5 UNIVERSITY OF

Accelerate Cycle-Level Multi-Core RISC-V
Simulation with Binary Translation
Xuan Guo, Robert Mullins

Department of Computer Science and Technology

Both the paper and the slides are made available under CC BY 4.0

Motivation

 We want to evaluate processor designs with meaningful workloads
* Not just microbenchmarks
e Existing simulators are too slow for the task

* Last year we looked at TLB simulation:
* Fast TLB Simulation for RISC-V Systems @ CARRV 2019
 We based the work on top of QEMU
* For TLB design, we don’t really need cycle accuracy
 The assumption does not hold for cache simulation!

8> UNIVERSITY OF

“§ CAMBRIDGE

Design Goals

* Full-system capable
* With the presence of an operating system

* Cycle-level simulation

Ability to model multicore interaction
* Include cache coherency and shared caches

e Fast!

8= UNIVERSITY OF

i

“§ CAMBRIDGE

R2VM

e Rust RISC-V Virtual Machine

8= UNIVERSITY OF

i

“§ CAMBRIDGE

Binary Translator

|
: . Pipeline Model
—> Begin Code Generation il

q Block Begin Hook

Execution

\ 4
Fetch & Decode

Code Miss -~ .

Cache ! > Before Instruction Hook

Access _
Translate Instruction

A 4

After Instruction Hook
\ 4

End Block?

Yes

» After Taken Branch Hook

v

<': Complete Code
Generation

Code Cache

- UNIVERSITY OF

CAMBRIDGE

Prior Art

* Igor Bohm, Bjorn Franke, and Nigel Topham. 2010. Cycle-accurate
performance modelling in an ultra-fast just-in-time dynamic binary
translation instruction set simulator.

> UNIVERSITY OF

.“‘

From Single-Core to Multi-Core

* We have an accurate single-core cycle-level simulator
e We instantiate multiple copies of it in parallel
* Assume each single-core simulator is thread safe already

* What could go wrong?

=82 UNIVERSITY OF

ou -k

"8 CAMBRIDGE

Multi-Core Interaction

* Prone to distortion from the host
e OS scheduler
* Length of JITed code
* Multithreading

* Cannot model interaction within the guest
* Single-writer-multiple-reader cache coherency
* Micro-contention
* Etc

8= UNIVERSITY OF

i

“§ CAMBRIDGE

Lockstep Execution

* Need to keep simulated cores in sync
* So we need to have them run in lockstep
* Hard with binary translation

=82 UNIVERSITY OF

ou -k

"8 CAMBRIDGE

A Failed Attempt

Thread 0 Thread 1 Thread N
Core 0 Inst 1 Core 1 Inst 1 Core N Inst 1
Thread Barrier
Core 0 Inst 2 Core 1 Inst 2 Core N Inst 2

std::sync::Barrier 100k/s

Thread Barrier

Spinnin 1M/s
Core 0 Inst 3 Core 1 Inst 3 Core N Inst

Thread Barrier

- UNIVERSITY OF

CAMBRIDGE

Lockstep Execution

* Need to keep simulated cores in sync
* So we need to have them run in lockstep
* Hard with binary translation

* Thread barriers are slow and do not scale.

=82 UNIVERSITY OF

ou -k

"8 CAMBRIDGE

Fiber/Coroutine

* Yield control within a function

* We use stackful fibers
e Boost::Coroutine is stackful
e Goroutines are stackful
* Most modern languages use stackless

8> UNIVERSITY OF

“§ CAMBRIDGE

* How is it implemented (traditional approach):
e Get the current fiber from TLS
e Save registers of current fiber
e Switch to the next fiber and set TLS
e Switch the stack to the new fiber’s
e Restore registers from the new fiber
e Restore execution

* 50M yields/second

> UNIVERSITY OF

%" CAMBRIDGE

Event Loop

Stack

Core 0

Stack

Core 1

Events Priority
Queue

Stack

LO Address
Translation Cache

Next Event

Core States

LO Address
Translation Cache

Cycle Number

Next Fiber

Registers

Core States

Stack Pointer

Next Fiber

Registers

Stack Pointer

Next Fiber

Current Stack Pointer

Current Base Pointer

Stack Pointer

~ UNIVERSITY OF

> CAMBRIDGE

* How is it implemented (traditional approach):
 Get the current fiber from TLS
- . : i)
e Switch to the next fiber and set TLS
e Switch the stack to the new fiber’s
- . : I i)
e Restore execution

* 50M yields/second

B> UNIVERSITY OF

CAMBRIDGE

Event Loop

Stack

Core 0

Stack

Core 1

Events Priority
Queue

Stack

LO Address
Translation Cache

Next Event

Core States

LO Address
Translation Cache

Cycle Number

Next Fiber

Registers

Core States

Stack Pointer

Next Fiber

Registers

Stack Pointer

Next Fiber

Current Stack Pointer

Current Base Pointer

Stack Pointer

~ UNIVERSITY OF

> CAMBRIDGE

* How is it implemented (traditional approach):
»_Getthe-currentfiberfromFLS
- . : i)
Switel | i | TLS
e Switch the stack to the new fiber’s
- . : I i)

* Restore execution

* 50M yields/second

8= UNIVERSITY OF

* fiber_yield raw:
mov [rbp - 32], rsp ; Save current stack pointer
mov rbp, [rbp - 16] ; Move to next fiber
mov rsp, [rbp - 32] ; Restore stack pointer
ret

* 80-90M vyields/second

=82 UNIVERSITY OF

1 ;onl

8" CAMBRIDGE

Memory Simulation

B> UNIVERSITY OF
§ CAMBRIDGE

S
t:,).)s i

Memory Access Flow

Dynamic Binary Translated Code R2VM Memory Model

Index into LO

data cache and Invoke simulated

check tag TLB model Hit
P Miss
ass
Flush entries from L0 data cache Walk page tables and update simulated
(for TLB/cache eviction) TLB

Fail
Check permission

Invoke simulated
cache model

Obtain address with XOR Insert the entry into LO data cache |

Update simulated cache

Perform the actual memory access Trigger a page fault exception <

UNIVERSITY OF

CAMBRIDGE

Performance

R2VM,atomic

I 43
R2VM,pipeline I 334
QEMU e 209
R2VM,pipeline,lockstep e 33
R2VM,simple, MESI e 28
R2VM,pipeline, MESI e 206
gem5.,atomic I 3
gem5,cycle N 0.3
RTL W 0.01

0.001 0.01 0.1 | 10 100 1000
M Instructions per CPU second

- UNIVERSITY OF

Open Source

* https://github.com/nbdd0121/r2vm

* MIT/Apache-2.0 Dual Licensed
* Not GPL!

=82 UNIVERSITY OF

ou - U

" CAMBRIDGE

e

