
Enabling Hardware
Randomization Across the

Cache Hierarchy in
Linux-Class Processors

Max Doblas¹ , Ioannis-Vatistas Kostalabros¹ , Miquel Moretó¹ and Carles
Hernández²

¹Computer Sciences - Runtime Aware Architecture, Barcelona Supercomputing
Center

{ max.doblas, vatistas.kostalabros, miquel.moreto } @bsc.es

²Department of Computing Engineering, Universitat Politècnica de València
carherlu@upv.es 1

Introduction

● Cache-based side channel attacks are a serious concern in many

computing domains

● Existing randomizing proposals can not deal with virtual memory

○ The majority of the state-of-the-art is focussing at the LLCs

● Our proposal enables randomizing the whole cache hierarchy of a

Linux-capable RISC-V processor

2

 Cache Side Channel Attacks

3

 Cache Side Channel Attacks

V1

A2

A1

Prime+Probe Example

1. Calibration

 Attacker’s Blocks

 Victim’s BlocksVx

Ax

4 sets, 2 way associative cache

4

 Cache Side Channel Attacks

V1
A2A1

Prime+Probe Example

1. Calibration

2. Prime (precondition)

Vx

Ax

4 sets, 2 way associative cache

5

 Attacker’s Blocks

 Victim’s Blocks

 Cache Side Channel Attacks

V1

A2

A1

Prime+Probe Example

1. Calibration

2. Prime (precondition)

3. Wait(execution of the victim)Vx

Ax

4 sets, 2 way associative cache

6

 Attacker’s Blocks

 Victim’s Blocks

 Cache Side Channel Attacks

V1
A2A1

Prime+Probe Example

1. Calibration

2. Prime (precondition)

3. Wait(execution of the victim)

4. Probe (detection)

Vx

Ax

4 sets, 2 way associative cache

7

 Attacker’s Blocks

 Victim’s Blocks

 State of the art
Cache-layout randomization schemes

● Parametric functions that randomize the mapping of a block inside

the cache

○ Use a key-value to change the hashing applied to the address

○ At every key change a new calibration has to be performed

○ Protection is provided by modifying the key frequently

● It can be used in single or multiple security domains

8

 State of the art

● (a) Some solutions use an Encryption-Decryption scheme

○ Introduces latency -> Potential high impact in cache latency

○ Improves design simplicity by not altering the cache structure

9

 State of the art

● (b) Randomization function produces the cache-set’s index

○ Latency can be partially hidden-> feasible for first level caches

○ Needs to increase the Tags to recover block address

○ Extra mechanism is needed to enable the virtual memory

10

Randomization Functions Quality

11

● Randomization functions need to balance security performance trade-off
● CEASER’s LLBC

○ Inherent linearity deems it useless for SCA thwarting [1]

[1] R. Bodduna, V. Ganesan, P. Slpsk, C. Rebeiro, and V.
Kamakoti. Brutus: Refuting the security claims of the
cache timing randomization coun- termeasure proposed
in ceaser. IEEE Computer Architecture Letters, 2020.

[2]D. Trilla, C. Hernández, J. Abella, and F. J. Cazorla.
Cache side-channel attacks and time-predictability in
high-performance critical real-time systems. In DAC,
pages 98:1–98:6, 2018.

● Balance time randomized
functions examples [2]:
a) Hash Function
b) Random mopdulo

 Skewed Caches

● Enhances the security of the cache

○ It is more difficult to calibrate an attack

○ Increases the resources used by multiplying the number of

randomization functions.

12

Addr
f(addr)

Addr
f1(addr) f2(addr)

Skewed

Scheme
Traditional

Scheme

 Virtual memory Example: Shared data

13

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT

 Virtual memory Example: Shared data

14

CPU
Virtual

Address

addr[1:0]

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B

X

Process A: sb X -> 0x0001

CPU
Virtual

Address

addr[1:0]

X

Process B: ld 0x1001 -> r1

● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT

 Virtual memory Example: Shared data

15

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B

CPU
Virtual

Address

f(addr)

X

Proc A: sd X -> 0x0001

● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT

 Virtual memory Example: Shared data

16

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B

CPU
Virtual

Address

f(addr)

X

Proc B: ld 0x1001 -> r1

Miss

CPU
Virtual

Address

f(addr)

X

Proc A: sd X -> 0x0001

● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT

 Virtual memory Example: Shared data

17

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B

CPU
Virtual

Address

f(addr)

X

Proc B: ld 0x1001 -> r1

Miss

CPU
Virtual

Address

f(addr)

X

Proc A: sd X -> 0x0001

L2
Physical
Address

f(addr)

X

● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT
Coherency protocol

access to addr 0x3001

18

● Adds supports the coherence protocol in finding any valid block.

○ Even after a key or a page-table’s translation modification.

● Every cache, keeps track of the valid blocks in the lower level

cache.

○ This tracking is done by storing the last random index used by

the lower level cache for every valid block.

○ Using this information, the cache probes any block of the lower

level cache.

 Proposal

 Example: Shared data

19

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B

CPU
Virtual

Address

f(addr)

X

Proc B: ld 0x1001 -> r1

CPU
Virtual

Address

f(addr)

X

Proc A: sd X -> 0x0001

Miss

● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT

 Example: Shared data

20

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B

CPU
Virtual

Address

f(addr)

X

Proc B: ld 0x1001 -> r1

CPU
Virtual

Address

f(addr)

X

Proc A: sd X -> 0x0001

L2
Physical
Address

f(addr)

X

Coherency protocol
access to addr 0x3001

Miss

● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT

 Example: Shared data

21

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B

L2
Physical
Address

f(addr)

X

Coherency protocol
invalidating addr 0x3001

L2
Physical
Address

f(addr)

X

Coherency protocol
provides X

rnd_idx
updated

● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT

 Example: Shared data

22

Virtual Addr Physical Addr

0x0000 0x3000

... ...

Page Table A
Virtual Addr Physical Addr

0x1000 0x3000

... ...

Page Table B

CPU
Virtual

Address

f(addr)

X

Proc B: ld 0x1001 -> r1

L2
Physical
Address

f(addr)

X

Coherency protocol
invalidating addr 0x3004

L2
Physical
Address

f(addr)

X

Coherency protocol
provides X

rnd_idx
updated

● Two processes A and B

○ Two different Page Tables

○ Shares data on 0x3000

○ First level caches are VIPT

 Example of a Three Level Cache Hierarchy

23

 Implementation on a RISC-V Core

24

We have implemented this mechanism in the lowRISC SoC.

● There are two different randomizers on the first level cache .

○ Hash function and Random modulo.

● L2 incorporates the directory which track the L1 Blocks .

● Both caches have been augmented with tag array extensions to

handle collisions produced by the randomizers.

● The Coherency protocol has been modified.

○ Able to issue probe requests using the random index stored.

 Performance Evaluation

25

● We used the non-floating point benchmarks from the EEMBC suite.

○ 1000 iterations with 1000 different randomized keys.

● The hash function version has a very small impact on performance.

○ Other configurations increase the performance in this benchmarks.

 Security Evaluation

● NIST STS testing proves uniform set distribution.

● Non-linear randomization function.

○ Thwarts linear cryptanalysis attacks.

● Security vulnerability analysis based on the cost of attack calibration

26

Number of attacker accesses to build eviction set

 Resources Evaluation

FPGA resources utilization for different configurations of the caches

27

● The HF has a higher
cost.

● In the RM case,
randomization
module consumes
very few resources.

 Conclusions

● Novel randomization mechanism for the whole cache hierarchy.

● Enables the use of virtual and physical addresses.

● Maintains cache coherency.

● Has a small impact on performance and consumed resources.

● We achieved integration into a RISC-V processor capable to boot Linux.

● Achieved increased security against cache-based side-channel attacks.

28

 Future work
● Analyze implications and implementation of more complex coherence

protocols.

● Implement our proposal in a complex processor design.

● Enable the utilization of multiple security domains.

29

Thank you

max.doblas@bsc.es

