute load [29, 46].

Gridding is essentially a two-dimensional convolution operation

on the incoming visibilities (samples of the Fourier-transformed

sky) to populate the global grid representing the sky, whereas its

inverse operation degridding estimates visibilities based on an in-

put grid [37, 51]. A tile-based gridding approach [8] is depicted in

Algorithm 1. It has low arithmetic intensity, and offers an opportu-

nity for parallelism with tile-based processing (the outermost loop).

W-projection and AW-projection are the most commonly used grid-

ding algorithms although a recent approach namely Image Domain
Gridding (IDG)[44] has also shown promising results. The SKA com-

munity has made substantial efforts to implement W-projection

[27, 37, 51] and Image Domain gridding/degridding [44, 45] on CPU,

GPU and FPGA architectures. Gridding and degridding are inverse

operations with similar properties and bottlenecks [46].

The W-projection gridding mainly suffers from poor memory

locality of incoming visibilities making it memory intensive. Thus,

memory bandwidth becomes a bottleneck [10, 46, 51]. Another

bottleneck is the large number of atomic additions to the global

grid which makes exploiting parallelism difficult [37, 46, 51].

The third important algorithm 2D-FFT has been well-studied,

and is widely used beyond radio astronomy. Thus, many vendor-

optimized solutions of 2D-FFT are available for various architec-

tures. However, these implementations also suffer from various

bottlenecks including low utilization on CPU and low interconnect

efficiency and inadequate memory size on discrete accelerators

[38, 46].

2.1 Bottlenecks and Remedies
Based on the past literature, we have compiled a non-exhaustive

list of bottlenecks in the SKA-SDP algorithms along with possible

remedies to widen these bottlenecks.

(1) Nature of Algorithms. Computational complexity and overall

behavior of algorithms contributes to emergence and severity of

bottlenecks on specific architectures. For example, W-projection

gridding and IDG perform differently on CPUs, GPUs, and FPGAs

[45].

Remedy — Choosing the right data-intensive algorithms is essen-

tial [20]. Introducing modularity and composability in algorithms

could also help to accommodate and constrain architecture-specific

optimizations.

(2) Low Arithmetic Intensity. Fewer computations performed

per byte of data means longer time will be spent in data movement,

leading to higher time and energy expenditure and idle compute,

something commonly seen in Data-intensive computing.
Remedy — To minimize time and energy cost of data movement,

bringing compute closer to the data via near-memory and in-memory

computing strategies could be useful [12, 46].

(3) Irregular Memory Accesses. Such irregularities stem from

the choice of data structure, behavior of algorithms, and nature

of the data itself. They cause poor data locality, and worsen the

memory bandwidth bottleneck [13, 37, 44, 51].

Remedy — Improving data locality of SKA-SDP algorithms across

architectures is a hard problem, especially without making any

assumptions about architectural characteristics [10, 12].

(4) Off-chip Memory Bandwidth. Device memory accesses are

expensive and can quickly become a bottleneck in algorithms where

frequent memory accesses and updates are necessary, like in the

case of gridding and 2D FFT algorithms [10, 37, 38].

Remedy — Strategies like caching, prefetching, scheduling multi-

ple load-stores improve memory bandwidth utilization. Another

remedy is to convert algorithms from memory-bound to compute-

bound [10, 44]. Use of more expensive on-chip High Bandwidth

Memory (HBM) also shows improved results [12, 27].

(5) CPU Performance per Watt. Performance per watt of CPUs

is far lower than accelerators primarily because of the inherent

general-purpose nature and design of CPUs [18, 24, 29, 46].

Remedy —Vector units in CPUs can improve performance per watt

for vectorizable algorithms [29]. As we observed in the literature,

accelerators (in particular custom accelerators) are the best bet to

overcome this limitation [18, 24, 29, 46].

(6) Data Transfer to-and-fro Discrete Accelerators. Discrete
accelerators require data transfers to-and-fro host via relatively

slower interconnects like PCIe, which means more time could be

spent for data transfer than computation [38].

Remedy — Integrated accelerators could forgo the need for host-

accelerator data transfer, thereby avoiding the PCIe interconnect

bottleneck altogether.

(7) Memory Size in Discrete Accelerators. Accelerators with
smaller memories can store only small chunks of data, making the

algorithm responsible for partitioning and supplying chunks of

data to accelerators [45].



RISKA: Towards an Open-source RISC-V based Domain-specific System-on-Chip for SKA Data Processing
CARRV 2021, June 17, 2021,

Remedy — For problems too large to fit into the memory of a dis-

crete accelerator, integrated accelerators are a possible alternative

[12, 47].

3 RISKA PROPOSAL
RISKA (acronym for RISC Implementation for Square Kilometre Ar-
ray) is our proposal of an open-source System-on-Chip (SoC) with

SKA-SDP specific accelerators to achieve high performance at low

energy consumption. This SoC would sit in place of the server

CPUs to meet the extreme challenges in the SKA-SDP. For the non-

extreme compute needs, the commercially available CPUs, GPUs

and FPGAs could as well suffice.

The RISKA has a three-fold motive. First, the SKA-SDP would

require an exascale supercomputer with ambitious goals for perfor-

mance and energy efficiency [41]. These goals cannot be fulfilled

by CPUs and discrete accelerators [10, 29]. Second, SKA-SDP is a

case of domain-specific supercomputers as echoed in [30]. Third,

SKA-SDP would require high-performance computing (HPC) and

data-intensive computing (DIC) in a single environment [13, 40].

At present, the Fugaku supercomputer is the closest example for

us to relate to these requirements. It has achieved the top spot in

the Top500 and Graph500 lists [34], and 10th spot in the Green500

list. As we understand, its success can be attributed to the following

decisions by its designers: 1. Targeting a small number of applica-

tion domains, 2. Co-designing the hardware and software, and 3.

Designing a custom SoC, namely A64FX [31, 39]. Observing paral-

lels between Fugaku and SDP requirements, the Fugaku and A64FX

serve as inspirations for RISKA proposal and development.

We anchor the RISKA proposal and its preliminary design in the

insights from the analysis presented in Section 2. To deliver the ex-

ascale performance at the desired energy efficiency, we would need

to combine two sets of ideas namely Domain-specific Architectures
(DSAs, also called as Accelerators) and Host-accelerator Integration.

For the DSAs, the guiding principle comes from the Hennessy-

Patterson vision to mitigate the diminishing returns due to fading

of Moore’s Law and Dennard Scaling [24]. The vision proposes

a shift towards domain-specific custom-designed hardware, espe-

cially when intrinsic parallelism is available in algorithms. SKA-SDP

specific accelerators can be designed for taking advantage of the in-

trinsic parallelism in the gridding and degridding algorithms. This

approach has far lower execution overheads compared to general-

purpose architectures [18, 26, 29].

For the integration, the host (CPU) and accelerators into a single

chip or package. Such integration viaUniformMemory Access (UMA)
can forgo the need for data transfers between host and accelerators,

thereby avoiding the off-chip interconnect bottleneck, an issue

frequently faced by discrete accelerators especially when frequent

and large data transfers are involved [10, 14, 27, 38]. With the

availability of larger and faster memory banks, such integration

could help improve data locality, utilization of memory bandwidth,

and energy consumption.

The host-accelerator integration for exascale computing was also

explored in AMD’s Exascale Node Architecture (ENA) via combining

CPU and GPU with on-chip high-bandwidth memory [47]. Our

proposed architecture bears a close resemblance to the ENA with

the main difference being the addition of SKA-specific accelerators.

In addition, Apple’s M1 SoC has a few design elements relevant for

RISKA such as integrated memory, graphics accelerator, and neural

network accelerator [21].

While the preliminary design proposed in this paper targets the

SKA-SDP, we intend to expand its scope to other SKA compute sys-

tems, especially to those deployed in SKA Regional Science Centers
(SKA-RSCs). In addition, we believe that some of the RISKA ideas

could be cross-pollinated to other domains beyond radio astronomy,

such as meteorology and drug discovery.

Rest of the paper discusses the RISKA design elements and de-

velopment process.

4 DESIGN ELEMENTS
The elements in the preliminary design for RISKA SoC are de-

picted in Figure 1. We would adapt this design to widen the known

bottlenecks as well as the emergence of new ones during RISKA

development. We acknowledge that an effective design space explo-

ration is necessary to discover the feasible and optimal performance,

energy and area specifications for the design elements. During this

optimization process, we may not discover a single RISKA specifi-

cation but many. Thus, it could lead to a possibility of multiple SoC

variants, each covering a subset of the overall use-cases. RISKA

variants are discussed in Section 5.2.

Figure 1: Basic design elements

4.1 RISC-V CPU Cores
For scientific computing, we believe that choosing an open ISA and

architecture is in the best interest. The free and open RISC-V ISA

fits this description [48], and it has so far generated enough interest

in academia and industry alike. The ISA has many implementations,

ranging from smaller cores for embedded/IoT applications to high-

performance out-of-order processors [3, 11, 17, 22, 50].

For being free and open ISA, RISC-V offers an opportunity for

open-source hardware development. Since approved ISA and its

extensions are frozen, it helps in avoiding vendor lock-in. The only

caveat of choosing RISC-V is that it is too young an ISA among its

peers to have its capabilities ratified.

The RISC-V ISA features a modular and extensible design with

a minimal base integer instruction set. Additional functionality

can be introduced via standard or custom ISA extensions, which

opens up new avenues for DSA integration. The modularity enables



CARRV 2021, June 17, 2021,
Arunkumar M. V. and Harshal G. Hayatnagarkar

Figure 2: Many-core architecture for DSA integration

complex architectures such as heterogeneous many-core architec-

tures (see Figure 2) where larger high-performance cores perform

the general-purpose processing and smaller energy-efficient cores

control the DSAs. Similar architectures have been shown to greatly

improve performance and energy efficiency compared to conven-

tional techniques [15, 42, 49].

4.2 SKA SDP-specific Accelerators
Top candidates for SKA-specific accelerators include the architec-

tures for previously discussed imaging algorithms gridding, de-

gridding and 2D-FFT [18, 26, 29, 46]. Although specialization is

favorable, it may not be realistic in some cases. Conventional ar-

chitectures like GPUs and DSPs have well defined programming

models and lesser design overhead and can be leveraged wherever

sufficient. As certain SDP pipelines like pulsar search and single-

pulse/fast-transient pipeline involve heuristics based on machine

learning capabilities [5], architectures like a Neural DSA could be

useful.

Effective integration of the DSA will be as important as its

micro-architecture itself. Strategies like UMA for DSA to avoid

host-accelerator data transfers will be necessary. Other techniques

include the use of dedicated cache for the DSA to enable fast com-

munication [32] and intelligent last level cache bypassing for large

writes [36].

4.3 Memory
Gridding, degridding, and 2D-FFT implementations are memory-

bound because of data locality related issues. To quote [46], “Solving
the data-locality problemwill be key: there should always be a suitable
compute element near the data, on every level”. Memory-centric

approaches like In-Memory Computing (IMC) and Near-Memory
Computing (NMC) are necessary for addressing memory bandwidth

issues [12], and hence we would like to place sufficiently large

memories on RISKA SoC.

3D-stacked High-Bandwidth Memory (HBM) can provide higher

bandwidth but at higher energy-consumption [12]. Such integrated

memories have been used in Fugaku’s A64FX [39]. AMD’s Exascale
Node Architecture (ENA) also involves stacking HBM-DRAM on

GPU chiplets and embraces the NMC approach. It tries to maxi-

mize bandwidth by minimizing the data movement overheads [47].

To improve energy efficiency, low-power low-bandwidth on-chip

DDR memories have also been used in commercial devices like

Apple’s M1 SoC [21]. In RISKA, we intend to bring data closer to

the compute so that it could compensate for the memory bandwidth

saturation, caused by irregular memory accesses in gridding and

other algorithms.

4.4 Reconfigurable Element
Due to the trade-offs in evolving a design and taping it out, RISKA

may have only a small number of critical accelerators, thus leav-

ing others to software-only implementations. For such scenarios,

we propose a reconfigurable element in the RISKA design. This

element could host any accelerator, which would be suitable for

continuously evolving algorithms [23].

4.5 Network-on-Chip
In many-core many-accelerator SoCs using traditional bus intercon-

nect topologies, on-chip communication may become a bottleneck.

NoCs introduce alternate architectures for on-chip communication

which tries to address these bottlenecks [43]. As on-chip communi-

cation efficiency will be crucial for RISKA due to the data-intensive

nature of processing, such alternate architectures may become es-

sential.

Such techniques have shown positive results. The Kalray MPPA

2 processor combines CPU cores with shared memory Network-on-
Chip (NoC) [6]. In a similar approach, the A64FX SoC combines

ARM cores with HBM and NoC [31]. Unlike RISKA, neither design

supports accelerator cores.

5 DEVELOPMENT AND EVOLUTION
Designing an SoC and its software ecosystem is a mammoth task

considering the complexity, competency, costs, and time [16].

On the complexity front, hardware-software co-design has been

recommended in the SKA-SDP community [13]. We also see similar

recommendations in general for exascale computing [33]. For a

recent example, the co-design approach has certainly contributed

to the success of the Fugaku supercomputer to deliver exascale

performance [39].

On the cost front, an open-source model of innovation could be

the solution, mainly because the burdens become more distributed.

Such a model would also lead to more modular and composable

design, rather than monolithic design, with a reliable ecosystem

evolving around it over time [28].

Open-source development will comewith its own set of organiza-

tional and technological challenges. For example, on the technology

side, integrating the multiple IP blocks both commercial and open

into a single chip will certainly be challenging. The area, energy,

and performance of individual blocks have to meet the design bud-

get [26]. An existing ecosystem which follows the above model is

Chipyard [1], an open-source framework for developing full-system

hardware using agile practices. If such an ecosystem could thrive



RISKA: Towards an Open-source RISC-V based Domain-specific System-on-Chip for SKA Data Processing
CARRV 2021, June 17, 2021,

with innovations and investments, then an open-source model for

RISKA development may be viable.

On the competency front, we believe that a collaborative open-

source model for RISKA development would work best. The collab-

oration could bring in diversity of ideas and skills, as well as help

in cross-pollinating RISKA ideas elsewhere. We share the details of

the repository later in Section 7.

5.1 Guidelines for Designing
DSAs/Accelerators

To ease general and contextual challenges in design and develop-

ment of accelerators, a set of guidelines are shared in the book

[26]. These guidelines provide an effective way to simplify design,

reduce costs of development and increase overall performance of

the accelerator. Here we discuss these guidelines in the context of

RISKA.

(1) Use dedicated memories to minimize the distance over
which data is moved. Memory architectures in GPAs in-

volving multiple cache levels are expensive in terms of area

and energy. Software-controlled scratchpad memories con-

sume far less area and energy compared to multi-level caches

[4]. For example, a two-way set associative cache consumes

approximately 2.5 times the energy of the software-controlled

equivalent [26]. Such memories tailored for a domain will

suffice instead of expensive hardware-controlled caches [19],

provided a co-design approach is followed for explicitly man-

aging these memories to minimize data movement (see sec-

tion 5 on co-design). Often, understanding of how compilers

optimize and generate code for an architecture helps in min-

imizing data movements. In the case of RISKA, we could use

such a memory architecture for each data-intensive acceler-

ator, for example the gridding/de-gridding accelerator.

(2) Invest the resources saved from dropping advanced mi-
croarchitectural optimizations intomore arithmetic units
or bigger memories. In making CPUs more performant,

resource-intensive strategies like out-of-order execution,

multi-threading, and multi-processing are used. The ratio-

nale behind this guideline is that such strategies can be

avoided when designing architectures for narrow applica-

tion domains due to the assumed domain expertise [19],

consequently freeing up resources which can be used for

more arithmetic units and bigger memories. Thus, RISKA

could have bigger, faster, and better on-chip memories to

accommodate the needs of CPU cores and accelerators.

(3) Use the easiest form of parallelism thatmatches the do-
main. Leveraging the easiest inherent parallelism in the ap-

plication domain to design the architecture aids towards a

simpler programming model. For example, SIMD is easier

than MIMD to specify and implement by programmers and

compiler writers respectively. In the case of RISKA, a grid-

ding accelerator can be designed around inherent parallelism

across frequency channels, and perhaps 2D planar iterations

via some collision detection algorithms [13, 46].

(4) Reduce data size and type to the simplest needed for the
domain. Using the narrowest possible data type suited for

the domain will improve effective memory bandwidth and

make the applications less memory bound. It will also aid in

increasing the number of arithmetic units in a given area. For

example, certain use-cases in SKA-SDP may permit lower

precision floating point calculations [2, 7, 35]. The RISKA

design team can take advantage of it for those cases via

RISKA variants (see the section 5.2).

(5) Use a domain-specific programming language to port
code to the DSA. A domain-specific language (DSL) is de-
signed around a domain’s terminology and rules so that the

software specification reads naturally from that domain. A

DSL can be written for a DSA/accelerator in order to min-

imize efforts of code generation/translation for that accel-

erator [25]. In the case of RISKA, we do not have clarity

currently about which of the accelerators would require

an accompanying DSL. However, based on current under-

standing we could hazard a guess for gridding and pulsar

searching accelerators.

Many of these guidelines provide a clear design choice amongst

competing alternatives. But sometimes, a choice may be optimal

for one usage scenario and be sub-optimal for another. Thus, one-

size-fits-all becomes a fallacy, which we discuss in the following

section.

5.2 RISKA Variants
Designing SoCs have been compared with city planning in the book

[26], for that different components or IP blocks (Intellectual Property
blocks) compete against each other for resources performance, area,

and energy. There are trade-offs to be made in designing, guided

by the use-cases. For example, the SoC for a watch design could be

very different from that of a phone, or a laptop. With modern SoCs

containing a multitude of IP blocks, resource allocation becomes a

major issue. Thus, the scalability of IP blocks in area, energy, and

performance to meet the design budgets is essential, making the

design space exploration an optimization problem under constraints.

Solving for optimization could lead to multiple solutions. In the

case of RISKA, it could mean multiple design variants.

Given the diversity of SKA science objectives, we could explore

the idea of a small number of RISKA variants guided by the SDP

reference hardware architecture [9] to cover as many use-cases as

possible. The current proposed hardware architecture categorizes

the SDP compute servers into the 4 different personalities based
on their functionalities namely 1. Receive, 2. Processing, 3. Service,

4. Storage. The processing servers contain throughput-optimized

cores, and will deliver the bulk of required computational resources

for processing [9]. The different variants of RISKA can make up

these throughput-optimized cores.

The data processing afterwards in the SKA-Regional Science Cen-
terswould bemore guided by the research questions of the scientists.

This processing could involve exploratory ad-hoc steps. Suitability

of RISKA in these scenarios is of interest to us for future work.

So, in a nutshell, we are interested in exploring if RISKA could

provide maximum coverage for data processing with a minimum

number of variants.



CARRV 2021, June 17, 2021,
Arunkumar M. V. and Harshal G. Hayatnagarkar

6 CONCLUSION
In this paper, we discussed the challenges of exascale computing

and beyond for SKA-SDP, its compute profile, known bottlenecks,

and potential remedies. Based on these details, we proposed an

open-source SKA-SDP specific system-on-chip RISKA to cater to

performance and energy efficiency requirements. We later pre-

sented a preliminary design of RISKA, followed by a prospective

development and evolution process based on an open, collabora-

tive model. In realizing RISKA, the openness of RISC-V ISA and

its flourishing ecosystem play a pivotal role. Developing RISKA

would be quite challenging if not impossible otherwise. Finally, we

intend to keep the RISKA design extensible enough for other SKA

compute needs, and hopefully the ideas can be applied to other

domains beyond radio astronomy.

7 OPEN SOURCE REPOSITORY
We would like to conclude the paper by sharing details of the

RISKA source code repository and a call for wider collaboration.

The repository URL is: https://github.com/iamharshal/riska.

8 ACKNOWLEDGMENTS
We thank Dr. T. Prabu for his valuable review comments on this

paper.

REFERENCES
[1] Amid, A., Biancolin, D., Gonzalez, A., Grubb, D., Karandikar, S., Liew, H.,

Magyar, A., Mao, H., Ou, A., Pemberton, N., Rigge, P., Schmidt, C., Wright, J.,

Zhao, J., Shao, Y. S., Asanović, K., and Nikolić, B. Chipyard: Integrated Design,

Simulation, and Implementation Framework for Custom SoCs. IEEE Micro 40, 4
(2020), 10–21.

[2] Arunkumar M V, Sai Ganesh Bhairathi, H. PERC: Posit Enhanced Rocket

Chip. In Fourth Workshop on Computer Architecture Research with RISC-V (May

2020).

[3] Asanović, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio, C.,

Cook, H., Dabbelt, D., Hauser, J., Izraelevitz, A., Karandikar, S., Keller, B.,

Kim, D., Koenig, J., Lee, Y., Love, E., Maas, M., Magyar, A., Mao, H., Moreto,

M., Ou, A., Patterson, D. A., Richards, B., Schmidt, C., Twigg, S., Vo, H., and

Waterman, A. The rocket chip generator. Tech. Rep. UCB/EECS-2016-17, EECS

Department, University of California, Berkeley, Apr 2016.

[4] Banakar, R., Steinke, S., Bo-Sik Lee, Balakrishnan, M., and Marwedel,

P. Scratchpad memory: a design alternative for cache on-chip memory in em-

bedded systems. In Proceedings of the Tenth International Symposium on Hard-
ware/Software Codesign. CODES 2002 (IEEE Cat. No.02TH8627) (2002), pp. 73–78.

[5] Bolton, R., Broekema, P. C., Cornwell, T. J., van Diepen, G., Holli, C.,

Johnston-Holli, M., Preston, L. L., Mika, A., Nijboer, R., Nikolic, B., Salvini,

S., Rampadarath, H., Scaife, A., Stappers, B., and Wortmann, P. Parametric

models of SDP compute requirements. Tech. Rep. SKA-TEL-SDP-0000013, SKA

Science Data Processor Consortium, 2019.

[6] Boyer, M., de Dinechin, B. D., Graillat, A., and Havet, L. Computing routes

and delay bounds for the network-on-chip of the kalray mppa2 processor. In

ERTS 2018-9th European Congress on Embedded Real Time Software and Systems
(2018).

[7] Braam, P. Posits and computing at 200 pb/sec for the ska telescope. In Conference
for Next Generation Arithmetic (CoNGA’19) (2019).

[8] Broekema, P. Commodity compute- and data-transport system design in modern
large-scale distributed radio telescopes. PhD thesis, Vrije Universiteit Amsterdam,

2020.

[9] Broekema, C. SDP CDR Closeout Documentation: SDP Hardware Decompo-

sition View. Tech. Rep. SKA-TEL-SDP-0000013, SKA Science Data Processor

Consortium, 2019.

[10] Brown, A., Armour, W., Dulwich, F., and Chauveau, S. SDP Memo 72: Vertical

prototyping of the gridding algorithm on GPU. SDP Memo 072 (2018).
[11] Chen, C., Xiang, X., Liu, C., Shang, Y., Guo, R., Liu, D., Lu, Y., Hao, Z., Luo,

J., Chen, Z., Li, C., Pu, Y., Meng, J., Yan, X., Xie, Y., and Qi, X. Xuantie-910: A

commercial multi-core 12-stage pipeline out-of-order 64-bit high performance

risc-v processor with vector extension : Industrial product. In 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA) (2020),
pp. 52–64.

[12] Corda, S., Veenboer, B., Awan, A., Kumar, A., Jordans, R., and Corporaal, H.

Near Memory Acceleration on High Resolution Radio Astronomy Imaging. 2020
9th Mediterranean Conference on Embedded Computing (MECO) (2020), 1–6.

[13] Cornwell, T., and Humphreys, C. B. SKA Exascale Software Challenges. In

SKA Memo 128 (2010), SKA Consortium.

[14] Daga, M., Aji, A. M., and chun Feng, W. On the Efficacy of a Fused CPU+GPU

Processor (or APU) for Parallel Computing. 2011 Symposium on Application
Accelerators in High-Performance Computing (2011), 141–149.

[15] Davidson, S., Xie, S., Torng, C., Al-Hawai, K., Rovinski, A., Ajayi, T., Vega,

L., Zhao, C., Zhao, R., Dai, S., Amarnath, A., Veluri, B., Gao, P., Rao, A., Liu,

G., Gupta, R. K., Zhang, Z., Dreslinski, R., Batten, C., and Taylor, M. B. The

celerity open-source 511-core risc-v tiered accelerator fabric: Fast architectures

and design methodologies for fast chips. IEEE Micro 38, 2 (2018), 30–41.
[16] Deneroff, M., and Solutions, E. Building an soc: How to do it? what will it

cost? In Workshop on System-on-Chip Design for HPC (2015).

[17] Dörflinger, A., Albers, M., Kleinbeck, B., Guan, Y., Michalik, H., Klink,

R., Blochwitz, C., Nechi, A., and Berekovic, M. A comparative survey of

open-source application-class RISC-V processor implementations. In Proceedings
of the 18th ACM International Conference on Computing Frontiers (Virtual Event
Italy, May 2021), ACM, pp. 12–20.

[18] Fang, Z., Javadi, F., Cong, J., and Reinman, G. Understanding Performance Gains

of Accelerator-Rich Architectures. In 2019 IEEE 30th International Conference on
Application-specific Systems, Architectures and Processors (ASAP) (2019), vol. 2160-
052X, pp. 239–246.

[19] Fang, Z., Javadi, F., Cong, J., and Reinman, G. Understanding Performance Gains

of Accelerator-Rich Architectures. In 2019 IEEE 30th International Conference on
Application-specific Systems, Architectures and Processors (ASAP) (2019), vol. 2160-
052X, pp. 239–246.

[20] Fox, G. C., Jha, S., Qiu, J., and Luckow, A. Towards an understanding of facets

and exemplars of big data applications. In Proceedings of the 20 Years of Beowulf
Workshop on Honor of Thomas Sterling’s 65th Birthday (2014), pp. 7–16.

[21] Frumusanu, Andrei. Apple Announces The Apple Silicon M1: Ditching x86 -

What to Expect, Based on A14, November 2020.

[22] Gala, N., Menon, A., Bodduna, R., Madhusudan, G., and Kamakoti, V. Shakti

processors: An open-source hardware initiative. In 2016 29th International Confer-
ence on VLSI Design and 2016 15th International Conference on Embedded Systems
(VLSID) (2016), IEEE, pp. 7–8.

[23] Hayatnagarkar, H., MV, A., and Padalkar, B. Reconfigurable Domain-specific

Architectures in the post-Moore’s Law World: Implications for Software Engi-

neering. Preprint – (2020).

[24] Hennessy, J., and Patterson, D. A New Golden Age for Computer Architecture.

Communications of the ACM 62 (2019), 48 – 60.

[25] Hennessy, J., and Patterson, D. A new golden age for computer architecture.

Communications of the ACM 62 (2019), 48 – 60.

[26] Hennessy, J. L., and Patterson, D. A. Computer Architecture, Sixth Edition: A
Quantitative Approach, 6th ed. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2017.

[27] Hou, J., Zhu, Y., Du, S., Song, S., and Song, Y. FPGA-Based Scale-Out Prototyping

of Degridding Algorithm for Accelerating Square Kilometre Array Telescope

Data Processing. IEEE Access 8 (2020), 15586–15597.
[28] Johnson, T. A., and Eigenmann, R. Context-sensitive domain-independent

algorithm composition and selection. ACM SIGPLAN Notices 41, 6 (2006), 181–
192.

[29] Jongerius, R. Exascale Computer System Design: The Square Kilometre Array.
PhD thesis, Technische Universiteit Eindhoven, 2016.

[30] Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N., Laudon, J., Young, C.,

and Patterson, D. A domain-specific supercomputer for training deep neural

networks. Communications of the ACM 63, 7 (2020), 67–78.
[31] Matsuoka, S. The first "exascale" supercomputer Fugaku & beyond.

[32] McCalpin, John. Notes on Cached Access to Memory-Mapped IO Regions, May

2013.

[33] McMorrow, D. Technical Challenges of Exascale Computing. Tech. Rep. JSR-

12-310, The MITRE Corporation, Apr. 2013.

[34] Meuer, Martin. The 56th edition of the TOP500 Supercomputers Rankings,

November 2020.

[35] Miomandre, H., Nezan, J.-F., Ménard, D., Campbell, A., Griffin, A., Hall, S.,

and Ensor, A. Approximate buffers for reducing memory requirements in the

ska. In Preprint hal-02612369v1 (2020).
[36] Park, J. J. K., Park, Y., and Mahlke, S. A bypass first policy for energy-efficient

last level caches. In 2016 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS) (2016), pp. 63–70.

[37] Romein, J. An efficient work-distribution strategy for gridding radio-telescope

data on GPUs. In ICS ’12 (2012).
[38] Salvini, S. SDP Memo: Fast Fourier Transforms. SDP Memo 003, SKA-TEL-SDP-

0000058 (2016).
[39] Sato, M., Ishikawa, Y., Tomita, H., Kodama, Y., Odajima, T., Tsuji, M., Yashiro,

https://github.com/iamharshal/riska


RISKA: Towards an Open-source RISC-V based Domain-specific System-on-Chip for SKA Data Processing
CARRV 2021, June 17, 2021,

H., Aoki, M., Shida, N., Miyoshi, I., Hirai, K., Furuya, A., Asato, A., Morita,

K., and Shimizu, T. Co-Design for A64FX Manycore Processor and "Fugaku".

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (2020), SC ’20, IEEE Press.

[40] Simmonds, R., and Gounden, S. Sdp memo: Can sdp use existing big-data

systems? Memo SKA-TEL-SDP-0000072, SKAO, 2016.

[41] Sqare Kilometer Array Organization. SKA Phase 1 Construction Proposal.

Tech. rep., Feb. 2021.

[42] Swift, A. Esperanto accelerates machine learning with 1000+ low power risc-v

cores on a single chip. RISC-V International Summit, 2020.

[43] Tsai, W.-C., Lan, Y.-C., Hu, Y.-H., and Chen, S.-J. Networks-on-Chip: Architec-

tures, Design Methodologies, and Case Studies. Journal of Electrical and Computer
Engineering 2012 (2012), 634930:1.

[44] Veenboer, B., Petschow, M., and Romein, J. Image-Domain Gridding on

Graphics Processors. 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (2017), 545–554.

[45] Veenboer, B., and Romein, J. Radio-Astronomical Imaging: FPGAs vs GPUs. In

Euro-Par (2019).
[46] Vermij, E., Fiorin, L., Jongerius, R., Hagleitner, C., and Bertels, K. Challenges

in exascale radio astronomy: Can the SKA ride the technology wave? The
International Journal of High Performance Computing Applications 29 (2015), 37 –
50.

[47] Vijayaraghavan, T., Karunanithi, A., Kayiran, O., Meswani, M., Paul, I.,

Poremba, M., Raasch, S., Reinhardt, S. K., Sadowski, G., Sridharan, V., Eck-

ert, Y., Loh, G. H., Schulte, M. J., Ignatowski, M., Beckmann, B. M., Brantley,

W. C., Greathouse, J. L., and Huang, W. Design and Analysis of an APU for

Exascale Computing. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA) (2017), IEEE, pp. 85–96.

[48] Waterman, A., Lee, Y., Patterson, D. A., and Asanovic, K. The RISC-V instruc-

tion set manual, Volume I: Base user-level ISA version 2.0. EECS Department, UC
Berkeley, Tech. Rep. UCB/EECS-2014-54 (2014).

[49] Zaruba, F., Schuiki, F., and Benini, L. Manticore: A 4096-core risc-v chiplet

architecture for ultra-efficient floating-point computing, 2020.

[50] Zhao, J., Korpan, B., Gonzalez, A., and Asanovic, K. Sonicboom: The 3rd gener-

ation berkeley out-of-order machine. Fourth Workshop on Computer Architecture
Research with RISC-V (May 2020).

[51] Zhu, Y., Zhao, X., Gao, X., You, H., and Li, Q. SDP Memo 082: Summarising

Initial Scale-Out Prototyping Efforts. SDP Memo 082 (2018).


	Abstract
	1 Introduction
	2 SDP compute analysis
	2.1 Bottlenecks and Remedies

	3 RISKA Proposal
	4 Design Elements
	4.1 RISC-V CPU Cores
	4.2 SKA SDP-specific Accelerators
	4.3 Memory
	4.4 Reconfigurable Element
	4.5 Network-on-Chip

	5 Development and Evolution
	5.1 Guidelines for Designing DSAs/Accelerators
	5.2 RISKA Variants

	6 Conclusion
	7 Open Source Repository
	8 Acknowledgments
	References

