
A RISC-V SystemC-TLM simulator
CARRV 2020 Màrius Montón



Outline

● Introduction
● Simulator
● Tests
● Conclusions



Motivation



Motivation

Develop a simple simulator based on a RISC-V CPU

● As a embedded processor
○ Small CPU
○ Simple memory scheme 

● Using a simple toolchain
○ Out-of-the-box binary from gcc
○ Easy tools
○ No semi-hosting facilities

● And easy expandable
○ Attach new peripherals
○ Add new RISC-V extensions
○ Modify CPU architecture



Simulator



SystemC as language

● C++ based, well known language
● Add-ons HW to C++
● Simulation based
● Possibility to synthesis with external tools

TLM-2 as modeling

● Transaction based
● Common interface

Simulator



TLM Transactions & sockets

● Communication channel 
● Abstraction of a bus

○ Details not important
○ Information about time and address/data

● Increase simulation speed
● Sockets encapsulates all this

○ Initiator/Target <--> Master/Slave
○ Interchangeable

Simulator



Simulator Instruction set simulator

● Execute and decode 
○ Extensions

● Register file
○ x0-x31
○ PC
○ CSR

● Harvard
○ Data / Instr. Bus 

● IRQ port



Simulator Bus controller

● Data / Instr. Input sockets
● Out sockets

○ To memory
○ Peripherals

■ Trace
■ Timer
■ …

● Memory map



Simulator Peripherals

● Memory
○ Exe file pre-loaded

● Trace for 
debug/console

● Timer, trigger IRQ



Simulator Simulation helper

● Log execution 
○ Log file
○ Operands and result

● Performance metrics
○ Memory accesses
○ Registers accesses
○ Instructions executed



Simulator Simulation helper

● Log execution 
○ Log file
○ Operands and result

● Performance metrics
○ Memory accesses
○ Registers accesses
○ Instructions executed



Simulator Simulation helper

● Log execution 
○ Log file
○ Operands and result

● Performance metrics
○ Memory accesses
○ Registers accesses
○ Instructions executed



Pure bare-metal simulator

● ECALL, EBREAK → implemented to help debugger, not calling OS
○ ECALL Stops simulation
○ EBREAK Raise Breakpoint exception

● Need to implement _write() _read() functions in sim code
● Support full C std libraries for sim code
● FreeRTOS porting

Docker version

● Not need to compile anything, just hit & run
● Performance penalty

Simulator



Pure bare-metal simulator

● ECALL, EBREAK → implemented to help debugger, not calling OS
○ ECALL Stops simulation
○ EBREAK Raise Breakpoint exception

● Need to implement _write() _read() functions in sim code
● Support full C std libraries for sim code
● FreeRTOS porting

Docker version

● Not need to compile anything, just hit & run
● Performance penalty

Simulator



Pure bare-metal simulator

● ECALL, EBREAK → implemented to help debugger, not calling OS
○ ECALL Stops simulation
○ EBREAK Raise Breakpoint exception

● Need to implement _write() _read() functions in sim code
● Support full C std libraries for sim code
● FreeRTOS porting

Docker version

● Not need to compile anything, just hit & run
● Performance penalty

Simulator



Tool-chain

● Used gcc for RISC-V
● Only small CFLAGS required

CFLAGS = -Wall -I. -O0 -static -march=rv32imac -mabi=ilp32 
--specs=nosys.specs

● Default linker script
● Uses HEX file from elf output

> objcopy -Oihex file.elf file.hex

Simulator



Tests



Check ISS correctness - Compliance tests

● riscv/riscv-tests passed

● riscv-compliance test passed

Check whole simulator - C programs

● Simple C programs, using libraries
● FreeRTOS porting
● Dhrystone

Tests



Tests ● Consistent
● Penalty using trace
● Penalty using Log



Conclusions



Simulator is working fine

● Complex programs running OK
● No cross-tools modifications
● Easy to use and understand

Need to add more components

● Add I/O peripherals
● Add FLASH memory for instr.
● Model a real MCU

Conclusions



Increase performance, but similar to other SystemC simulators

Open-Source 

https://github.com/mariusmm/RISC-V-TLM

Conclusions


