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Introduction

● Cache-based side channel attacks are a serious concern in many 

computing domains

● Existing randomizing proposals can not deal with virtual memory

○ The majority of the state-of-the-art is focussing at the LLCs

● Our proposal enables randomizing the whole cache hierarchy of a 

Linux-capable RISC-V processor
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 State of the art
Cache-layout randomization schemes

● Parametric functions that randomize the mapping of a block inside 

the cache

○ Use a key-value to change the hashing applied to the address

○ At every key change a new calibration has to be performed

○ Protection is provided by modifying the key frequently

● It can be used in single or multiple security domains 
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 State of the art

● (a) Some solutions use an Encryption-Decryption scheme

○ Introduces latency -> Potential high impact in cache latency

○ Improves design simplicity by not altering the cache structure
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 State of the art

● (b) Randomization function produces the cache-set’s index

○ Latency can be partially hidden-> feasible for first level caches

○ Needs to increase the Tags to recover block address

○ Extra mechanism is needed to enable the virtual memory
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Randomization Functions Quality
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● Randomization functions need  to balance security performance trade-off
● CEASER’s LLBC 

○ Inherent linearity deems it useless for SCA thwarting [1]

[1] R. Bodduna, V. Ganesan, P. Slpsk, C. Rebeiro, and V. 
Kamakoti. Brutus: Refuting the security claims of the 
cache timing randomization coun- termeasure proposed 
in ceaser. IEEE Computer Architecture Letters, 2020.

[2]D. Trilla, C. Hernández, J. Abella, and F. J. Cazorla. 
Cache side-channel attacks and time-predictability in 
high-performance critical real-time systems. In DAC, 
pages 98:1–98:6, 2018.

● Balance time randomized 
functions examples [2]:
a) Hash Function
b) Random mopdulo



 Skewed Caches

● Enhances the security of the cache

○ It is more difficult to calibrate an attack

○ Increases the resources used by multiplying the number of 

randomization functions.
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 Virtual memory Example: Shared data
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○ First level caches are VIPT
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● Adds supports the coherence protocol in finding any valid block. 

○ Even after a key or a page-table’s translation modification.

● Every cache, keeps track of the valid blocks in the lower level 

cache.

○ This tracking is done by storing the last random index used by 

the lower level cache for every valid block.

○ Using this information, the cache probes any block of the lower 

level cache.

 Proposal
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 Example of a Three Level Cache Hierarchy
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 Implementation on a RISC-V Core
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We have implemented this mechanism in the lowRISC SoC.

● There are two different randomizers on the first level cache .

○ Hash function and Random modulo.

● L2 incorporates the directory which track the L1 Blocks .

● Both caches have been augmented with tag array extensions to 

handle collisions produced by the randomizers.

● The Coherency protocol has been modified.

○ Able to issue probe requests using the random index stored.



 Performance Evaluation
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● We used the non-floating point benchmarks from the EEMBC suite.

○ 1000 iterations with 1000 different randomized keys.

● The hash function version has a very small impact on performance.

○ Other configurations increase the performance in this benchmarks. 



 Security Evaluation

● NIST STS testing proves uniform set distribution.

● Non-linear randomization function.

○ Thwarts linear cryptanalysis attacks.

● Security vulnerability analysis based on the cost of attack calibration

26

Number of attacker accesses to build eviction set



 Resources Evaluation

FPGA resources utilization for different configurations of the caches

27

● The HF has a higher 
cost.

● In the RM case, 
randomization 
module consumes 
very few resources.



 Conclusions

● Novel randomization mechanism for the whole cache hierarchy.

● Enables the use of virtual and physical addresses.

● Maintains cache coherency.

● Has a small impact on performance and consumed resources.

● We achieved integration into a RISC-V processor capable to boot Linux.

●  Achieved increased security against cache-based side-channel attacks.
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 Future work
● Analyze implications and implementation of more complex coherence 

protocols.

● Implement our proposal in a complex processor design.

● Enable the utilization of multiple security domains.
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