
Versatile RISC-V ISA Galois Field arithmetic extension for
cryptography and error-correction codes

Yao-Ming Kuo
Francisco Garcia-Herrero
Juan Antonio Maestro

{ykuo1,fgarciahe,jmaestro}@nebrija.es
ARIES Research Center, Universidad Antonio de Nebrija

Madrid, Spain

ABSTRACT
With the rise of Edge Computing and the advancement of crypto-
graphy and error correction codes, portable device processors must
handle a wide range of algorithms based on Galois field arithmetic.
A tradeoff between speed and power consumption is required to
optimize the execution time of a general-purpose processor without
reducing efficiency, if these operations are included in the proce-
ssor’s instruction set. In this work, a RISC-V instruction set for
multiplication of Galois field arithmetic is implemented and vali-
dated using SweRV-EL2 1.3 on a Nexys A7 FPGA. Performance
in some algorithms like AES and Reed-Solomon codes has been
improved at the expense of a slight increase in logic utilization.

CCS CONCEPTS
•Computer systems organization→Reduced instruction set
computing; • Security and privacy → Cryptography; Hardware
security implementation; • Hardware→ Communication hardware,
interfaces and storage.

KEYWORDS
RISC-V, ISA, Galois Field Arithmetic

ACM Reference Format:
Yao-Ming Kuo, Francisco Garcia-Herrero, and Juan Antonio Maestro. 2021.
Versatile RISC-V ISA Galois Field arithmetic extension for cryptography and
error-correction codes. In Proceedings of CARRV ’21: Workshop on Computer
Architecture Research with RISC-V (with ISCA 2021) (CARRV ’21). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent decades, with the rise of small portable devices for appli-
cations such as the Internet of Things [14] and CubeSats [8], as
well as the concepts of Edge Computing [22], Industry 4.0 [12], and
Big Data, part of the information must be processed on the client
device, alleviating the network’s load.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CARRV ’21, June 17, 2021, Valencia, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

To achieve this goal, processors must be more efficient in exe-
cuting specific operations and attending tasks with lower latency.
Since most portable devices have a general-purpose processor, it is
not possible to run specific applications efficiently. Therefore, some
solutions must be found to improve its performance. One option is
the customization of the processor, identifying the algorithms that
are most used in each case. For example, cryptography and error-
correction codes are present in almost any portable device today,
and many of these algorithms are based on finite field arithmetic.
Because of this, the acceleration of finite field arithmetic 𝐺𝐹 (2𝑚)
proceeds to have a significant role [4]. It is generally used to encode
and decode in a communication channel and detect errors in the
transmitted data (BCH, Reed-Solomon codes [25]). It is also used in
asymmetric cryptography, such as Elliptical Curve Cryptography
[24], which is extensively used in the authentication process to
exchange private keys or symmetric cryptography inside a secure
communication channel as Advanced Encryption Standard (AES)
[9].

Furthermore, post-quantum cryptography algorithms (PQC) [10]
have been developed in recent years with the rise of quantum
computing research. Some of the survivors of the third round of
the NIST’s PQC competition [21] use 𝐺𝐹 (2𝑚) arithmetic (Classic
McEliece [2], Rainbow [7], HQC [20], and GeMSS [3]). These algo-
rithms require high computing power to generate the keys and
encrypt/decrypt the data, becoming the main bottleneck in proce-
ssing for small devices, such as IoT end-nodes [19] and Cubesats
[15].

Traditionally, there are three ways to optimize a processor. The
first solution is adding coprocessors to the system to perform those
specific operations. The second is expanding the base instructions of
the computer architecture. Moreover, the third solution is to make
a hybrid system [23] between the first and the second solution,
adding coprocessors and specific instructions depending on the
case. We focus on the second solution, expanding the RISC-V base
instruction set (RV32I) due to its simplicity to integrate within a
core and its low area utilization.

This work aims to propose a flexible instruction set for RV32
cores capable of accelerating any algorithm based on finite field
arithmetic𝐺𝐹 (2𝑚), thus improving processor performance. A trade-
off between the base instruction set and specific custom instructions
can be found for applications that require high flexibility and, at the
same time, acceleration in the CPU execution time. For example, a
portable device generally contains different error-correction codes
and cryptographic standards or proprietary ciphers.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CARRV ’21, June 17, 2021, Valencia, Spain Yao-Ming Kuo, Francisco Garcia-Herrero, and Juan Antonio Maestro

The rest of the paper is organized as follows. Section 2 describes
the mathematical basis of 𝐺𝐹 (2𝑚), previous related works, and
contributions of this work. Section 3 introduces the instruction
set extension. Section 4 shows the simulations and experimental
results in a RISC-V SoC (SweRVolf). Finally, section 5 finishes with
the conclusion of this work.

2 BACKGROUND
This section is divided into three subsections. The first describes the
fundamentals of finite field arithmetic. Then, the second subsection
details the previous related works. And finally, in the last subsection,
the contributions of this work are listed.

2.1 Finite field arithmetic
In this subsection, a quick review of the concepts related to Galois
Field operators is made (for more details, refer to [6]), focused on
GF(2𝑚). This field is an extension of GF(2), where the elements that
make it up are zero and one. All finite fields have a unit element
(𝛼0), a zero element (𝛼−∞), a primitive element (𝛼), and at least one
irreducible polynomial 𝑝 (𝑥) = 𝑥𝑚 + 𝑝𝑚−1𝑥𝑚−1 + ... + 𝑝1𝑥 + 𝑝0. The
primitive element 𝛼 is the root of the irreducible polynomial and
generates all the GF(2𝑚) nonzero elements.

There are two ways to represent the elements in GF(2𝑚): expo-
nential and polynomial. In the exponential representation, the parts
are defined as powers of 𝛼 , i.e.

𝐺𝐹 (2𝑚) = {0, 𝛼0, 𝛼1, 𝛼2, ..., 𝛼2𝑚−2} (1)

While the polynomial representation has the following form:

𝑃 (𝛼) = 𝑎𝑚−1𝛼
𝑚−1 + ... + 𝑎1𝛼 + 𝑎0;

𝑎𝑖 ∈ 𝐺𝐹 (2), 0 ≤ 𝑖 ≤ 𝑚 − 1
(2)

Polynomial representation is beneficial for doing arithmetic ope-
rations. The definitions of addition and multiplication of finite fields
are given below.

2.1.1 GF Addition. Let’s consider two elements of 𝑎(𝑥) and 𝑎(𝑥)
(Eq. 3), both belonging to the field 𝐺𝐹 (2𝑚).

𝑎(𝑥) = 𝑎𝑚−1𝑥
𝑚−1 + ... + 𝑎1𝑥 + 𝑎0

𝑏 (𝑥) = 𝑏𝑚−1𝑥
𝑚−1 + ... + 𝑏1𝑥 + 𝑏0

𝑎𝑖 ∧ 𝑏𝑖 ∈ 𝐺𝐹 (2), 0 ≤ 𝑖 ≤ 𝑚 − 1

(3)

The sum 𝑠 (𝑥) (Eq. 4) is directly the XOR operation of each of its
coefficients. The result belongs to the same field.

𝑠 (𝑥) = (𝑎𝑚−1 ⊕ 𝑏𝑚−1)𝑥𝑚−1 + ... + (𝑎0 ⊕ 𝑏0) (4)

2.1.2 GF Multiplication. There are different ways to multiply two
polynomials in𝐺𝐹 (2𝑚). This paper focuses on two-step multiplica-
tion. As its name implies, this method separates multiplication into
two steps: carry-less multiplication and polynomial reduction.

The first step is carry-less multiplication. The product 𝑑 (𝑥) of
the polynomials 𝑎(𝑥) and 𝑏 (𝑥), is a polynomial of degree 2𝑚 − 2.
This operation can be represented in matrix form as:

©­­­­­­­­­­­­­­«

𝑑0
𝑑1
.
.
.

𝑑𝑚−1
𝑑𝑚
𝑑𝑚+1
.
.
.

𝑑2𝑚−2

ª®®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­­«

𝑎0 0 0 · · · 0 0
𝑎1 𝑎0 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

𝑎𝑚−1 𝑎𝑚−2 𝑎𝑚−3 · · · 𝑎1 𝑎0
0 𝑎𝑚−1 𝑎𝑚−2 · · · 𝑎2 𝑎1
0 0 𝑎𝑚−1 · · · 𝑎3 𝑎2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · 0 𝑎𝑚−1

ª®®®®®®®®®®®®®®¬

©­­­­­­­­«

𝑏0
𝑏1
𝑏2
.
.
.

𝑏𝑚−2
𝑏𝑚−1

ª®®®®®®®®¬
(5)

After the carry-less multiplication, the next step is the polyno-
mial reduction based on an irreducible polynomial 𝑓 (𝑥). In modular
reduction 𝑐 (𝑥) = 𝑑 (𝑥)𝑚𝑜𝑑𝑓 (𝑥), the degree of 𝑑 (𝑥) is reduced by
the degree of the irreducible polynomial 𝑓 (𝑥), resulting in a de-
gree less than𝑚˘1. The matrix form of the polynomial reduction is
showed in Equation 6.

©­­­­«
𝑐0
𝑐1
.
.
.

𝑐𝑚−1

ª®®®®¬
=

©­­­­«
1 0 · · · 0 𝑟0,0 · · · 𝑟0,𝑚−2
0 1 · · · 0 𝑟1,0 · · · 𝑟1,𝑚−2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1 𝑟𝑚−1,0 · · · 𝑟𝑚−1,𝑚−2

ª®®®®¬

©­­­­­­­­­­«

𝑑0
.
.
.

𝑑𝑚−1
𝑑𝑚
.
.
.

𝑑2𝑚−2

ª®®®®®®®®®®¬
(6)

Thematrix𝑅 in Equation 6 depends exclusively on the irreducible
polynomial 𝑓 (𝑥). The coefficients 𝑟 can be calculated as follows:

𝑟 𝑗,𝑖 =

{
𝑓𝑗 ; 𝑗 = 0, . . . ,𝑚 − 1; 𝑖 = 0

𝑟 𝑗−1,𝑖−1 + 𝑟𝑚−1,𝑖−1; 𝑗 = 0, . . . ,𝑚 − 1; 𝑖 = 1, . . . ,𝑚 − 2 (7)

2.2 Previous related works
In this subsection, related works by other authors are presented.

The RISC-V community has proposed a scalar cryptographic ex-
tension [26]. This instruction set accelerates various cryptographic
algorithms, such as AES [17], SHA-256, SHA-512, SM3, and SM4.
Although it achieves a considerable speedup, this proposal does not
contemplate post-quantum (PQC) algorithms and error-correction
codes. In this way, the instruction set is not flexible and cannot
accelerate other algorithms or proprietary ciphers.

It can be observed that cryptography and error-correction codes
share the same operations, such as bit manipulation (i.e. rotations,
permutations, carry-less multiply) and finite field arithmetic. These
operations can be defined in the instruction set in order to accelerate
a wider range of algorithms. For example, a finite field 𝐺𝐹 (𝑞) ISA
extension was proposed in Alkim’s [1] work to accelerate lattice-
based PQC cryptography (Kyber, NewHope). The same can be done
for the𝐺𝐹 (2𝑚) fields to speed up code-based PQC, error-correction
codes, and basic operations of classical cryptography [13].

2.3 Contributions
The contribution of this work is a solution between the RISC-V
base ISA and the scalar cryptographic K extension [26], resulting

Versatile RISC-V ISA Galois Field arithmetic extension for cryptography and error-correction codes CARRV ’21, June 17, 2021, Valencia, Spain

Figure 1: The instruction format for the custom Galois field arithmetic instructions.

in an intermediate performance between the two. However, with
greater flexibility in the protocols that it can process.

The RISC-V ISA K extension can accelerate SHA2, AES, SM3,
and SM4 using dedicated instructions, and they plan to support
more algorithms in the future (Aria, Camelia, NIST LWC, and PQC
algorithms). As this extension implements dedicated hardware for
each algorithm, the execution time is faster, but the area is much
larger than that of our proposal.

Our proposed ISA extension is capable of processing the follo-
wing algorithms:

• Non-binary error-correction codes (i.e., Non-binary low den-
sity parity check (LDPC), BCH, RS codes, . . .)

• Pre-quantum cryptography (i.e., AES, Elliptic Curve, . . .)
• PQC cryptography (i.e., McEliece, Rainbow, HQC, . . .)

3 PROPOSED ISA EXTENSION
This section describes the ISA extension for RISC-V processors
proposed in this work. The selection criteria of the opcodes were
based on the SweRV-EL2 microarchitecture [16].

The operation added in this extension is the multiplication of
finite fields since the sum of two numbers in𝐺𝐹 (2𝑚) is only an XOR
operation, and it is already defined in RV32I. The multiplication is
done in three different instructions (See Section 2.1.2): carry-less
multiplication (CLMULH and CLMUL) and polynomial reduction
(FFRED). The carry-less operation requires two instructions since
multiplying two 32-bit numbers results in a 64-bit number, and the
size of the RV32 registers is 32-bit.

To correctly multiply two numbers in 𝐺𝐹 (2𝑚), it is also nece-
ssary to indicate the irreducible polynomial and the degree to the

Figure 2: FFWIDTH internal registers.

processor. Therefore, additional instruction is required to pass these
parameters (FFWIDTH). These parameters are stored in two inter-
nal registers at the input of the reductionmodule. The block diagram
is shown in Fig. 2.

In some processors, such as SweRV-EL2, carry-less multiplication
is already implemented in the processor as an extension. Hence,
the opcode is kept for a compatibility and resource sharing issue.

We decided not to implement the square function and the inverse
of 𝐺𝐹 (2𝑚) since they are modules that require much logic and can
also be calculated using finite field multiplication. In more specific
computers, these two instructions can be added to improve the
system’s efficiency at the expense of increasing logic utilization.

Figure 1 shows the formats of the custom instructions proposed
in this work. As we can see here, the carry-less multiplication keeps
the RISC-V extension B format.

The parameters that receive and return the instructions are:
• FFWIDTH: It receives in RS1 the degree of the polynomials,
and in RS2, the irreducible polynomial. These two parameters
are stored in internal parameters. Since RV32I registers are
32-bits, the most significant bit of the irreducible polynomial
is assumed to be logical 1 when the degree of the input
polynomials is 32.

• FFRED: It receives the polynomial to be reduced as a pa-
rameter. In RS1, it receives the high part, and in RS2, the low
part of the polynomial. This instruction returns the reduced
polynomial 𝑐 (𝑥).

• CLMULH & CLMUL: The parameters are the same as ex-
tension B.

Figure 3: GF multiplication for AES.

CARRV ’21, June 17, 2021, Valencia, Spain Yao-Ming Kuo, Francisco Garcia-Herrero, and Juan Antonio Maestro

Instruction Inputs Destination register Description
li a5, 8 8 a5 Load the value 8 in register a5
li a4, 283 283 a4 Load 283 (primitive poly.) in a4
ffwidth a4, a5 a5 Store 8 and 283 in internal registers

.

.

.
.
.
.

.

.

.
.
.
.

lbu 0(a0) a4 Load operand A in a4
lbu 0(a1) a7 Load operand B in a7
clmul a4, a7 a4 CL multiply, result in a4
li 0 a5 Load 0 in a5

ffred a4, a5 a7 Poly. reduction, result in a7
Table 1: Detailed description of the code in Fig. 3 (AES example).

An example of the multiplication of finite fields using the cus-
tom instructions is shown in Fig. 3. This example is a part of the
AES code. AES employs the following reducing polynomial for
multiplication:

𝑓 (𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 (8)

This primitive polynomial belongs to 𝐺𝐹 (28). Therefore, the
degree is 8. Additionally, this polynomial can represent in binary,
hexadecimal, or decimal form (see Eq. 9).

1000110112 = 11𝐵16 = 28310 (9)

The number 283 is the value loaded in the second instruction of
Fig. 3, representing the primitive polynomial in base 10.

The FFWIDTH instruction appears only for the first time to tell
the hardware the degree and the irreducible polynomial. These two
received parameters are stored in internal registers. Additionally,
this instruction receives a value in the result in a5 since the format
of FFWIDTH corresponds to an operation instruction in RISC-V.
This instruction is not used in any other part of the code.

The register RS1 passed to FFRED is 0 because AES uses poly-
nomials that belong to 𝐺𝐹 (28) and the bits 63-32 will always be
zero after carry-less multiplication. In this case, the compiler used
the instruction LI assigning a logical zero to RS1 instead of using
CLMULH (see Fig. 3).

Figure 4: SweRV EL2 Core Pipeline [5].

A detailed description of each instruction in this example can be
seen in Table 1.

4 IMPLEMENTATION RESULTS
The custom instructions are implemented and validated with Veri-
lator v4.032 using the SweRV-EL2 v1.3 core.

The first step is adding the logic in the decoding stage to rec-
ognize the opcode of the custom instructions. Espresso logic mini-
mizer [18] is used in this stage, which is a logic synthesis computer
program capable of reducing the complexity of digital logic circuits.

Then, the corresponding logic is added in the execution stage.
Since carry-less multiplication and binary multiplication share the
same module within the core, the polynomial reduction module
is also implemented in the same block. The block diagram of the
SweRV-EL2 core is shown in Fig. 4.

Once the logic is implemented, the assembly module (binutils)
is modified. Thus, the toolchain can recognize the opcodes of the
custom instructions. Binutils is a collection of binary tools and
part of the RISC-V GNU toolchain, including the assembler and the
linker. In this way, we can run tests of different algorithms using the
C language and compare the efficiency between the RV32IMC base
and custom instructions. In this work, a performance evaluation
for AES and Reed-Solomon codes is made.

4.1 AES performance
The C code was generated for the different key sizes (AES128,
AES192, and AES256) and encryption schemes (CBC, CTR, and
ECB). Another version was created with the custom instructions
replacing the code segments where the GF multiplication appears.
Then, they were compiled with the following flags:

-O3 -fomit-frame-pointer -fPIC -no-pie

RS(255,247) RS(255,239)
Encode Decode Encode Decode

standard 154,003 151,681 300,831 303,289
out proposal 29,006 22,648 58,660 45,237
Reduc. % 81.17% 85.07% 80.50% 85.08%

Table 2: Number of clock cycles required for RS codes.

Versatile RISC-V ISA Galois Field arithmetic extension for cryptography and error-correction codes CARRV ’21, June 17, 2021, Valencia, Spain

AES128 CBC Enc. CBC Dec. CTR Enc. CTR Dec. ECB Enc. ECB Dec.
standard 197,920 198,240 198,208 198,197 50,641 50,726

our proposal 38,328 39,303 39,033 38,995 10,854 11,011
Reduc. % 80.63% 80.17% 80.31% 80.33% 78.57% 78.29%

AES192 CBC Enc. CBC Dec. CTR Enc. CTR Dec. ECB Enc. ECB Dec.
standard 242,573 242,695 242,839 242,828 62,572 62,661

our proposal 47,016 48,019 47,637 47,617 13,764 13,939
Reduc. % 80.62% 80.21% 80.38% 80.39% 78.00% 77.75%

AES256 CBC Enc. CBC Dec. CTR Enc. CTR Dec. ECB Enc. ECB Dec.
standard 285,245 285,593 285,439 285,425 72,331 72,416

our proposal 53,396 54,548 54,054 54,036 14,462 14,660
Reduc. % 81.28% 80.90% 81.06% 81.07% 80.01% 79.76%
Table 3: Number of clock cycles required for AES (RV32IMC vs custom).

SweRV-EL2 Slice LUTs Slice Registers F7 Muxes F8 Muxes Slice LUT as logic
standard 18,605 7651 341 74 5,329 18,605

our proposal 19,974 7688 413 80 5,699 19,974
Inc. % 7.36% 0.48% 21.11% 8.11% 6.94% 7.36%

Table 4: Logic utilization of SweRV-EL2 core, implemented on a Nexys A7 FPGA.

The typical_pd and fpga_optimize settings were used for the
SweRV-EL2 core. These configurations create a lightweight proce-
ssor to implement on the Nexys A7 FPGA.

Table 3 shows the number of clock cycles required for the base
and custom instructions for each encryption method. It can be seen
that for all of the cases, a significant reduction of 77.75% can be
reached. For example, for AES256, the clock cycles needed for CBC
encryption is 285,245, while using our proposal only needs 53,396.

Regarding the code size reduction, it was observed that it is
greater than 35% for all cases.

4.2 Reed-Solomon performance
The same was done for the Reed-Solomon code performance com-
parison. A program in C code has been created with the encryption
and decryption routine for RS(255,247) and RS(255,239). And then,
another version was created with the custom instructions, replacing
the multiplication of finite fields.

The same SweRV-EL2 configurations as for AES were kept, and
they were also compiled with the same GCC flags.

Table 2 shows the number of clock cycles required to encrypt and
decrypt the RS(255,247) and RS(255,239) codes. As we can see here,
for example, the clock cycles required to encode in RS(255,247) have
been reduced by 81.17%, being 154,003 for RV32IMC and 29,006 for
our proposal.

4.3 Logic utilization
In order to implement in an FPGA (Nexys A7), the SweRV-EL2
core was integrated into SweRVolf [11] SoC, which consists of
the SweRV CPU with a boot ROM, AXI4 interconnect, UART, SPI,
RISC-V timer, and GPIO.

Two different SoC versions were created, one with the base
instructions and the other with the custom instructions, both with
the extension Zbc [5] enabled.

Table 4 shows the logic utilization for the standard and custom
version. It can be seen that there is a 6.94% increase in the number
of slices.

Regarding the clock frequency, both work at 50 MHz. There was
no decrease in frequency due to the addition of the extra logic for
the custom instructions.

5 CONCLUSIONS
Due to the rise of Edge Computing [22], small portable devices have
to process efficiently different error correction codes, cryptography,
and in some cases, proprietary protocols.

Finite field 𝐺𝐹 (2𝑚) arithmetic has been identified to be used
in many applications, such as cryptography and error-correction
codes. Therefore, an extension of the instructions is proposed in
this work. It is oriented to applications where it is necessary to
process different protocols that use finite field arithmetic.

From the previous section, it can be seen that for AES and Reed-
Solomon, a reduction of 77.75% was achieved in the number of clock
cycles at the expense of a 6.94% increment in logic utilization.

As future work, we are using these instructions for post-quantum
cryptography. The ClassicMcEliece andHQC algorithms are adapted
to the RISC-V architecture. We are in the stage of evaluating its
performance and extracting preliminary results.

REFERENCES
[1] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard

Petri. 2020. ISA Extensions for Finite Field Arithmetic: Accelerating Kyber
and NewHope on RISC-V. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020, 3 (Jun. 2020), 219–242. https://doi.org/10.13154/tches.
v2020.i3.219-242

https://doi.org/10.13154/tches.v2020.i3.219-242
https://doi.org/10.13154/tches.v2020.i3.219-242

CARRV ’21, June 17, 2021, Valencia, Spain Yao-Ming Kuo, Francisco Garcia-Herrero, and Juan Antonio Maestro

[2] Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nico-
las Sendrier, et al. 2017. Classic McEliece: conservative code-based cryptography.
NIST submissions (2017).

[3] Antoine Casanova, Jean-Charles Faugere, Gilles Macario-Rat, Jacques Patarin,
Ludovic Perret, and Jocelyn Ryckeghem. 2017. GeMSS: a great multivariate short
signature. Ph.D. Dissertation. UPMC-Paris 6 Sorbonne Universités; INRIA Paris
Research Centre, MAMBA Team

[4] Yajing Chen, Shengshuo Lu, Cheng Fu, David Blaauw, Ronald Dreslinski, Trevor
Mudge, and Hun-Seok Kim. 2017. A programmable Galois Field processor for the
Internet of Things. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). 55–68. https://doi.org/10.1145/3079856.3080227

[5] Western Digital Corporation. 2020. RISC-V SweRV EL2 Programmer’s Reference
Manual. https://github.com/chipsalliance/Cores-SweRV-EL2/blob/branch-1.3/
docs/RISC-V_SweRV_EL2_PRM.pdf

[6] Jean-Pierre Deschamps, Jose Luis Imana, and Gustavo D Sutter. 2009. Hardware
implementation of finite-field arithmetic. McGraw-Hill Education.

[7] Jintai Ding and Dieter Schmidt. 2005. Rainbow, a New Multivariable Polynomial
Signature Scheme. In Applied Cryptography and Network Security, John Ioannidis,
Angelos Keromytis, and Moti Yung (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 164–175.

[8] Hank Heidt, Jordi Puig-Suari, Augustus Moore, Shinichi Nakasuka, and Robert
Twiggs. 2000. CubeSat: A new generation of picosatellite for education and
industry low-cost space experimentation. (2000).

[9] Simon Heron. 2009. Advanced encryption standard (AES). Network Security 2009,
12 (2009), 8–12.

[10] A. Khalid, S. McCarthy, M. O’Neill, and W. Liu. 2019. Lattice-based Cryptography
for IoT in A Quantum World: Are We Ready?. In 2019 IEEE 8th International
Workshop on Advances in Sensors and Interfaces (IWASI). 194–199. https://doi.
org/10.1109/IWASI.2019.8791343

[11] Olof Kindgren. [n.d.]. SweRVolf Github repository. https://github.com/
chipsalliance/Cores-SweRVolf

[12] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoff-
mann. 2014. Industry 4.0. Business & information systems engineering 6, 4 (2014),
239–242.

[13] Wei-Ming Lim and M. Benaissa. 2003. Design Space Exploration of a Hardware-
Software Co-Designed GF(2^m) Galois Field Processor for Forward
Error Correction and Cryptography. In Proceedings of the 1st IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis
(Newport Beach, CA, USA) (CODES+ISSS ’03). Association for Computing Ma-
chinery, New York, NY, USA, 53–58. https://doi.org/10.1145/944645.944659

[14] Lu Tan and NengWang. 2010. Future internet: The Internet of Things. In 2010 3rd
International Conference on Advanced Computer Theory and Engineering(ICACTE),
Vol. 5. V5–376–V5–380. https://doi.org/10.1109/ICACTE.2010.5579543

[15] M. R. Maheshwarappa, M. D. J. Bowyer, and C. P. Bridges. 2017. Improvements
in CPU FPGA Performance for Small Satellite SDR Applications. IEEE Trans.
Aerospace Electron. Systems 53, 1 (2017), 310–322. https://doi.org/10.1109/TAES.
2017.2650320

[16] Ted Marena. 2019. RISC-V: high performance embedded SweRV™ core microar-
chitecture, performance and CHIPS Alliance. Western Digital Corporation (2019).

[17] Ben Marshall, G. Richard Newell, Dan Page, Markku-Juhani O. Saarinen, and
Claire Wolf. 2020. The design of scalar AES Instruction Set Extensions for RISC-V.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2021, 1
(Dec. 2020), 109–136. https://doi.org/10.46586/tches.v2021.i1.109-136

[18] P.C. McGeer, J.V. Sanghavi, R.K. Brayton, and A.L. Sangiovanni-Vicentelli. 1993.
ESPRESSO-SIGNATURE: a new exact minimizer for logic functions. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 1, 4 (1993), 432–440.
https://doi.org/10.1109/92.250190

[19] J. M. McGinthy and A. J. Michaels. 2018. Lightweight Internet of Things En-
cryption Using Galois Extension Field Arithmetic. In 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). 74–80. https://doi.org/10.1109/Cybermatics_
2018.2018.00046

[20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loıc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor,
and IC Bourges. 2018. Hamming quasi-cyclic (HQC). NIST PQC Round 2 (2018),
4–13.

[21] Dustin Moody. 2016. Post-quantum cryptography: NIST’s plan for the future. In
The Seventh International Conference on Post-Quntum Cryptography, Japan.

[22] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge Computing: Vision and
Challenges. IEEE Internet of Things Journal 3, 5 (2016), 637–646. https://doi.org/
10.1109/JIOT.2016.2579198

[23] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha. 2007. A Synthesis Methodology
for Hybrid Custom Instruction and Coprocessor Generation for Extensible Pro-
cessors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 26, 11 (2007), 2035–2045. https://doi.org/10.1109/TCAD.2007.906457

[24] Lawrence C Washington. 2008. Elliptic curves: number theory and cryptography.
CRC press.

[25] Stephen B Wicker and Vijay K Bhargava. 1999. Reed-Solomon codes and their
applications. John Wiley & Sons.

[26] Alexander Zeh, Andy Glew, Barry Spinney, Ben Marshall, Daniel Page, Derek
Atkins, Ken Dockser, Markku-Juhani O Saarinen, Nathan Menhorn, Richard
Newell, et al. [n.d.]. RISC-V Cryptographic Extension Proposals Volume I: Scalar
& Entropy Source Instructions. ([n. d.]).

https://doi.org/10.1145/3079856.3080227
https://github.com/chipsalliance/Cores-SweRV-EL2/blob/branch-1.3/docs/RISC-V_SweRV_EL2_PRM.pdf
https://github.com/chipsalliance/Cores-SweRV-EL2/blob/branch-1.3/docs/RISC-V_SweRV_EL2_PRM.pdf
https://doi.org/10.1109/IWASI.2019.8791343
https://doi.org/10.1109/IWASI.2019.8791343
https://github.com/chipsalliance/Cores-SweRVolf
https://github.com/chipsalliance/Cores-SweRVolf
https://doi.org/10.1145/944645.944659
https://doi.org/10.1109/ICACTE.2010.5579543
https://doi.org/10.1109/TAES.2017.2650320
https://doi.org/10.1109/TAES.2017.2650320
https://doi.org/10.46586/tches.v2021.i1.109-136
https://doi.org/10.1109/92.250190
https://doi.org/10.1109/Cybermatics_2018.2018.00046
https://doi.org/10.1109/Cybermatics_2018.2018.00046
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/TCAD.2007.906457

	Abstract
	1 Introduction
	2 Background
	2.1 Finite field arithmetic
	2.2 Previous related works
	2.3 Contributions

	3 Proposed ISA extension
	4 Implementation results
	4.1 AES performance
	4.2 Reed-Solomon performance
	4.3 Logic utilization

	5 Conclusions
	References

