
Accelerate Cycle-Level Multi-Core RISC-V 
Simulation with Binary Translation
Xuan Guo, Robert Mullins

Department of Computer Science and Technology

Both the paper and the slides are made available under CC BY 4.0



Motivation

• We want to evaluate processor designs with meaningful workloads
• Not just microbenchmarks
• Existing simulators are too slow for the task

• Last year we looked at TLB simulation:
• Fast TLB Simulation for RISC-V Systems @ CARRV 2019
• We based the work on top of QEMU
• For TLB design, we don’t really need cycle accuracy
• The assumption does not hold for cache simulation!



Design Goals

• Full-system capable
• With the presence of an operating system

• Cycle-level simulation
• Ability to model multicore interaction
• Include cache coherency and shared caches

• Fast!



R2VM

• Rust RISC-V Virtual Machine



Design



Prior Art

• Igor Böhm, Björn Franke, and Nigel Topham. 2010. Cycle-accurate 
performance modelling in an ultra-fast just-in-time dynamic binary 
translation instruction set simulator.



From Single-Core to Multi-Core

• We have an accurate single-core cycle-level simulator
• We instantiate multiple copies of it in parallel
• Assume each single-core simulator is thread safe already
• What could go wrong?



Multi-Core Interaction

• Prone to distortion from the host
• OS scheduler
• Length of JITed code
• Multithreading

• Cannot model interaction within the guest
• Single-writer-multiple-reader cache coherency
• Micro-contention
• Etc



Lockstep Execution

• Need to keep simulated cores in sync
• So we need to have them run in lockstep
• Hard with binary translation



A Failed Attempt

Thread 0

Core 0 Inst 1

Core 0 Inst 2

Core 0 Inst 3

…

Thread 1

Core 1 Inst 1

Core 1 Inst 2

Core 1 Inst 3

…

Thread N

Core N Inst 1

Core N Inst 2

Core N Inst 3

…

…

Thread Barrier

Thread Barrier

Thread Barrier

std::sync::Barrier 100k/s

Spinning 1M/s



Lockstep Execution

• Need to keep simulated cores in sync
• So we need to have them run in lockstep
• Hard with binary translation
• Thread barriers are slow and do not scale.



Fiber/Coroutine

• Yield control within a function
• We use stackful fibers
• Boost::Coroutine is stackful
• Goroutines are stackful
• Most modern languages use stackless



Fiber

• How is it implemented (traditional approach):
• Get the current fiber from TLS
• Save registers of current fiber
• Switch to the next fiber and set TLS
• Switch the stack to the new fiber’s
• Restore registers from the new fiber
• Restore execution

• 50M yields/second



Fiber



Fiber

• How is it implemented (traditional approach):
• Get the current fiber from TLS
• Save registers of current fiber
• Switch to the next fiber and set TLS
• Switch the stack to the new fiber’s
• Restore registers from the new fiber
• Restore execution

• 50M yields/second



Fiber



Fiber

• How is it implemented (traditional approach):
• Get the current fiber from TLS
• Save registers of current fiber
• Switch to the next fiber and set TLS
• Switch the stack to the new fiber’s
• Restore registers from the new fiber
• Restore execution

• 50M yields/second



Fiber

• fiber_yield_raw:
mov [rbp - 32], rsp ; Save current stack pointer
mov rbp, [rbp - 16] ; Move to next fiber
mov rsp, [rbp - 32] ; Restore stack pointer
ret

• 80-90M yields/second



Memory Simulation



Memory Access Flow



Performance



Open Source

• https://github.com/nbdd0121/r2vm
• MIT/Apache-2.0 Dual Licensed
• Not GPL!


