Bringing OpenCL to Commodity RISC-V CPUs

Tine Blaise
Georgia Institute of Technology
Atlanta, Georgia
blaisetine@gatech.edu

Jeff Vetter
Oak-Ridge National Laboratory
Oak-Ridge, Tennessee
vetter@ornl.gov

ABSTRACT

The importance of open-source hardware has been increasing in
recent years with the introduction of the RISC-V Open ISA. This has
also accelerated the push for support of the open-source software
stack from compiler tools to full-blown operating systems. Parallel
computing with today’s Application Programming Interfaces such
as OpenCL has proven to be effective at leveraging the parallelism
in commodity multi-core processors and programmable parallel
accelerators. However, to the best of our knowledge, there is cur-
rently no publicly available implementation of OpenCL targeting
commodity RISC-V processors that is accessible to the open-source
community. Besides opening RISC-V to the existing rich variety
of scientific parallel applications, OpenCL also provides access to
a unique genre of benchmarks useful in computer architecture
research. In this work, we extended an Open-source implementa-
tion of OpenCL to target RISC-V CPUs. Our work not only cover
commodity multi-core RISC-V processors, but also plethora of low-
profile embedded RISC-V CPUs that often do not support atomic
instructions or multi-threading.

KEYWORDS

High-Performance Computing, multi-threading, heterogeneous
Computing, Parallel Programming, Compiler Optimizations.

ACM Reference Format:

Tine Blaise, Seyong Lee, Jeff Vetter, and Hyesoon Kim. 2021. Bringing
OpenCL to Commodity RISC-V CPUs. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

The current challenges in technology scaling [9] are pushing the
semiconductor industry towards hardware specialization, creating
a proliferation of heterogeneous systems-on-chip, delivering or-
ders of magnitude performance and power benefits compared to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Seyong Lee
Oak-Ridge National Laboratory
Oak-Ridge, Tennessee
lees2@ornl.gov

Hyesoon Kim
Georgia Institute of Technology
Atlanta, Georgia
hyesoon@cc.gatech.edu

[Clang/LLVM] [OpenCL Application]

I
¢ POCL Runtime|

Workgroup

Transformation Passes OpenCL Run-time API

Kernel

Builtin Library Program
O
._) n

Device ?:rse':d| PTX || HSA

Binary x =

1 1 T I 1 T 1
CPU Nvidia TCE Accel Linux | |NewLib
GPU Device || Device || RISCV || RISCV

Figure 1: POCL RISC-V System Architecture

Common Device Interface

TCE | Accel ||eLinux NewLibl
T T T T

Device Kernel
Translation

.

POCL Compiler

traditional general-purpose architectures. This transition is getting
a significant boost with the advent of RISC-V [24] with its unique
modular and extensible ISA, allowing a wide range of low-cost
processor designs for various target applications. As these pro-
cessors become specialized, often extending the existing ISA with
domain-specific instructions, a challenge arises on how to program
them and take advantage of their new capabilities. OpenCL [17] is
currently the most widely adopted programming framework for
heterogeneous platforms available on mainstream CPUs, GPUs,
as well as FPGAs [22], and custom DSPs [11]. Adopting OpenCL
across all devices in heterogeneous platforms greatly simplifies the
design and implementation of the software stack that drives these
platforms, allowing OpenCL applications to scale efficiently as new
computing devices are introduced. Additionally, there is a large
ecosystem of existing parallel applications written in OpenCL that
will now be able to run on those devices.

There is currently no publicly available implementation of OpenCL
for RISC-V accessible to the open-source community. This is partly
because the vector ISA extension [3] for RISC-V is still under de-
velopment. However, there are existing implementations of RISCV
processors with multi-core support [2], including some with custom
ISA for parallel processing [5] [10], [8] that could greatly benefit
from OpenCL to increase adoption. Implementing a flexible com-
piler framework that makes it easy to port OpenCL to RISC-V-based
heterogeneous parallel processors is a challenge and this project
aims at solving this application programming gap.

There exists a wide range of open-source implementations of
OpenCL targeting various architectures, including X86 with Beignet
[13], Intel Neo [14], Nvidia with libclc [18], AMD with Clover [23],
ROCm [7], TIDSPs with TI-OpenCL [12], ARM with Shamrock [19],

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

and POCL [15]. POCL implements a flexible compilation back-end
based on LLVM, allowing it to support a wider range of device tar-
gets including X86, ARM, AMD, Nvidia, and TCE [16], making it our
preferred choice for implementing a RISC-V back-end. Supporting
OpenCL on RISC-V provides several research opportunities. First,
OpenCL enables the evaluation of custom parallel processor design
leveraging the existing large ecosystem of parallel applications and
benchmarks written in OpenCL. Second, it enables the exploration
of the design space of our processor including introducing new ISA
extensions to achieve desired power and energy targets. Third, it
allows the exploration of new application-specific compiler opti-
mization techniques that RISC-V-based parallel processors could
leverage to improve performance.

In this work, we extended the POCL [15] Open-source imple-
mentation of OpenCL to target RISC-V CPUs. Our work not only
cover commodity multi-core RISC-V processors, but also plethora
of low-profile embedded RISC-V CPUs that often do not support
atomic instructions or multi-threading. An overview of the pro-
posed compilation flow is shown in figure 1, highlighting the POCL
compiler and runtime components and our specialization to sup-
port RISC-V CPU targets. The purple components are modifications
to the baseline system.

This paper makes the following key contributions:

o We detail the implementation of the OpenCL compiler exten-
sion for supporting RISC-V linux-capable processors, which
are CPU implementations with support for multi-threading
and atomic instructions.

e We detail the implementation of the OpenCL compiler ex-
tension for supporting RISC-V newlib-capable processors,
which are low-profile CPU implementations without atomic
instructions or multi-threading support.

e we introduce a new kernel execute technique called kernel
static registration which enables the automatic registration
of built-in static kernels for OpenCL. A technique that makes
it possible to execute multiple OpenCL kernels on low profile
devices lacking file system support.

e We present an evaluation of our compiler extension using
a series of OpenCL kernels running on the virtualization
platform with Fedora operating system.

2 BACKGROUND ON POCL

POCL is an open-source Performance Portable OpenCL Implementa-
tion that supports various types of target devices, including general-
purpose processors (e.g. x86, ARM, Mips), general-purpose GPU (e.g.
Nvidia), and custom TCE-based accelerators [16]. The custom accel-
erator support provides an efficient solution for enabling OpenCL
applications to use hardware devices with specialized acceleration
(e.g. SPMV, GEMM). Figure 1 illustrates the system architecture of
the POCL framework, which includes a runtime shared library im-
plementing the OpenCL API and an LLVM-based back-end compiler
for compiling the kernels.

The POCL runtime implements three distinct execution layers:
1) the actual OpenCL runtime API calls, 2) a device-independent
common interface where each device target implementation plug
into to specialize particular operations. This device independent
layer implements the common operations needed by the devices

Tine Blaise, Seyong Lee, Jeff Vetter, and Hyesoon Kim

such as the compiler driver, the file system abstraction, the memory
abstraction, threading, and synchronization libraries. 3) a device-
specific layer where target hardware dedicated specializations are
implemented, such as native compilers , hardware resource manage-
ment, and kernel execution. There are five classes of target devices
currently supported in POCL (Figure 1): 1) The basic or pthread
devices which are tailored towards standard multi-core processors
such Intel X86 or ARM. 2) PTX device class for Nvidia GPU accel-
erators. 3) HSA device class for AMD GPU accelerators. 4) TCE
device class for compiler-generated application-specific processors.
5) Accel device for fixed-function custom accelerators. When ex-
ecuting on GPU accelerators, POCL compiler will export PTX for
NVidia devices and HSAIL [20] IR for HSA compatible devices. At
runtime, POCL invokes the back-end compiler of the given GPU
class with the provided PTX or HSAIL IR.

The POCL back-end compiler (Figure 1) processes the OpenCL
application kernel and applies a custom set of workgroup trans-
formation passes on the kernel to handle barriers and implement
low-level device-specific parallelization. There is also a built-in
library that implements optimized device-specific OpenCL func-
tions such as transcendental math operations (e.g. sin(), cos(), tan()).
The reason for supporting this custom library is to provide more
efficient implementations of those routines than what LLVM would
produce by default. It also enables direct access to custom device in-
structions when targeting TCE-based accelerators. POCL supports
target-specific execution models, including SIMT, MIMD, SIMD,
and VLIW. On platforms supporting MIMD and SIMD execution
models such as CPUs, the POCL compiler attempts to pack as many
OpenCL work-items in the work-goup to the same vector instruc-
tion if SIMD is supported, then the POCL runtime will distribute
the remaining work-items among the active hardware threads on
the device with provided synchronization using the operating sys-
tem’s threading library. On platforms supporting SIMT execution
model such as GPUs, the POCL compiler delegates the distribution
of the work-items to the hardware to spread the execution among
its various SIMT cores, relying on the device to also handle the
necessary synchronization. On platforms supporting VLIW execu-
tion models such as TCE-based accelerators, the POCL compiler
attempts to "unroll” the parallel regions in the kernel code such that
the operations of several independent work-items can be statically
scheduled to the multiple function units of the target device.

On CPU device targets, the generated kernel implements work-
group callback functions for each functions in the source kernel
program. A workgroup in OpenCL is a collection of workitems to
be scheduled for execution on the device, they represent a three
dimensional matrix and there are multiple of those workgroups
forming another multi-dimensional matrix called NDRange (see
Figure 2). Listing 1 illustrates the signature of a kernel call function.
This callback function is invoked at runtime by a thread executing
on the target device with the kernel arguments, a context object,
and the active (x, y, z) workgroup offsets. The kernel context object
passed to the call to provide workgroup dimensions. Internally the
workgroup callback function implements the workgroup’s iteration
to invoking each workitem call.

At the end of the compilation phase, POCL will package the
compiled kernel into the POCL Binary format. The structure of this
binary file is illustrated in Figure 4-A. The structure consists of a

Bringing OpenCL to Commodity RISC-V CPUs

Conference’17, July 2017, Washington, DC, USA

Name Version Target status Url G| s DRange

Intel Beignet 2.0 x86 Closed https://cgit.freedesktop.org/beignet WG WG || el

Intel Neo 2.1 X386 Active https://01.org/compute-runtime ." Workgroug ™~ . z
POCL 1.2 x86, ARM Active https://github.com/pocl/pocl wer Work

AMD, TCE, PTX V| tem "7 item

ROCm 1.2 AMD Stable https://github.com/RadeonOpenCompute

TI-OpenCL 1.1 TI Closed https://git.ti.com/opencl/ti-opencl

Shamrock 1.2 ARM Closed https://git.linaro.org/gpgpu/shamrock.git
libcle 1.2 AMD, PTX Closed https://libclc llvm.org/
Clover 1.1 AMD Closed | https://people.freedesktop.org/ steckdenis/clover/

Table 1: Open-Source OpenCL Implementations

device build hash to identify the kernel’s identity in association
with its target device architecture and compiled device-independent
compiled LLVM bytecode of the kernel. This bytecode is extracted at
runtime and compiled for the target device using its native compiler.

Listing 1: POCL Kernel Invocation

pocl_context {
num_groups [3];
uint global _offset [3];

1

2 struct

3

4

5 uint work_dim;
6

7

8

9

uint

uint local_size [3]
char« printf_buffer;

s

10 void run_workgroup(const voids arguments,

11 const poclfcontext* context ,
12 int x,

13 int y,

14 int z)

17 for (int i: x -> context->local_size [0]) {

18 for (int j: y -> context->local_size[1]) {
19 for (int k: z -> context->local_size[2]) {
21 }

22 }

23 }

24}

3 RELATED WORK

Table 1 summarizes the current status of open-source OpenCL
run-time implementations.

Intel Beignet [13] was one of the original first open-source im-
plementations of OpenCL on general-purpose CPUs. The software
was only supported on Intel X86 Architecture, taking advantage of
its advanced SIMD instruction set to optimize the kernel inner loop.
The software is not in active development anymore, being replaced
by the current Intel Neo.

Intel Neo [14] is the latest implementation of an open-source
parallel API by Intel that supports both OpenCL and Level-Zero.
Level Zero is Intel’s bare-metal software interfaces that provide
application direct access to the processor’s acceleration services for
fine-grain performance optimizations. Similar to Beignet, Intel Neo
only targets Intel architecture.

Figure 2: OpenCl Execu-
tion Model

Clover [23] and ROCm [7] are open-source implementation of
OpenCL targeting AMD GPUs. Clover is limited to OpenCL version
1.1 and is not anymore in active development. ROCm is actively
maintained by AMD but simular to Intel Neo, the software support
is restricted to AMD processor architectures.

Shamrock [19] is an open-source implementation of OpenCL
targeting ARM. It is an adapted fork of the Clover framework with
no further development beyond OpenCL 1.2 support.

TI-OpenCL [12] is an open-source implementation of OpenCL
targeting Texas Instruments’s Digital Signal Processors. The de-
vice target for this implementation is too restrictive for a possible
consideration to extend the support for RISC-V.

Libclc [18] is an open-source implementation of OpenCL target-
ing Nvidia GPUs. The framework compiles OpenCL into PTX IR for
export to Nvidia native compiler. Its target device base is restricted
to PTX, and future development has halted.

POCL presents the most promising path for extending a sup-
port for RISC-V since it supports the largest number of instruction
set architectures, showing its flexibility in adapting for a new ar-
chitecture. Also, POCL implements the support for ARM, which
uses cross-compilation similar to RISC-V. Another advantage that
POCL has is its LLVM-based back-end compiler which makes it eas-
ier to implement custom optimization passes. Lastly, POCL is still
in active development with new features being added to support
OpenCL capabilities beyond version 1.2.

4 OPENCL SUPPORT FOR LINUX-CAPABLE
RISC-V CPUS

The Linux-capable RISC-V CPUs support the necessary ISA capabil-
ities to run the Linux operating system, specifically atomic, control
status registers, and fence instructions, described via extensions A,
Zicsr, and Zifencei, respectively. The following modifications to the
POCL framework were necessary to support Linux-capable RISC-V
CPUs: 1) Registering a new device target for the RISC-V Linux class
such that users for the framework will use the configuration class
for their specific hardware. This new target is a derivation of the
existing CPU device class that uses the operating system threading
model to execute the kernel. 2) Enabling the runtime to compile
into a RISC-V shared library via cross-compilation 3) Adding a new
mode of execution for offline kernel compilation. Figure 3 illustrates
the new compilation pipeline for Linux-capable RISC-V CPUs on

Conference’17, July 2017, Washington, DC, USA

Tine Blaise, Seyong Lee, Jeff Vetter, and Hyesoon Kim

NI ¢) 3 0
POCL RISC-V . -
kernel.cl Emg le?.nCL Transformation Cross- Eynar;nlc é)CL Bltr_1ary kernel pocl
ompilation P Compilation ernel.so eneration
\
________ X 5
Open Kemel : RISCV
RBnt\me - Dynamic Library; Cross- =3 opencl.so
! Loader : Compilation
e . J
® S Program
- —p- clCreateProgramWithBina Cross- —} -
Application i g 0 Compilation Binary

Figure 3: Compilation Pipeline for Linux-Based RISC-V Support

AN

DEVICE BUILD HASH

DEVICE BUILD HASH KERNEL RUNTIME
@ DESCRIPTION
PROGRAM META DATA
BYTECOCE
PROGRAM
BINARY

Figure 4: (a) Original POCL Binary Structure. (b) RISC-V
POCL Binary Structure.

POCL showing three separate flows for the kernel, the OpenCL run-
time, and the OpenCL application. The Kernel compilation follows
four stages: 1) the Clang compilation where the OpenCL kernel to
converted to LLVM IR. 2) the POCL transformation passes where
built-in functions optimizations and barriers handling take place.
3) cross-compilation of the transformed kernel to RISC-V shared
library. 4) Packaging of the kernel into POCL binary format to be
loaded at runtime. For the OpenCL runtime compilation flow, we
modified the kernel launcher to load the pre-compiled shared library
directly from the POCL binary file (5) instead of compiling it at run
time as default. On the application side, cICreateProgram WithBi-
nary() is now used instead of the default cICreateProgram() API to
directly load the kernel from the POCL binary file (7).

4.1 Offline kernel Compilation

The most important change needed in POCL to support RISC-V
Linux CPU was the support for offline compilation, the ability to
pre-compile the kernel on the host computer and load it at runtime
during the application execution. The current implementation of
POCL compiles the kernel to native binary at runtime, and only
the OpenCL to LLVM transformation can be operated offline. This
design was done mainly to support portability with multiple plat-
forms. To support offline native compilation, we modified the POCL
binary file format to store pre-compiled kernel binaries (Figure 4-B)
instead of the original LLVM program bytecode (Figure 4-A). The

new file format keeps the device hash and an array of kernel de-
scriptions with metadata and the pre-compiled shared library. We
need an array because a single OpenCL kernel file may contain
multiple kernel functions which are compiled separately. The ker-
nel metadata consist of the information needed to build the POCL
runtime context used when invoking the kernel (listing 1)

5 OPENCL SUPPORT FOR NEWLIB-CAPABLE
RISC-V CPUS

The Newlib-capable RISC-V CPUs do not support the necessary ISA
capabilities to run the Linux operating. These low-profile embedded
RISC-V processors are ubiquitous in the domain of IoT and edge
computing. This class of CPUs uses the Newlib [6] library as a sys-
tem platform for building and running applications on the device.
Newlib provides a lightweight implementation of the C standard
library in which requirements for the file system and other I/O
services have been removed. Supporting Newlib-capable CPUs on
POCL presents several challenges: 1) The lack of a file system means
that the application will have to be packaged and distributed differ-
ently. 2) The lack of multi-threading capabilities means that kernel
execution will have to take place on the application thread. To ad-
dress the lack of a file system support on NewLib-capable CPUs, we
devised a new technique called static kernel registration to enable
the OpenCL runtime to run on Newlib-capable CPUs and support
applications with multiple kernels. The following modifications to
the POCL framework were necessary to support Newlib-capable
RISC-V CPUs: 1) Registering a new device target for the RISC-V
Newlib class such that users for the framework will use the con-
figuration class for their specific hardware. 2) Adding a codegen
pass to the back-end compiler to support static kernel registra-
tion. 3) Modifying the OpenCL runtime to support static kernel
registration.

Figure 5 illustrates the new compilation pipeline for Newlib-
capable RISC-V CPUs on POCL, showing three separate flows for
the kernel, the OpenCL runtime and the OpenCL application. In
the kernel compilation flow, we added a new stage (3) after POCL
transformation passes where we transform the kernel call interface
to support automatic static registration. For the OpenCL runtime
compilation flow, we modified the kernel loading module to sup-
port kernel lookup (5) and invocation (7). The OpenCL applications

Bringing OpenCL to Commodity RISC-V CPUs

Conference’17, July 2017, Washington, DC, USA

-
Compilation
y,

RISC-V

—>

Cross- kermnel.a

Figure 5: Compilation Pipeline

POCL Binary
Kernel0..N Kernel0..N
+dlopen direct call

OpenCL Runtime

OpenCL Runtime

T dlopen
T

OpenCL Application OpenCL Application

Figure 6: Kernel Invocation Sequence Comparison between
Linux (A) vs Newlib (b) POCL Runtime Implementations

running on NewLib RISC-V now use the clCreateProgramWith-
BuiltinKernels() OpenCL API to load any registered static kernel
at run time. Because Newlib-capable CPU devices cannot host a
file system, we statically link the kernel together with the OpenCL
runtime and the application into a single program binary (9) that
is executed on the device as a standalone executable. Figure 6 con-
trasts the difference between the Linux vs NewLib kernel invocation
sequences, showing how all components in NewLib are contained
in a single executable making internal direct calls between them.

5.1 Static Kernel Registration

Static kernel registration addresses the challenge of static kernel
invocation inside POCL with multiple functions. In POCL, each
kernel function is compiled separately, and a unique workgroup
runtime function is generated for each. Listing 2 shows simple
OpenCL kernel with multiple function entries Foo and Bar, the
POCL compiler will generate separate workgroup runtime functions
run_workgroup_Foo() and run_workgroup_Bar(), respectively.

Listing 2: OpenCL kernel with multiple functions

1 __kernel void Foo(__global float «dst,

2 __global const float «src,
3 int size)

4 {...}

5

6 __kernel void Bar(__global float «dst,

7 __global const float «src,
s int size)

9 {...}

lang OpenCL POCL ewLib Static
kernel.cl Cor% \Igmon Transformation Kernel
p Passes Transformation
® @emel Lookup : @) tatic Kernel
Runtime >} Service ! ' Invocation
i i [}
Agglfclgtio;n —‘;‘ cICreateProgralethBulItlnKernels()

RISC-V
Cross-Linking

Program
Binary

—>

opencl.a

~
RISC-V
Cross-
Compilation
J

for Newlib-capable RISC-V Support

RISC-V
Cross-
Compilation

—>

S

Our new compiler transformation inserts a kernel registration
block into the kernel static library to instantiate the workgroup
functions registration. Listing 3 illustrates the speudo-code of the
registration block. The main concept behind this technique is to
exploit C++’s automatic construction of static objects [1]. Using an
unnamed namespace, we define a local class for each kernel func-
tion with a default constructor that calls into the external __regis-
ter_static_kernel() routine to register itself, providing the arguments
and local variables needed to call the workgroup function.

Listing 3: Static kernel auto-registration
)s

int __register_static_kernel (...
void run_workgroup_Foo (...);

namespace {
class auto_register_kernel_t {
public:
auto_register_kernel_t ()
static int arg_types[]
static int local_sizes[]
__register_static_kernel(
"Foo"
run_workgroup_Foo ,
<arguments >,
<locals >);

—_
-

{ To, T1, ...
={ So, S1, ... };

15 }
16 s
static

auto_register_kernel_t __Foo__

5.2 Running Statically Compiled OpenCL
Applications

We also modified the OpenCL runtime in POCL such that we can
support static registration of kernel functions. Listing 4 shows the
speudo-code of the static kernel support routines that were added
to the OpenCL runtime. Starting with the __register_static_kernel()
routine implementation, referenced earlier during the kernel com-
pilation (Listing 3), this code allocates new static kernel entries
for each registered functions into a global static table. The next
routine __query_static_kernel() handles the query of the registered
kernels by iterating thru each item in the global table to match
the input name. The query mechanism is integrated with the pub-
lic clCreateProgramWithBuiltinKernels() OpenCL API call using
POCL’s internal API Calls pocl_newlib_supports_builtin_kernel()
and pocl_newlib_get_builtin_kernel_metadata().

Conference’17, July 2017, Washington, DC, USA

At rumtime, when the OpenCL application calls cICre-
ateProgramWithBuiltinKernels()) =~ POCL will first call
pocl_newlib_supports_builtin_kernel() to see if the speci-
fied kernel function is currently registered, then will call
pocl_newlib_get_builtin_kernel_metadata() to load the kernel
metadata necessary for the workgroup function invocation
(callback function, arguments, and local variables). Later, when the
application is ready to execute the kernel, the kernel’s workgroup
callback function is invoked.

Listing 4: Static kernel Runtime Registration

1 struct kernel_info_t;

2

3 static int g_num_kernels = 0;

4 static kernel_info_t g _kernels [MAX KERNELS];
5

6 void __register_static_kernel (...) {

7 auto kernel = g_kernels + g _num_kernels++;
8 kernel ->name = name;

9 kernel ->callback = callback;

10 kernel ->arguments = arguments;

11 kernel ->locals = locals;

12}

13

14 bool __query_static_kernel (...) {

15 for (auto kernel g_kernels) {

16 if (strcmp(kernel ->name, name) != 0)

17 continue ;

18 +callback = kernel->callback;

19 ~arguments = kernel->arguments;

20 «»locals = kernel->locals;

21 return true;

22 }

23 return false;

24}

25

26 bool pocl_newlib_supports_builtin_kernel (...) {
27 return __query_static_kernel (kernel name, ...);
8}

29

30 void pocl_newlib_get_builtin_kernel_metadata (...) {
31 _query_static kernel(kernel name, ...);

32

6 EVALUATION
6.1 Experimental Setup

To evaluate our implementation, we use QEMU [4] virtualization
platform targetting RISC-V 64-bit. The QEMU system memory con-
figuration was 2 GB. We used Federa operating system version 32.
The guest operating system was Ubuntu 18.04 running a 4-core
Intel i7 with 16GB of system memory. We have classified the bench-
marks into a compute bounded group that includes sgemm, vecadd,
sfilter, and sxapy, and a memory bounded group that includes nearn,
gaussian, and bfs. Table 2 shows the RISC-V CPU configurations
that we tested. The lowest profile with NewLib support and no
floating-point hardware was able to execute on the Spike [21] sim-
ulator and QEMU. This configuration is well suited for embedded
devices in the IoT sector.

Figure 7 shows our OpenCL benchmark suite executing on
QEMU for three configurations, the Newlib-RISCV POCL, the Linux-
RISCV POCL on 4 threads, and the Linux-RISCV POCL on 8 threads,
the runtime latency is in milliseconds. All applications running on
Newlib were compiled statically as standalone binaries with their
kernel and the POCL runtime. The Linux-capable applications load

Tine Blaise, Seyong Lee, Jeff Vetter, and Hyesoon Kim

RISC-V Architecture || POCL Device Class | Tested Environments
RV32im -lp32 RISCV-NewLib Spike, QEMU
RV32imf -Ip32f RISCV-NewLib Spike, QEMU
RV64imfd -1p64d RISCV-NewLib QEMU
RV32gc -1p32d RISCV-Linux QEMU
RVe64gc -1p64d RISCV-Linux QEMU

Table 2: Tested RISC-V CPUs Configurations

the POCL runtime and kernel from shared libraries. The Newlib ap-
plications are much slower as expected because it is single-threaded
and assumes an architecture without multi-core support. Increasing
the number of threads in QEMU improves the execution time for
the Linx-RISCV POCL across all applications. We use QEMU mainly
for validation that the system works. However, on actual physical
hardware, these OpenCL applications’ performance will depend on
the underlying microarchitecture it will be running on.

OpenCL Benchmarks on RISC-V

15
10
| Il
0

vecadd sgemm sfilter saxpy nearn gaussian

m NewlLib Linux 4T m Linux 8T

Figure 7: OpenCL Benchmarks Runtime Latency (ms) on
RISC-V 64-bit QEMU

7 CONCLUSION

Expanding the RISC-V ecosystem to include parallel applications via
OpenCL opens the door to the large segment of scientific comput-
ing. Furthermore, it provides hardware designers new workloads
for exploring new microarchitecture designs and optimizations.
In this work, we proposed an implementation of this capability
by extending the POCL framework to support RISC-V. Our ex-
tension particularly targets today’s large segment of commodity
RISC-V cores without SIMD vector extensions and also expands
to low-profile embedded processors with minimal capabilities. We
validated our design using Spike and QEMU virtualization platform.
This work is being made available as an open-source project for
public use.

REFERENCES

[1] A. Alexandrescu, Modern C++ design: generic programming and design patterns
applied. Addison-Wesley, 2001.

[2] AndesCore, “Andescore ax25mp multicore” [Online]. Available: http://www.
andestech.com/en/products-solutions/andescore-processors/riscv-ax25mp

[3] K. Asanovic, RISC-V Vector Extension. [Online]. Available: https://github.com/
riscv/riscv-v-spec/blob/master/v-spec.adoc

http://www.andestech.com/en/products-solutions/andescore-processors/riscv-ax25mp
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-ax25mp
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc

Bringing OpenCL to Commodity RISC-V CPUs

(4]
(5]
(6]

(7]
[8

(]

[10]

[11]
[12]

[13]
[14]

F. Bellard, “Qemu, a fast and portable dynamic translator” in USENIX annual
technical conference, FREENIX Track, vol. 41. Califor-nia, USA, 2005, p. 46.

M. A. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara: A 1
GHz+ scalable and energy-efficient RISC-V vector processor with multi-precision
floating point support in 22 nm FD-SOL” CoRR, vol. abs/1906.00478, 2019.

J.J. Corinna Vinschen, “Newlib,” http://sourceware.org/newlib, 2001.

A. M. Devices, “Rocm platform,” https://rocm.github.io.

F. Elsabbagh, B. Asgari, H. Kim, and S. Yalamanchili, “Vortex risc-v gpgpu system:
Extending the isa, synthesizing the microarchitecture, and modeling the software
stack,” https://carrv.github.io/.

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in 2011 38th Annual International Sym-
posium on Computer Architecture (ISCA), June 2011, pp. 365-376.

G. Gobieski, A. Nagi, N. Serafin, M. M. Isgenc, N. Beckmann, and B. Lucia, “Manic:
A vector-dataflow architecture for ultra-low-power embedded systems,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, 2019, pp. 670-684.

T. Instruments, “Digital signal processors (dsp) opencl” [Online]. Available:
http://www.ti.com/processors/digital-signal-processors/libraries/OpenCL.html
——, “Opencl for texas instruments dsps.” [Online]. Available: https://git.ti.com/
cgit/opencl/ti-opencl

Intel, “Beignet opencl library,” https://cgit.freedesktop.org/beignet.

——, “Intel compute runtime,” https://01.org/compute-runtime.

(15]

[16]

Conference’17, July 2017, Washington, DC, USA

P. Jaaskelainen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala, and H. Berg,
“Pocl: Portable computing language,” International Journal of Parallel Program-
ming, pp. 752-785, 2015.

P. O. Jaskeldinen, C. S. de La Lama, P. Huerta, and J. H. Takala, “Opencl-based
design methodology for application-specific processors,” in 2010 International
Conference on Embedded Computer Systems: Architectures, Modeling and Simula-
tion, July 2010, pp. 223-230.

Khronos OpenCL Working Group, The OpenCL Specification, Version 1.1, 2011.
[Online]. Available: https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
M. Larabel, “Libcle: An opencl c library implementation,” https://libclc.llvm.org.
G. Pitney, “Shamrock: An opencl implementation based on clover,” https://git.
linaro.org/gpgpu/shamrock.git.

B. Sander and A. S. FELLOW, “Hsail: Portable compiler ir for hsa” in Hot Chips
Symposium, 2013, pp. 1-32.

SiFive, “Spike risc-v isa simulator,” https://github.com/riscv/riscv-isa-sim, 2018.
D. Singh, “Implementing fpga design with the opencl standard”
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/wp/wp-01173-opencl.pdf, 2011.

D. Steckelmacher, “Clover: Opencl 1.1 software implementation,” https://people.
freedesktop.org/~steckdenis/clover.

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v instruction set
manual. volume 1: User-level isa, version 2.0,” EECS Department, UC Berkeley,
Tech. Rep., 2014.

http://sourceware. org/newlib
https://rocm.github.io
https://carrv.github.io/
http://www.ti.com/processors/digital-signal-processors/libraries/OpenCL.html
https://git.ti.com/cgit/opencl/ti-opencl
https://git.ti.com/cgit/opencl/ti-opencl
https://cgit.freedesktop.org/beignet
https://01.org/compute-runtime
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://libclc.llvm.org
https://git.linaro.org/gpgpu/shamrock.git
https://git.linaro.org/gpgpu/shamrock.git
https://github.com/riscv/riscv-isa-sim
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01173-opencl.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01173-opencl.pdf
https://people.freedesktop.org/~steckdenis/clover
https://people.freedesktop.org/~steckdenis/clover

	Abstract
	1 Introduction
	2 Background on POCL
	3 Related Work
	4 OpenCL Support for Linux-capable RISC-V CPUs
	4.1 Offline kernel Compilation

	5 OpenCL Support for NewLib-capable RISC-V CPUs
	5.1 Static Kernel Registration
	5.2 Running Statically Compiled OpenCL Applications

	6 Evaluation
	6.1 Experimental Setup

	7 Conclusion
	References

