
A Flexible Uncore Infrastructure
for RISC-V Core Development

Michael Jungmair
Technical University of Munich
Garching near Munich, Germany

michael.jungmair@tum.de

Tobias Schmidt
Technical University of Munich
Garching near Munich, Germany

to.schmidt@tum.de

Alexis Engelke
Technical University of Munich
Garching near Munich, Germany

alexis.engelke@tum.de

Armin Ettenhofer
Technical University of Munich
Garching near Munich, Germany

armin.ettenhofer@tum.de

Felix Krayer
Technical University of Munich
Garching near Munich, Germany

felix.krayer@tum.de

Jonas Lauer
Technical University of Munich
Garching near Munich, Germany

jonas.lauer@tum.de

Malte von Ehren
Technical University of Munich
Garching near Munich, Germany

malte.von.ehren@tum.de

Martin Schulz
Technical University of Munich
Garching near Munich, Germany

schulzm@in.tum.de

Abstract
The openness, flexibility, and modularity of RISC-V opens
the door for new developments in computer architecture
research. The same characteristics also make it highly attrac-
tive for teaching and computer architecture education, as
they lower the entry barrier for students in the implemen-
tation of their own core designs, especially in combination
with FPGA-based rapid prototyping. However, one major
issue remains: the development of the surrounding envi-
ronment, including but not limited to caches, the memory
consistency model as well as debugging and control proto-
cols, remain complex and often detract from the ability to
design the cores themselves.
To address this challenge, we propose a flexible uncore

infrastructure — targeted at FPGAs — that can be used to
implement, test and use the full range of RISC-V core design
possible. Our uncore infrastructure contains a configurable
cache and memory hierarchy for multi-core support match-
ing the RISC-V memory semantics and features an easily
adaptable communication protocol to simplify the collec-
tion of performance metrics and debugging information. We
show that our approach allows for the development of both
performance-oriented cores as well as cache-coherent multi-
core systems, while only requiring minimal resources on
the targeted FPGA. It enables core designers to focus on the
essential part of their design, which makes the framework
attractive for researchers and students alike. We use this
framework successfully in freshman bachelor courses with
positive results.

Keywords: Processor Development, Multi-Core Systems,
RISC-V, FPGA, VHDL

1 Introduction
The RISC-V ISA [8] is a rapidly evolving, open, and flexible
architecture suitable for developing new and possibly more
specialized architecture extensions. Based on these proper-
ties, it is not only a good match for innovative research, but
also for teaching and education. For the latter, in particular,
the explicitly narrow scope and size of the base ISA enables
the development of new, yet fully functional, processor cores
with comparably low effort, even compared to other RISC
freely usable architectures.
Both research and teaching with RISC-V are frequently

conducted on FPGAs, as they offer a good trade-off between
easy-to-implement simulations and high performance. How-
ever, the development of processor cores on FPGAs comes
with a rather high entry barrier: the required uncore logic
to connect, feed, test and use a newly designed core is non-
trivial and requires significant work. This includes proper
configurations of the FPGA attached DDR memory, the con-
nection to I/O devices (which is often hardware-specific), the
need for a multi-core capable cache hierarchy with cache
coherency, and the support of the matching memory con-
sistency model; all hardware-specific and non-trivial issues
that need to be addressed for each new core design project.
Further, each core design project needs to communicate with
the FPGA host to enable easy debugging and performance
analysis. As a consequence, a significant amount of engineer-
ing overhead must be invested, detracting from the actual
research or education targets.
To address this issue, we propose a flexible and modu-

lar uncore infrastructure to simplify the VHDL-based devel-
opment of multi-core RISC-V processors from scratch on
FPGAs. Our infrastructure provides a cache hierarchy to
support multiple cores, atomic memory operations, and a
generic interface for accessing memory and I/O components.

1



Michael Jungmair, Tobias Schmidt, et al.

To account for comparably low memory latency resulting
from the lower clock rate of the FPGA itself, the access la-
tency to the caches and the main memory is configurable.
Additionally, an easily extensible communication protocol
captures debugging information, performance statistics, and
other data from all infrastructure components.

We show that this infrastructure allows for both the devel-
opment of complex cores with various performance optimiza-
tions and the development of simple cores for the emulation
of many-core systems. Additionally, our approach simplifies
a direct and fair comparison of different processor core imple-
mentations and allows for evaluating application workloads
in different environments. Our experiences in teaching show
a significantly lower entry barrier for freshman students
when developing RISC-V cores, allowing them to implement
much more optimized core designs in a shorter time frame.

The main contributions of this paper are the following:

• An uncore infrastructure for simplified development
of RISC-V cores for computer architecture research
and teaching, supporting multiple processor cores.

• A simple and yet flexible interface between a multi-
core processor infrastructure and the actual core im-
plementation, allowing for the development of small
and simple as well as more complex cores.

• Two case studies with different cores showing what is
possible within the proposed uncore environment.

• An evaluation showing the low overhead of our uncore
infrastructure in terms of needed FPGA resources.

The remainder of this paper is structured as follows: in
Section 2, we describe our uncore infrastructure, and in Sec-
tion 3, we give more details on our communication protocol.
Then, in Sections 4 and 5, we show two case studies illustrat-
ing the flexibility of our approach with regard to processor
core implementations and many-core systems. In Section 6,
we report development experiences using this infrastructure.
Finally, in Section 7, we cover related work, and in Section 8,
we summarize our findings.

2 Approach for Flexible Uncore
An infrastructure for the development of processor architec-
tures suited for research and teaching demands a design that
is both easy to understand and extend. In particular, such an
infrastructure must fulfill the following requirements:

• Ease of development for both simple and more com-
plex, performance-oriented RISC-V cores.

• Support for advanced features, like instruction buffers
or atomic instructions for multi-core systems.

• Accurate simulation of memory latency and memory
access patterns.

• Support for multiple memory and I/O devices on vary-
ing hardware platforms.

RISC-V core RISC-V core (3) Computing
Cores

L1 cache L1 cache

L2 cache

(2) Cache Layer

Memory devices I/O devices (1) Memory and
I/O devices

FPGA Resources (RAM, Pins)

Figure 1. Uncore Infrastructure

To achieve a flexible design matching these requirements, we
split the processor infrastructure into three layers (c.f. Fig-
ure 1): (1) a layer for memory and I/O devices, (2) an optional
cache layer, and (3) the interface to the processor cores them-
selves. We use a bus-based communication protocol between
the three layers, allowing us to replace each layer indepen-
dently of the others. This design facilitates the development
of new processor cores and the evaluation of different mem-
ory hierarchies with multi-core support. Furthermore, we
can migrate the system quickly to other hardware platforms
or emulate it on standard CPUs. All components are imple-
mented in VHDL and new projects include the files to make
use of our uncore infrastructure. In the following, we pro-
vide a brief overview of the four main components: the three
layers and the bus protocol connecting them.

2.1 Memory and I/O Layer
The memory and I/O layer provides a unified interface for
accessing the FPGA’s hardware components, including the
onboard DDR3 memory. Additionally, hardware clocks, soft-
ware interrupt registers and communication buffers can be
implemented as memory-mapped I/O devices. The layer’s
implementation depends on hardware-specifics, like clock
frequency or memory capacity. We, therefore, designed it to
be thin and easily retargetable to the respective FPGA hard-
ware platform, while all other layers remain FPGA hardware
agnostic. Moreover, this design facilitates the simulation of
the system with open source tools, like GHDL [4].

All available memory and I/O devices are connected with
the next higher layer to receive read and write operations.
We assign disjoint address ranges to each device and use the
most significant bit in the address to distinguish between
memory and I/O devices. As FPGAs, unlike real processors,
operate typically with only a few hundred MHz, the latency

2



A Flexible Uncore Infrastructure for RISC-V Core Development

of memory operations can be increased by the user to emu-
late realistic memory access times in terms of the number of
CPU cycles needed.

2.2 Cache Layer
We added the second layer to support more advanced pro-
cessor designs with a cache hierarchy and multi-core sup-
port. We provide a two-level write-back cache hierarchy that
implements a directory-based MESI protocol for cache co-
herency [5] and atomic memory operations for multi-core
synchronization. Like many modern processors, we use 512-
bit large cache lines and implement four-way set-associative
caches on both levels with an least-recently-used eviction
policy. As shown in Figure 1, the first level cache (L1) is a
private cache for both instruction and data and corresponds
to the L2 cache in today’s Intel [6] or AMD [1] processors.
We implemented the atomic memory operations from the "A"
standard extension of the RISC-V ISA [8] in the L1 cache. The
cores in the next higher layer trigger these instructions by
appending the atomic operation’s opcode to the memory op-
erations. The L1 caches are connected through a shared bus
to our last-level cache (L2). Since accessing memory-mapped
I/O devices triggers side effects, we forward these operations
directly to the underlying layer. Every cache also collects in-
depth statistics on cache hits/misses, evictions, invalidations
and fetches. As with the memory devices, the cache access
latencies can be changed to reach realistic access timings.

2.3 Interface for Computing Cores
On the computing core layer, the actual RISC-V cores are
implemented. The cores can perform writes, reads, or atomic
memory operations on 8-byte aligned memory words; such
requests are sent to the cache layer below. The core can also
specify an additional mask that disables individual bytes to
implement unaligned memory operations or accesses with
less than eight bytes.

In addition, it is also possible to load an entire cache line,
which can be used for further optimizations inside the core,
for example, implementing an instruction buffer. However,
we currently do not propagate the signal used for cache
coherency to the layer of the computing cores. Hence, the ex-
ecuted program has to flush the instruction buffer manually
using the FENCE.I instruction.

2.4 Bus Protocol
For the communication between the components in our in-
frastructure, we designed a generic request-acknowledgment
bus protocol. Figure 2 shows the transmission between a re-
questing and a responding party in detail. The requesting
party sets the enable signal and encodes in the payload the
operation to perform and the memory address. The respond-
ing party enables the acknowledgment to signal that the
result is available. The operation completes as soon as the
respondent device resets the acknowledgment signal. We use

clock
enable

payload address & data

ack
result data

Figure 2. Bus protocol

this protocol in various places: to connect the three layers
or to communicate between the L1 and L2 cache. The signal
flow is identical in all instances of this protocol, but depend-
ing on the use case, the size of the payload may change or
additional information such as opcodes for atomic memory
operations are encoded.

3 Debugging and Communication Protocol
For debugging and evaluating our infrastructure as well as
the RISC-V cores, we need a stable connection between the
host system and the system under evaluation, synthesized
on an FPGA or running as simulation. While there are many
standards for connecting two systems that offer high perfor-
mance, e.g., PCI or Ethernet, for our purposes, portability
is more important than achieving high throughput or low
latencies. Thus, we rely on UART-based serial interfaces for
physical transport: it is available on almost all FPGA devel-
opment boards, can be easily emulated during simulation,
and is supported by a wide range of software libraries.
On top of a serial byte-wise interface, we use a package-

based protocol that is generic enough for all of our require-
ments: as we do not want to embed test programs into our
bitstreams, we need to boot the system from outside. This
includes resetting the running system, loading programs into
main memory, and enabling program execution. Addition-
ally, we want to enable stepping through program execution,
i.e., stop program execution and resume it later. Furthermore,
we need the possibility to introspect the system’s state from
outside: this includes CPU registers and additional custom
registers for debugging as well as performance counters to
enable detailed benchmarking, e.g., from the cache hierarchy.
In addition to supporting the boot process, enable debugging
and detailed benchmarking, we also require a communica-
tion channel with complex software running on the RISC-V
cores via virtual I/O devices that send and receive data via
the same protocol used for booting and debugging.
Based upon these requirements, we design a requester-

responder protocol where the host system acts as the re-
quester and sends requests via a serial interface. These re-
quests are first buffered and then distributed to the respon-
ders on a central shared bus. Every component inside our
infrastructure with a relevant state (e.g., memory controller,
the individual caches, CPU) listens to all requests on this
bus until it detects a request with a matching component

3



Michael Jungmair, Tobias Schmidt, et al.

Program
Counter

Memory
Access

Instruction
Buffer

Instruction Decode

BPT

Register File
Integer

Computation

ALU

Mul

Div

Memory
Access

Register File

L1 Cache

core
infrastructure

Fetch

Store Load

1 2 3
Instruction-Fetch and -Decode Execution Writeback

Figure 3. Structure of the pipelined processor with in-order
execution.

identifier. It then processes the request depending on the con-
tained function identifier (e.g., read register, write register,
write memory) and sends a reply via the bus. This reply is
then checked and forwarded to the serial interface. This dis-
tributed request processing design allows each component to
perform arbitrarily complex actions based on a request, such
as directly interacting with the memory controller. However,
most components only process very simple requests, namely
reading and writing (control-)registers. To facilitate this, we
provide an embeddable VHDL component that handles such
limited requests transparently.

4 Case Study 1: Performance-oriented
Cores

As the first case study, we show that our infrastructure can
be used to develop performance-focused cores.

4.1 Core Description
We use our uncore infrastructure to implement, test and
compare two different RISC-V cores, which implement
RV64IM [8] and can execute arbitrary RV64IM code. The
current implementation, however, is limited to the unprivi-
leged specification.

The first core uses a simple pipeline scheme with in-order
execution, illustrated in Figure 3. Experimenting with tim-
ing measures on the FPGA allows us to reduce the number
of pipeline steps to the three depicted in the figure. Thus,
in combination with a single-cycle Branch Prediction Table
(BPT), we can reduce the number of cycles lost to a branch
misprediction to just one, without needing to flush, making
the implementation even simpler. Furthermore, we imple-
ment an instruction buffer that loads chunks of 16 instruc-
tions from the L1-Cache, ensuring fast instruction fetching.

The second core is a single-issue out-of-order core imple-
menting the Tomasulo algorithm [10]. As seen in Figure 4,
it consists of a register file, a reorder buffer to keep track of

Program
Counter

Memory
Access

Instruction
Buffer

Instruction
Decode

BPT

Reorder
Buffer

Register
File

RS ALU

RS Mul

Load Store
Buffer

CU ALU

CU Mul

Memory
Access

L1 Cache

core
infrastructure

C
om

m
on

D
at
a
B
us

...
...

Figure 4. Structure of the pipelined processor with out-of-
order execution (pipeline stages are not shown here).

register availability and flushing, computation units (CU),
and reservation stations (RS) of varying sizes to handle the
parallel execution of different types of instructions as well
as a common data bus to bundle results. Although most in-
structions can be completely reordered, all load and store
instructions are executed in-order with respect to each other
to avoid the complexity of memory hazard detection. Some
components like the memory access and instruction buffer
are shared with the first core with minimal adjustments.
Since the computation units for division and multiplication
are themselves pipelined, they can start one operation every
cycle. Therefore, long executions do not block computation
units when flushing. The number of cycles needed for flush-
ing depends logarithmically on the size of reorder buffer.

4.2 Integration with Uncore Infrastructure
Both core implementations adhere to the shared interface of
the uncore infrastructure, which attaches them to the cache
hierarchy. To improve execution performance, the cores use
the infrastructure’s capability to access whole cache lines to
fill the instruction buffer.
The UART communication described in Section 3 is uti-

lized to extract more details about the exact state of the
components. This data currently includes utilization of the
reservation stations and the reorder buffer, the data currently
on the common data bus, as well as in- and outputs of the
computation units, but can be easily extended to specific
requirements. Figure 5 shows an example of how valuable
this data can be, where we measure the utilization of the
reservation stations for arithmetic/logic operations during
the execution of different programs on a Xilinx VC707 FPGA.
Thus, we can use the interface to make a detailed analysis
with different numbers of reservation stations and reorder
buffer sizes to find an optimal configuration.

4



A Flexible Uncore Infrastructure for RISC-V Core Development

0 20 40 60 80 100 120 140 160

0

2

4

6

8

10

12

Number of clock cycles run

U
sa
ge

of
A
LU

-R
S Current Size

Quicksort
MD5

Tak function

Figure 5. Utilization of the ALU reservation stations

In addition to performance metrics, we also rely on the
communication infrastructure to extract debugging infor-
mation and controlling the core during development, like
accessing the program counter, register values and operating
the core in single-step execution. To further allow bidirec-
tional communication with the running program, we use
a blocking memory-mapped I/O-component to implement
read and write buffers.

5 Case Study 2: Multi-core Systems
In our second case study, we implement a parallel RISC-V
processor with multiple cores.

5.1 Core Description
To achieve high concurrency, we use small processor cores,
which, in addition to RV32IM, also support most of the speci-
fied atomic instructions of RV32A [8]. Combined with coher-
ent caches, this also enables synchronization. To facilitate
multi-core programming even further, we also implement
several instructions from the privileged instruction set [9] to
support, e.g., unique hart IDs and interrupt handlers. To keep
the RISC-V cores small enough to fit many of them on a sin-
gle FPGA, we implement individually scalar cores, as shown
in Figure 6, without further optimizations like pipelining or
out-of-order execution, although given sufficient space on
FPGAs more complex cores could also be added in such a
multi-core design.

5.2 Integration with Uncore Infrastructure
Being able to configure and build a parallel system with
many cores allows users to analyze the properties of parallel
programs for varying settings, including different cache con-
figurations. For example, consider the two statistics extracted
from the L2 caches in Figure 7: it shows the number of fetches
and fetch-invalidates for parallel implementations of quick-
sort and mergesort. Fetches occur when a core reads from a
missing cache line; a fetch-invalidate is caused by writing
write on a missing cache line. As quicksort works in-place,
the number of fetches and the number of fetch-invalidates is

Program
Counter

Instruction
Fetch

Instruction
Decode

Memory
Access

Register
File ALU Write Back

Trap
Handling CSR

L1 Cache AMO Unit

core
infrastructure

Figure 6. Structure of the size-optimized processor core with
basic support for parallel programming

0 10 20
0 K

200K

400K

600K

#cores

#f
et
ch

0 10 20
0M

10M

20M

30M

#cores

#f
et
ch

in
v.

Quicksort Mergesort

Figure 7. L2-Cache statistics for fetches (left side) and inval-
idating fetches (right side)

low, as only few synchronisation is required. However, since
mergesort allocates memory frequently, more synchroniza-
tion is required. This causes cache-stealing, i.e., processors
contend with each other for cache lines, which causes many
expensive fetch-invalidates.

6 Experiences
In the following, we describe our experiences with our un-
core infrastructure for developing RISC-V-based systems
with regard to technical aspects, but also in the context of
the core development process itself.

Technical Aspects. Based on our case studies, our infras-
tructure provides the foundation for developing new RISC-
V cores in single-core and multi-core environments from
scratch. It allows for the development of both simple/small
cores, as well as more complex and performance-oriented
RISC-V core designs. The infrastructure design generally im-
poses few limitations on the core design itself, and the possi-
bility to performmemory accesses of up to 512 bits allows for
further optimizations inside the core. The main remaining
limitation for the development of high-performance cores is
the missing possibility of integrating caches deeply into the
core, as it requires modifying the core interface. However,
this adaption is possible with comparably low effort.

5



Michael Jungmair, Tobias Schmidt, et al.

1 5 10 15 200 K

100K

200K

300K

400K

#cores

Lo
gi
c
Ce

lls

Periphery
Communication

L2 logic
L1 logic

Processors

Figure 8. Resource Utilization for different core counts. Note
that the data in L1 and L2 caches is not stored in logic cells
but special memory not included in this figure.

The infrastructure also scales well with an increasing num-
ber of cores: with a simple core design, we can fit 20 working
cores on our target board, a Xilinx VC707 board with 485k
logic cells. The distribution of logic cells to the core and
other components of our infrastructure is shown in Figure 8.
Note that a full system with one core uses only ∼70k cells,
therefore being small enough to fit on smaller development
boards, and that the size used by components other than the
cores themselves and the L1 cache is usually negligable, es-
pecially for an increasing number of cores. With even larger
boards, our current design allows up to 64 cores.

Core Development. During the development of cores,
two key features of our infrastructure significantly reduce
the effort of the development process: first, the flexible debug-
ging possibilities enable extracting many kinds of data from
different components of the core. And second, this allows
for a fast simulation of the core on an FPGA with extensive
data collection at the same time. Further, the possibility to
simulate the entire infrastructure in software reduces the
overhead of potentially high development times.

Finally, when analyzing and optimizing core designs, the
ability to collect detailed performance statistics of various
components is an additional benefit.

Usage in Teaching. Based on its property, we also suc-
cessfully use this infrastructure in a teaching environment.
In a freshman undergraduate lab course, small groups of
students are given the assignment to implement a RISC-V
core from scratch on an FPGA.

In previous years without this uncore infrastructure, stu-
dents spent a significant amount of time in properly con-
figuring hardware and I/O devices. Generally, this allowed
students to implement simple functional, but unoptimized
cores in a time frame of a semester.
In recent years, when we provided our infrastructure as

foundation, students were able to implement much more
sophisticated core designs, often including pipelining and

other optimizations, even in a shorter time frame, allowing
them to cover more further aspects in class.

7 Related Work
A recent work providing an infrastructure and an interface
for a user’s core implementation is the “Bring Your Own
Core” (BYOC) framework [2]. Like our infrastructure, it can
be executed on an FPGA, but rather focuses on providing
support for multiple cores with different ISAs running simul-
taneously on the system. As common for high-performance
cores, every core must implement its own L1 cache, which
in turn has to implement the protocol of the L2 cache given
by BYOC. Since we want to encourage the integration of
quickly developed as well as high-performance cores, we
provide an L1 cache, but do also plan to support cores with
their own caches.
A prominent example of a RISC-V processor is Sonic-

BOOM [12]. Similar to our infrastructure, it can be synthe-
sized to run on an FPGA, but uses cache optimizations cur-
rently not present in our caches, like even-odd banking, a
next-line prefetcher and a line fill buffer. Due to the high
integration between the processor core and its environment,
it is more difficult to use a different core within the Sonic-
BOOM for testing purposes, which limits its ability to act as
a general uncore infrastructure.
Several projects aim to teach students the development

of pipelined [7] or out-of-order [11] cores, also providing
them with an infrastructure to test their implementations.
However, these infrastructures currently do not support mul-
tiple cores or provide protocols for communication with I/O
devices when executed on hardware. More insight into the
processor behavior during execution on an FPGA is achieved
by Bulić et al.’s “FPGA-based integrated environment” [3]
that students can use to run and debug assembly programs,
while the processor core is not intended to be changed.

8 Summary
In this paper, we described a flexible uncore infrastructure
for the development of VHDL-based multi-core RISC-V pro-
cessors. We described our approach for this infrastructure
consisting of three layers, which interface with memory and
I/O devices on one end, with a cache hierarchy for coherent
support of multiple cores in the middle, and with pluggable
computing cores at the other end. Additionally, the infras-
tructure provides a versatile communication interface for
gathering performance statistics and other debugging infor-
mation. Our experiences show that this infrastructure allows
for the development of performance-oriented RISC-V cores
as well as scalable multi-core systems. In addition to using it
in RISC-V-based computer architecture research, this infras-
tructure can be used for teaching purposes as well and has
been successfully tested at TUM for this purpose.

6



A Flexible Uncore Infrastructure for RISC-V Core Development

References
[1] Advanced Micro Devices, Inc. 2021. AMD64 Architecture Programmer’s

Manual.
[2] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory

Chirkov, Ang Li, Alexey Lavrov, Tri M Nguyen, Yaosheng Fu, Flo-
rian Zaruba, et al. 2020. BYOC: a" bring your own core" framework for
heterogeneous-ISA research. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. 699–714.

[3] Patricio Bulić, Veselko Guštin, Damjan Šonc, and Andrej Štrancar. 2013.
An FPGA-based integrated environment for computer architecture.
Computer Applications in Engineering Education 21, 1 (2013), 26–35.

[4] Tristan Gingold et al. 2021. GHDL. https://github.com/ghdl/ghdl,
accessed 2021-05-12.

[5] John L. Hennessy and David A. Patterson. 2017. Computer Architecture,
Sixth Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[6] Intel Corporation. 2021. Intel 64 and IA-32 Architectures Software
Developer’s Manual.

[7] Jason Lowe-Power and Christopher Nitta. 2019. The Davis In-Order
(DINO) CPU: A Teaching-focused RISC-V CPU Design. In Proceedings
of the Workshop on Computer Architecture Education. 1–8.

[8] RISC-V Foundation. 2019. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 20190608-Base-Ratified.

[9] RISC-V Foundation. 2019. The RISC-V Instruction Set Manual, Volume II:
Privileged Architecture, DocumentVersion 20190608-Priv-MSU-Ratified.

[10] R. M. Tomasulo. 1967. An Efficient Algorithm for Exploiting Multiple
Arithmetic Units. IBM Journal of Research and Development 11, 1 (1967),
25–33. https://doi.org/10.1147/rd.111.0025

[11] Stephen A Zekany, Jielun Tan, James A Connelly, and Ronald G Dres-
linski. 2021. RISC-V Reward: Building Out-of-Order Processors in a
Computer Architecture Design Course with an Open-Source ISA. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education. 1096–1102.

[12] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020.
SonicBOOM: The 3rd Generation Berkeley Out-of-Order Machine. In
Fourth Workshop on Computer Architecture Research with RISC-V.

7

https://github.com/ghdl/ghdl
https://doi.org/10.1147/rd.111.0025

	Abstract
	1 Introduction
	2 Approach for Flexible Uncore
	2.1 Memory and I/O Layer
	2.2 Cache Layer
	2.3 Interface for Computing Cores
	2.4 Bus Protocol

	3 Debugging and Communication Protocol
	4 Case Study 1: Performance-oriented Cores
	4.1 Core Description
	4.2 Integration with Uncore Infrastructure

	5 Case Study 2: Multi-core Systems
	5.1 Core Description
	5.2 Integration with Uncore Infrastructure

	6 Experiences
	7 Related Work
	8 Summary
	References

