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ABSTRACT
Recently, there has been a sharp rise in the number of microar-
chitectural vulnerabilities being exploited on modern processors,
including a variety of Spectre attacks. Current software mitigation
has significance performance overhead and often requires modifi-
cation of the source code. Architecture augmentations are mostly
verified by simulators, without real hardware implementation and
evaluations.

In this project, we propose an efficient taint-tracking solution
for secure speculative execution (SSE-RV) that protects against the
most prominent speculative execution attacks. We take a secure-by-
design approach, leveraging the RISC-V open hardware ecosystem,
and implement our taint tracking mechanism in the latest Berkeley
Out-of-Order Machine (SonicBOOM). We prototype our SSE-RV
processor on an FPGA running Linux. Our results show that we
can protect against Spectre-v1, v2, and v5, while achieving 0.66
CoreMark/MHz for single small BOOM core performance. We also
synthesize our processor core targeting 130nm BiCMOS technology
for implementation cost evaluation. Our design only introduces a
0.42% increase in the gate count and a 1.7% increase in the total
core power consumption, compared to an unprotected core. Our
defense scheme is general and can be extended to protect against
other transient execution attacks.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and countermea-
sures; Hardware attacks and countermeasures.
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1 INTRODUCTION
Modern processors incorporate many performance features that are
designed to leverage the spatial and temporal parallelism present in
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the instruction streams. Out-of-order (OOO) and speculative execu-
tion have been used to boost performance of processors. Although
these microarchitectural optimizations are critical to improve the in-
structions executed per cycle (IPC), they can inadvertently present
microarchitectural security vulnerabilities. Meltdown [15] and Spec-
tre [13], and a series of transient execution attacks are the result of
these security-blind hardware optimizations. Transient execution
attacks exploit microarchitectural vulnerabilities to access sensi-
tive data illegally (bypassing security checking in place), and leak
the data to an adversary application through a microarchitectual
covert channel. The most commonly used covert channels rely on
data or instruction caches, while more recent ones target transla-
tion lookaside buffers (TLBs), branch target buffers (BTBs), pattern
history table (PHT), single-instruction multiple-data (SIMD) units,
execution ports, and floating point units [2, 6, 7, 9, 13, 14, 18].

Various schemes have been proposed to protect against Spec-
tre attacks at different levels of the compute stack. For software
approaches, memory barriers are added after the speculative con-
structs at an application level, [5], eager floating point unit-FPU
switching is performed at an operating system (OS) level [20], and
the branch prediction can be disabled at a firmware level [19]. For
hardware approaches, existing modules can be augmented as done
in a dynamically-allocated way guard-DAWG [12], or new secure
modules can be introduced, e.g., an invisible speculative buffer [25]
and speculative taint tracking-STT [28]. Other approaches such as
ConText [17] require modifications across application, compiler,
OS, and hardware.

However, there are three common weaknesses present in current
protection mechanisms. First, there is a high degree of implementa-
tion overhead in execution time, area, or power consumption. For
example, adding fence instructions after each branch to make them
non-speculative can impact the performance by 88% [5]. Disabling
speculation [19] at firmware level can lead to 7x performance loss or
even more. Hardware solutions like on-chip shadow buffers come
with huge area and power overheads, e.g., InvisiSpec[25] incurs
35,000𝜇𝑚2 additional area usage and extra 8.8𝑝𝐽 of dynamic en-
ergy per read/write transaction under 16𝑛𝑚 technology. Second,
some require extra programming effort. For example, ConText [17]
require the user to annotate sensitive data in the source code or
do code transformation, and also compile the code with specific
flags. Third, there lacks real hardware prototyping. Majority of the
hardware approaches are only evaluated by simulation, including
STT [28], Speculative Data-Oblivious Execution [27].

In review of the existing approaches, we recognize hardware-
level taint tracking [28] appears to be themost effective and efficient
solution against transient execution attacks. In this paper, we take a
secure-by-design approach and leverage the RISC-V open hardware
ecosystem to design an efficient taint tracking scheme to guard
against Spectre attacks, SSE-RV. We target the latest generation of
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Berkeley Out-of-Order Machine (SonicBOOM) [29]. The Spectre
attacks include Spectre-v1 (bypassing bounds checking), Spectre-v2
(branch target injection), Spectre-v5 (return stack buffer attack).
The reason for picking these three is they involve different microar-
chitectures but share similar attack procedure and consequence. We
define the following design principles for our protection scheme: 1)
reuse the existing microarchitecture as much as possible to reduce
area and power overhead, 2) design simple and easily expandable
hardware, 3) minimize the performance penalty by selectively block-
ing the transient instructions and stalling the pipeline, while fully
benefiting from OOO and speculative execution.

We prototype the SSE-RV protected SonicBOOM on a digilent
Genesys-2 FPGA board, running a 64-bit Debian OS. We port the
open-source Proof-of-Concept (PoC) codes for the three selected
attacks [8] to SonicBOOM and evaluate our prototype. Our results
show protection against all three variants leaking none of the secret
byes, while the original SonicBOOM is vulnerable. We synthesized
our SSE-RV core targeting a 130nm BiCMOS ASIC technology and
found an increase of only 0.42% in the gate count and 1.7% increase
in the total core power consumption, compared to the original core.

The contributions of this research are summarized as follows:
• We implemented a novel taint tracking architecture based
on SonicBOOM, SSE-RV, that can protect against Spectre
attacks, outperforming the state-of-the-art.

• We developed an FPGA prototype for the proposed SSE-RV.
• Weevaluated the security guarantees delivered by our protec-
tion scheme, as well as area/power/performance overheads.

The rest of this paper is organized as follows. In Section 2, we
present background materials. In Section 4, we describe our ex-
perimental setup, and present our security and implementation
evaluation results. In Section 5, we discuss the limitations of our
work and propose future extensions. Finally, we conclude the paper
in Section 6.

2 BACKGROUND
Next, we review out-of-order (OOO) execution and speculative
execution on a CPU, particularly vulnerable microarchitectural fea-
tures on SonicBOOM architecture. We describe the different phases
of a general transient execution attack, and take the Spectre vari-
ants for example. We also compare state-of-the-art taint tracking
mechanisms against Spectre attacks.

2.1 SonicBOOM Vulnerable Speculative
Execution

The SonicBOOM microarchitecture [29], just as counterparts on
other modern processors, has two performance features that be-
come problematic in terms of security: OOO execution and specula-
tive execution. In OOOmode, instructions are scheduled to available
functional units for execution in parallel, in a different order than
the program order [11]. A reorder buffer (ROB) tracks the status of
each instruction in the pipeline. Instructions are queued in the ROB
in instruction fetch order, and committed when their execution is
complete and they reach the head of the ROB.

Speculative execution addresses the penalty incurred by control
flow instructions. With the help of some prediction microarchi-
tecture, instructions are executed speculatively in an aggressive

Next-Line Predictor (NLP)

Branch Target Buffer (BTB)

Return Address Stack (RAS) Bi-Modal Table (BIM)

Fetch 
PC

PC tags val ret jmp bidx PC target

hit? Conditional branch?

Taken/Not TakenJAL/JARL (x1)

Return Address (RA)

Hit Target=RAidx

Figure 1: SonicBOOM next-line predictor (NLP).
fashion, rather than being stalled until the condition is resolved.
If a speculative instruction turns out to be on the correct path, it
will be committed and become architecturally visible; otherwise, it
(and the following transient instructions) will be squashed, and the
processor state is rolled back to a valid state.

The RISC-V control flow instructions include conditional branches
(e.g., branch if less than or equal, ble), unconditional jumps (e.g.,
jump register, jr rs, or jump and link, jal offset), call instructions
(call offset), and return instructions (ret). These instructions
are composed of fused 𝜇𝑜𝑝s. For example, a call instruction is
implemented by a 𝜇𝑜𝑝 for address generation followed by a jalr
𝜇𝑜𝑝 to store the return address and jump to the subroutine start
address. Also, a ret instruction is implemented using a jalr 𝜇𝑜𝑝 ,
with register x1 (ra) containing the return address.

In SonicBOOM, all control flow instructions may trigger specu-
lative execution, supported by microarchitecture prediction units.
There are two levels of instruction flow prediction in SonicBOOM:
1) a simple next-line predictor (NLP) and 2) a more sophisticated
multi-way backing predictor (BPD). There are five sub-stages (F0-F4
cycles) in the SonicBOOM’s Fetch stage. During the Fetch stage, a
PC address is used to look up the instruction TLB for the physical
address. I-Cache is then looked up for a fetch packet (instruction
block). If there are control flow instructions in the fetch packet,
they can be detected and used to consult NLP and BPD for possible
control flow change (redirect logic to determine the target address
of control flow instructions).

Fig. 1, shows the structure of the NLP in SonicBOOM, which con-
sists of a branch target buffer (BTB), a Return Address Stack (RAS),
and a Bi-Modal (counter) Table (BIM). The BTB is fully-associative
and the RAS is a LIFO structure with a limited number of entries
(16-32). The goal is to make a fast, but reasonably accurate, target
address prediction. The PC address’s tag is used to probe the BTB to
find a match. If there is a BTB hit, a control flow instruction exists
in the fetch packet, and one of the three buffers is consulted for
prediction depending on the instruction. If it is a return instruction,
RAS is looked up. If it is an unconditional jump instruction, the
BTB directly predicts the target. If it is a conditional branch, the
hysteresis bits in the BIM are used to determine whether the branch
is taken or not taken. The target address prediction is only needed
when predicted taken, and is provided by the BTB. The BTB learns
from the target history of taken branches or jumps. The RAS is up-
dated once the instructions in the Fetch Packet have been decoded:
return address is pushed onto the RAS when the instruction is a
call; the top of RAS is popped when the instruction is a return.

The BIM hysteresis bits cannot learn very complicated or long
history patterns. SonicBOOM uses a BPD, a high performance
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TAGE[21] predictor that makes direction predictions with a high
accuracy for dense areas with many conditional branches. The BPD
is accessed throughout the Fetch stages and in parallel with I-cache
and NLP accesses. It eventually provides a bit-vector of taken/not-
taken predictions, where each bit corresponds to an instruction
in the fetch packet (1: taken, 0: not taken). The BPD is generally
updated during the commit stage.

Similar to other processors with branch prediction, SonicBOOM
speculatively executes the predicted target addresses of a predicted
taken conditional branch, a jump, or a return instruction. This
transient execution changes the microarchitectural state of the pro-
cessor temporary. When the condition is resolved or the real target
is available, in the case of a misprediction, the transiently executed
instructions will be squashed and the processor state (including
the PC) will be rolled back. Note that the branch speculation may
resolve as early as in one fetch sub-stage, or as late as a few hun-
dred cycles later in case of a cache miss for a data/instruction on
which the branch is dependent. Therefore the speculation window
ranges from a couple of cycles to hundreds of cycles. The length of
this window is critical in the success of a Spectre attack. An adver-
sary can exploit transient execution in the speculation window to
tap “architecturally” non-accessible data and transmit it through a
covert channel (e.g., the L1-Cache).

The Load/Store Unit (LSU) is responsible for deciding when
and how to issue memory operations to the memory subsystem.
Decoded memory instructions generate uopLD, uopSTA or uopSTD
𝜇𝑜𝑝s, reserve entries in corresponding queues in the LSU. These
𝜇ops are issued to the address generation unit (AGU) (memaddrcalc)
for calculating the virtual addresses which are sent to TLB. If there
is a TLB hit, the physical address is written into the (load/store)
queue entry in the LSU and the access request is sent to the data
cache (D-cache). Otherwise there is no physical address available
for data cache access. It takes three cycles for D-cache to allocate
any misses in the miss status holding registers (MSHRs) and request
data from L2 cache, eventually used in the WriteBack (WB) stage.
There is an extra overhead of eight cycles for every two loads with
the two MSHRs. Loads are optimistically fired to memory upon
arrival in the LSU to benefit from OOO execution.

2.2 Spectre attacks
Transient execution attacks, including Spectre attacks, can be de-
scribed in six major phases [3]. These phases are:

(1) Preface: the attacker establishes the desired conditions for
triggering the transient execution. For example, by (mis)training
a branch predictor unit to a certain direction for a Spectre-v1,
the attack can provide an invalid input (out-of-bounds value)
to the trigger instruction. Also the receiver of the covert
channel can be set by evicting a probe array out of the cache.

(2) Trigger: the attacker will trigger transient execution (in
data or control flow) through an instruction (e.g., a branch
instruction in Spectre-v1).

(3) Tap: a sequence of transient instructions tap on the secret
data and load it to a speculative register (program invisible).

(4) Covert channel: a transmitter instruction (e.g., a speculative
load) will encode the secret value and transmit it over a
covert channel (e.g., the data cache).

(5) Administer: the processor will reset the pipeline by squash-
ing the mispredicted instructions and rolling back to the
pre-transient state. An exception may be raised by the pro-
cessor at this point (e.g., in Meltdown).

(6) Reconstruct: finally, the attacker will decode the secret re-
ceived through the covert channel (e.g., access the probe array
and time each access using the Flush+Reload method [26]).

Spectre attacks is a type of powerful transient attacks which
exploit speculative execution. The three Spectre variants we target
in this work differ in the first two phases - preface and trigger and
involve different microarchitectures, while the latter four phases are
pretty common. Table 1 describes the two phases of the three Spec-
tre variants, including different instructions and microarchitecture,
and the transiently executed attack agents.

2.3 State of the art defenses
The defenses against transient execution attacks can target any
(combination) of the six attack phases by trading off generalizability
and effectiveness. We discuss two state-of-the-art countermeasures
against speculative attacks, Speculative Taint Tracking (STT) [28]
and Context-Sensitive Fencing (CSF) [22], and show how our SSE-
RV approach differs from these schemes.

STT[28] is a hardware-level taint tracking scheme. It taints data
that is accessed during a speculative window and delays any subse-
quent load with tainted operands until they become untainted. This
effectively cuts off the connection between Phase 3 and Phase 4.
Untainting of registers happens once the instruction that invoked
it becomes non-speculative. This selective speculative execution
property makes STT more efficient in performance, compared to
solutions which delay the execution of every load instruction until
they reach the “visibility point” (e.g., when all older control flow
instructions have resolved) as in InvisiSpec[25]. STT adds 14.5%
performance overhead relative to an unprotected machine.

CSF[22] is a micro-code level defense against Spectre attacks.
It leverages the ability to dynamically alter the decoding of the
instruction stream, injecting fences only when dynamic conditions
indicate they are needed. CSF uses a decoder-level dynamic infor-
mation flow tracker (DLIFT) to taint the PCs of memory loads early
in the pipeline. CSF enables the pipeline to identify tainted accesses
before each stage, supporting speculative execution and insertion
of fences after loads. CSF is not applicable to processors which do
not support microcode updates, such as SonicBOOM. Compared to
STT, their scheme has higher performance overhead.

Our approach combines the benefits of STT and CSF, introducing
a new effective hardware-level taint tracking protection mechanism
with dynamic data memory fencing against Spectre attacks. SSE-RV
has a fully functional FPGA prototype, while STT and CSF are just
modeled using the gem5 simulator [16]. Compared to STT, SSE-RV
does not add extra logic for calculating the “root of taint” in the
rename tables, instead it leverages the existing ROB pointers for
tracking speculations. Also, SSE-RV does not require adding new
fencing 𝜇𝑜𝑝s as in CSF. SSE-RV reduces area and power overheads
to less than 0.5% and 1.7%, respectively. While SSE-RV is general,
it can make all types of speculations which are trackable by ROB
secure with minimal changes to the existing hardware.
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Preface Trigger
Instruction Vulnerability Attack agent

Spectre-v1 mis-train conditional branch direction prediction conditional branch out-of-bound offset mis-speculated path
Spectre-v2 mis-train BTB for branch target prediction call or jump mis-speculated target malicious function
Spectre-v5 craft a malicious gadget after a call site return RAS miss-match with software stack gadget

Table 1: Elaboration of the two phases for the three Spectre variants

3 OUR PROPOSED APPROACH - SSE-RV
In SSE-RV, the destination register of a speculative load instruction
is automatically marked as tainted in a hardware taint file. The taint
is a metadata of the register, and propagates through the pipeline
in parallel to the data. When a subsequent speculative load uses
a tainted address, sent to the LSU, the enforcement policy blocks
the execution of the load (cache covert channel transmitter) by
activating the data memory fencing fence_dmem. Due to memory
fencing, the speculative data cache refill is temporarily disabled and
the MSHRs is cleared, until the load is no longer speculative. For
speculative loads, the speculative condition (trigger) should include
conditional branch, unconditional jumps, and returns, to cover the
three Spectre variant test cases.

We propose a generic solution using Point of No Return (PNR)
signaling from ROB which covers all types of speculation in Sonic-
BOOM.

3.1 PNR in Taint Initialization and Enforcement
The BOOM co-processors (RoCC) expects their instructions to be
in-order and do not withhold misspeculation. To enable issuing
non-speculative instructions to RoCC, the original BOOM devel-
opers add point of no return (PNR) mechanism in the ROB. The
PNR index points to “younger” instructions than the ROB commit
head, marking the next instruction which might misspeculate (e.g.,
unresolved branch instruction) or generate an exception (e.g., di-
vide by zero). Any instructions older than PNR are guaranteed to
eventually commit, although they may have not been executed yet.
We use the "fast PNR" scheme, where the next PNR instruction in
the ROB can be any number of entries away from the current PNR,
not just the next one.

We leverage PNR to guide the SSE-RV taint initialization and
enforcement w.r.t. the speculation condition. As shown in Fig. 2,
the taint initialization unit takes the PNR index (pnr_idx), the
ROB head index (head_idx), and information about the current
𝜇𝑜𝑝 , including its type, the ROB index (uop.rob_idx), and the
propagated taint bits (prop_taint), as inputs. Eq.(1) determines in
every cycle if a 𝜇𝑜𝑝 is possible to squash or guaranteed to commit.
In SonicBOOM, the ROB entries are not used in monotonically
increasing order. Instead, the indexesmove between the ROB entries
dynamically. To identify if an instruction is older than the PNR, we
need to evaluate the 𝑋𝑂𝑅ed comparison of the 𝜇𝑜𝑝 ROB index, the
PNR index, and the ROB head index. For example, one scenario is
if 𝑢𝑜𝑝.𝑟𝑜𝑏_𝑖𝑑𝑥 < 𝑝𝑛𝑟_𝑖𝑑𝑥 𝐴𝑁𝐷 𝑢𝑜𝑝.𝑟𝑜𝑏_𝑖𝑑𝑥 >= ℎ𝑒𝑎𝑑_𝑖𝑑𝑥 𝐴𝑁𝐷

𝑝𝑛𝑟_𝑖𝑑𝑥 >= ℎ𝑒𝑎𝑑_𝑖𝑑𝑥 , the 𝜇𝑜𝑝 is “older” than PNR (and between
PNR and ROB head) and is guaranteed to commit, otherwise it is
still squashable. There are three other scenarios covered by Eq.(1).

(𝑢𝑜𝑝.𝑟𝑜𝑏_𝑖𝑑𝑥 < 𝑝𝑛𝑟_𝑖𝑑𝑥)⊕
(𝑢𝑜𝑝.𝑟𝑜𝑏_𝑖𝑑𝑥 < ℎ𝑒𝑎𝑑_𝑖𝑑𝑥)⊕
(𝑝𝑛𝑟_𝑖𝑑𝑥 < ℎ𝑒𝑎𝑑_𝑖𝑑𝑥)

(1)

If the current 𝜇𝑜𝑝 is a load (uopLD) or its destination register is
previously tainted, and Eq.(1) is not held the corresponding taint

bit is set in the taint file (TF). If Eq.(1) holds, it indicates that the
current instruction will eventually commit. Eq.(1) covers specula-
tion from both the BPD and NLP (BTB and RAS) where Spectre-v1,
and Spectre-v2 and v5 are exploiting, respectively.

3.2 Defense architecture
Fig. 2 shows an architectural overview of SSE-RV. Our speculative
taint tracking protection has the following phases:

(1) Initialization: A taint file is added as a shadow structure for
the physical register file (PRF), which all start at zero.1. At
the WB stage, if the taint initialization unit decides a register
needs to be tainted (with the condition explained in previous
section), the taint file entry corresponding to the load in-
struction is set to 1, in addition to data loaded to the physical
register. Note, the same address is used to access both the
taint file and the physical register file. While a 1-bit taint
value is used in this work, our hardware implementation
supports any number of bits for the taint values.

(2) Propagation: in parallel to each functional unit, there is a
taint propagation block with an OR logic, with two or three
inputs to take in the taint values of the functional unit’s
operands. The output of the OR gate is placed in a 32-entry
FIFO queue (32 cycles is an upper bound delay for any of
the functional units) and read along with the response of the
functional unit. Thus the taint bits propagate synchronously
with the data in the functional unit (same #cycles). Finally,
the propagated taint output is written to the taint file in the
WB stage or used to enforce the protection in the next step.

(3) Enforcement: memory loads that use tainted address regis-
ters are detected at the AGU (memaddrcalc) output. If Eq.(1)
does not hold for the load instruction (it is squashable), a
spec_cond signal is activated. When spec_cond is active
and the load has a tainted address, a speculative load block
signal spec_ld_block notifies the LSU to enable the data
memory fencing, fence_dmem, for all the loads present in the
Load Queue. Data memory fencing prevents refilling the D-
Cache on misses and clears the MSHRs. The spec_ld_block
also notifies the front-end hazard control unit to introduce
dispatch hazards, forcing the pipeline to stall. This makes the
pipeline operate in-order temporarily, until the speculation
condition is resolved.

(4) Untainting: an untainting step is triggered when the tran-
sient instruction passes the PNR (commitable). In the case
of a misprediction, the data and the corresponding taint bits
become invalid (squashed). In case of a correct prediction,
the data is left intact, but all the taint bits in the taint file will
be reset to 0 on the falling edge of spec_ld_block.

We add a custom Control and Status Register (CSR) bit to Sonic-
BOOM for disabling SSE-RV at runtime. By setting the 5th bit in
this custom CSR we can mask out the spec_ld_block, and hence
1SonicBOOM’s physical register file contains both speculative and program registers.
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Figure 2: SSE-RV architectural overview.

disable the protection scheme. We use a csrwi instruction for up-
dating the CSR. This CSR is used for switching between secure
mode and high performance mode for the processor.

4 EXPERIMENTAL RESULTS AND ANALYSIS
In this section we present our experimental results. We describe
our experimental setup and the SSE-RV implementation on FPGA.
We demonstrate how our approach effectively protects SonicBOOM
CPU against Spectre attacks.We also evaluate the performance/pow-
er/area overheads relative to an unprotected SonicBOOM CPU.

4.1 Experimental Setup
We use Chipyard v1.4.0 [1] to generate RTL for a single small-core
SonicBOOM processor, and use Verilator v4.034 for RTL simula-
tions. Our prototype platform is a Genesys-2 board with a Xilinx
XC7K325T-2FFG900C Kintex-7 FPGA using Vivado v2020.1 [23].
The core frequency is set at 100MHz. All of our hardware perfor-
mance results are collected when running the Debian Linux 64-bit
OS with the kernel v5.11.16.

The SonicBOOM small core configuration has a 4-wide fetch,
1-wide decode, 3-wide issue out-of-order speculative pipeline. It
has a pipeline for integer operations, and a separate pipeline for
floating point operations. Each pipeline has a separate register file
(RF). The RAS and ROB each has 32 entries. The LSU connects to
4-way set-associative 16KB DCache and two MSHRs. The I-Cache
has the same dimensions as the D-Cache. The L2 cache size is 512KB
and the Genesys-2 board has a 1GB DRAM (DDR3).

We run an ASIC synthesis flow for the base core and the SSE-RV
core. We target PnomV1p20T025_STD_CELL_8HP_12T, a 130nm BiC-
MOS technology, and use the CADENCE Encounter RTL compiler
v14.10 for synthesis, when generating power and area estimation.

We modified the BOOM proof-of-concept codes for Spectre-v1,
Spectre-v2, and completed the Spectre-v5 attacks developed by
Gonzalez et al.[8] for SonicBOOM. The attacks functionality is
verified in RTL simulation (Verilator) and in real hardware run. We
make all the SonicBOOM attacks open-source1. Table 2 shows the
results of the three attacks, the total number of cycles for reading a
single secret byte and the overall throughout of bytes per second
for an unprotected core. The cycle count takes into account the
entire six phases needed for an attack, described in Section 2.2. The
Spectre-v1 and Spectre-v2 have almost the same performance given
their similarities in terms of code structure, while the Spectre-v5
code is much simpler and faster–achieving 526 bytes/sec.
1https://github.com/sabbaghm/sonicboom-attacks

Table 2: Spectre attacks results on the unprotected machine.
Attack Cycles for one Byte Bytes per Second (@100MHz)

Spectre-v1 4857203 20
Spectre-v2 4783403 21
Spectre-v5 196591 526

4.2 Protection Results
Listing 1 and Listing 2 show the printout of Spectre-v1 attack on
the unprotected machine and the SSE-rv machine, respectively. We
observe similar results for Spectre-v2 and Spectre-v5. The SSE-RV
protects the speculative loads from transmitting the secret string
out through the data cache.

Listing 1: Spectre-v1 printout
on unprotected SonicBOOM.

1 want ( ! ) =?= 1 . ( ! ) 2 . ( )
2 want ( " ) =?= 1 . ( " ) 2 . ( )
3 want ( # ) =?= 1 . ( # ) 2 . ( )
4 want ( S ) =?= 1 . ( S ) 2 . ( )
5 want ( e ) =?= 1 . ( e ) 2 . ( )
6 want ( c ) =?= 1 . ( c ) 2 . ( )
7 want ( r ) =?= 1 . ( r ) 2 . ( )
8 want ( e ) =?= 1 . ( e ) 2 . ( )
9 want ( t ) =?= 1 . ( t ) 2 . ( )
10 want ( I ) =?= 1 . ( I ) 2 . ( )
11 want ( n ) =?= 1 . ( n ) 2 . ( )
12 want ( T ) =?= 1 . ( T ) 2 . ( )
13 want ( h ) =?= 1 . ( h ) 2 . ( )
14 want ( e ) =?= 1 . ( e ) 2 . ( )
15 want ( S ) =?= 1 . ( S ) 2 . ( )
16 want ( o ) =?= 1 . ( o ) 2 . ( )
17 want ( n ) =?= 1 . ( n ) 2 . ( )
18 want ( i ) =?= 1 . ( i ) 2 . ( )
19 want ( c ) =?= 1 . ( c ) 2 . ( )
20 want ( B ) =?= 1 . ( B ) 2 . ( )
21 want (O) =?= 1 . (O) 2 . ( )
22 want (O) =?= 1 . (O) 2 . ( )
23 want (M) =?= 1 . (M) 2 . ( )

Listing 2: Spectre-v1 printout
on SSE-RV SonicBOOM.

want ( ! ) =?= 1 . ( ) 2 . ( | )
want ( " ) =?= 1 . ( ) 2 . ( )
want ( # ) =?= 1 . ( ) 2 . ( )
want ( S ) =?= 1 . ( ) 2 . ( )
want ( e ) =?= 1 . ( ) 2 . ( )
want ( c ) =?= 1 . ( ) 2 . ( )
want ( r ) =?= 1 . ( ) 2 . ( r )
want ( e ) =?= 1 . ( ) 2 . ( )
want ( t ) =?= 1 . ( ) 2 . ( )
want ( I ) =?= 1 . ( ) 2 . ( )
want ( n ) =?= 1 . ( ) 2 . ( )
want ( T ) =?= 1 . ( ) 2 . ( )
want ( h ) =?= 1 . ( ) 2 . ( )
want ( e ) =?= 1 . ( ) 2 . ( )
want ( S ) =?= 1 . ( ) 2 . ( )
want ( o ) =?= 1 . ( ) 2 . ( )
want ( n ) =?= 1 . ( ) 2 . ( )
want ( i ) =?= 1 . ( ) 2 . ( )
want ( c ) =?= 1 . ( ) 2 . ( )
want ( B ) =?= 1 . ( ) 2 . ( )
want (O) =?= 1 . ( ) 2 . ( )
want (O) =?= 1 . ( ) 2 . ( )
want (M) =?= 1 . ( ) 2 . ( )

4.3 Performance Impact
The main sources of performance degradation in SSE-RV include:
1) preventing D-cache refills (≈11 cycles) when encountering each
transmit Instructions, 2) fencing all memory loads in the Load
Queue temporarily, not just the current load, and 3) making all
instructions in the PNR windows operate in-order.

We run CoreMark[4] for 10,000 iterations to test the performance
of our protected machine. CoreMark is an industry-standard bench-
mark that measures the performance of single-core CPU. It tests
the pipeline operation, cache and memory accesses, and handling
of integer operations. The SSE-RV, while protecting against the
three Spectre attacks, achieves 0.66 CoreMark/MHz, which is more
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than 2.2x faster than a SonicBOOM with out-of-order and specu-
lative execution disabled (0.29 CoreMark/MHz). Compared to the
unprotected core with 2.32 CoreMark/MHz, SSE-RV incurs 3.5x
slow-down.

We benchmark the SSE-RV core with only conditional branch
speculation protection (against Spectre-v1) using the MiBench
benchmark suite [10]. We run 500 iterations and report the av-
erage execution time. We record the exact number of speculative
loads (for conditional branches) for a single iteration using RTL
simulation. Fig. 3 shows the benchmarking results for programs
with more than 0.01% overhead. Each of these programs has a dif-
ferent instruction mix. The geometric mean of overheads is only
0.53%. The susan.corners has the largest overhead of 11.74%, be-
cause in this program 40% of all instructions are memory loads, and
0.069% are transmitter instructions (21,252 loads). In contrast, the
bitcount program has the lowest overhead of 0.02%, because it
only has 2.5% of total instructions as memory loads, among which
1.64e-4% (494 loads) are transmitter instructions. We record the
exact number of speculative loads using RTL simulation. We find
that there is a direct relationship between the ratio of memory loads
and transmitter instructions in terms of the performance overhead
of SSE-RV. A larger number of transmitter instructions lead to a
higher overhead.
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Figure 3: The SSE-RV machine performance overhead.

4.4 Implementation Cost
Table 3 shows the leakage and the dynamic power consumptions
for the unprotected and SSE-RV small core, respectively. We found
that the total core power consumption increases by only 0.02%.

Table 3: Unprotected vs. SSE-RV core power estimates.

Configuration Leakage (mW) Dynamic (mW) Total (mW)
unprotected 0.2065 286.12 286.33
SSE-RV 0.2071 291.24 291.44

Table 4 shows the NAND2 equivalent gate count and total area
for the unprotected and SSE-RV cores. We found that the core gate
count increased by only 0.42%.

The resource utilization of the prototype FPGA for the unpro-
tected and SSE-RV cores is also shown in Table 5. In the SSE-RV
machine, the Lookup Tables (LUTs) and Flip-flops (FFs) utilizations

Table 4: Unprotected vs. SSE-RV core area estimates.

Configuration Gate count Total area (𝜇𝑚2) Area scaling
Unprotected 509,547 3913320.96 1
SSE-RV 511,693 3929796.48 1.0042

Table 5: Unprotected vs. SSE-RV FPGA resources utilization.
Configuration LUT FF BRAM DSP
Unprotected 109790 72930 175 36
SSE-RV 112549(+2.5%) 73414(+0.7%) 175 36

are increased by only 2.5% and 0.7%, respectively. The increase in
LUTs utilization is mainly due to extra logic for taint initialization
and propagation phases, while the extra FFs utilization is due to the
taint file, the propagation queues, and the intermediate registers.

5 DISCUSSION
The SSE-RV design presents a general approach to protect against
all variants of Spectre attacks when their speculative execution is
tracked in the ROB, though it is limited to only cache covert channel.
Our modular design of SSE-RV makes adapting it to other attacks
easy and dependable. To block other classes of covert channels,
the enforcement phase of SSE-RV would require modifications to
identify transmitter instructions. For example, to protect against
port contention leaks, we could pre-allocate an execution port for
the instruction with tainted operands and temporarily serialize
accesses to that port until the speculative state is resolved. The
TLB covert channel can be blocked by isolating cache ways for
transmitter instructions until they are non-speculative.

Due to performing early access permission checks, SonicBOOM
is not vulnerable to cross-kernel Meltdown attacks. However, Son-
icBOOM also contains several other internal buffers, including the
line fill buffer, possibly vulnerable against microarchitectural data
sampling attacks[24]. Our future work includes extending SSE-RV
approach to protect other classes of transient attacks with other
covert channels. Further, the performance of SSE-RV can be im-
proved by implementing a local/instruction-targeted fence opera-
tion, rather than relying on global fencing, which delays benign
loads from accessing the cache temporarily.

6 CONCLUSION
In this work, we propose SSE-RV, an efficient taint tracking based
defense mechanism against Spectre attacks. We take a secure-by-
design approach and implement our protection scheme in the RISC-
V ecosystem. We design all stages of taint tracking in hardware and
prototype our SSE-RV processor on an FPGA running Linux. We
demonstrate protection against the Spectre-v1, v2, and v5 attacks
running on the prototype, while achieving 0.66 CoreMark/MHz.
We measure a 0.42% increase in gate count, and a 1.7% increase in
total core power consumption of SSE-RV processor relative to an
unprotected processor.
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