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Motivation

 We want to evaluate processor designs with meaningful workloads
* Not just microbenchmarks
e Existing simulators are too slow for the task

* Last year we looked at TLB simulation:
* Fast TLB Simulation for RISC-V Systems @ CARRV 2019
 We based the work on top of QEMU
* For TLB design, we don’t really need cycle accuracy
 The assumption does not hold for cache simulation!

8> UNIVERSITY OF

“§ CAMBRIDGE



Design Goals

* Full-system capable
* With the presence of an operating system

* Cycle-level simulation

Ability to model multicore interaction
* Include cache coherency and shared caches

e Fast!

8= UNIVERSITY OF

i

“§ CAMBRIDGE



R2VM

e Rust RISC-V Virtual Machine
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Binary Translator
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Prior Art

* Igor Bohm, Bjorn Franke, and Nigel Topham. 2010. Cycle-accurate
performance modelling in an ultra-fast just-in-time dynamic binary
translation instruction set simulator.
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From Single-Core to Multi-Core

* We have an accurate single-core cycle-level simulator
e We instantiate multiple copies of it in parallel
* Assume each single-core simulator is thread safe already

* What could go wrong?
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Multi-Core Interaction

* Prone to distortion from the host
e OS scheduler
* Length of JITed code
* Multithreading

* Cannot model interaction within the guest
* Single-writer-multiple-reader cache coherency
* Micro-contention
* Etc
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Lockstep Execution

* Need to keep simulated cores in sync
* So we need to have them run in lockstep
* Hard with binary translation
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A Failed Attempt

Thread 0 Thread 1 Thread N
Core 0 Inst 1 Core 1 Inst 1 Core N Inst 1
Thread Barrier
Core 0 Inst 2 Core 1 Inst 2 Core N Inst 2

std::sync::Barrier 100k/s

Thread Barrier

Spinnin 1M/s
Core 0 Inst 3 Core 1 Inst 3 Core N Inst

Thread Barrier
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Lockstep Execution

* Need to keep simulated cores in sync
* So we need to have them run in lockstep
* Hard with binary translation

* Thread barriers are slow and do not scale.
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Fiber/Coroutine

* Yield control within a function

* We use stackful fibers
e Boost::Coroutine is stackful
e Goroutines are stackful
* Most modern languages use stackless
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* How is it implemented (traditional approach):
e Get the current fiber from TLS
e Save registers of current fiber
e Switch to the next fiber and set TLS
e Switch the stack to the new fiber’s
e Restore registers from the new fiber
e Restore execution

* 50M yields/second
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Event Loop
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* How is it implemented (traditional approach):
 Get the current fiber from TLS
- . : i)
e Switch to the next fiber and set TLS
e Switch the stack to the new fiber’s
- . : I i)
e Restore execution

* 50M yields/second
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Event Loop
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* How is it implemented (traditional approach):
»_Getthe-currentfiberfromFLS
- . : i)
Switel | i | TLS
e Switch the stack to the new fiber’s
- . : I i)

* Restore execution

* 50M yields/second
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* fiber_yield raw:
mov [rbp - 32], rsp ; Save current stack pointer
mov rbp, [rbp - 16] ; Move to next fiber
mov rsp, [rbp - 32] ; Restore stack pointer
ret

* 80-90M vyields/second
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Memory Simulation
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Memory Access Flow

Dynamic Binary Translated Code R2VM Memory Model

Index into LO

data cache and Invoke simulated

check tag TLB model Hit
P Miss
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Flush entries from L0 data cache Walk page tables and update simulated
(for TLB/cache eviction) TLB

Fail
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Invoke simulated
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Performance

R2VM,atomic

I 43
R2VM,pipeline I 334
QEMU e 209
R2VM,pipeline,lockstep e 33
R2VM,simple, MESI e 28
R2VM,pipeline, MESI e 206
gem5.,atomic I 3
gem5,cycle N 0.3
RTL W 0.01

0.001 0.01 0.1 | 10 100 1000
M Instructions per CPU second
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Open Source

* https://github.com/nbdd0121/r2vm

* MIT/Apache-2.0 Dual Licensed
* Not GPL!
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