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Software compatibility

* A lot of existing software is developed based on a specific ISA

* Software compatibility: Software based on one ISA cannot run
directly on another ISA processor.

* Before the software ecosystem is perfected, the software cost caused
by software compatibility will seriously hinder the development of
RISC-V

* Solve software compatibility ——Run other ISA programs using RISC-
V processor



How to solve software compatibility

e Software methods
e Software binary translation system

* Hardware methods (multiple-ISA processor)
* Hardware binary translation
* Multiple decoders for multiple ISAs
e Multi-core for multiple ISAs

Source ISA Binary translation |  Target ISA | Target ISA

» »

Instruction Instruction processor




Solve software compatibility for embedded

* Running environment and performance limit the use of existing
software method.

 Hardware methods must meet the requirements of the embedded
processor: Area and Power.

e Simplicity is essential —— we try to use hardware binary translation
to achieve a multiple-ISA processor to solve the software
compatibility problem that RISC-V faces in the embedded field



Supporting ARM Thumb with RISC-V

* Binary interpreter: Registers and instructions mapping

* Some optimizations to improve performance
e Optimization 1: Condition flags
e Optimization 2: Branch instruction
* Optimization 3: Conditional execution



Instruction and register mapping

* Instruction mapping is to convert the ARM Thumb instruction into the
corresponding RISC-V instruction(s).

* Register mapping can be achieved by adding a prefix in front of the
ARM Thumb register number

ARM Thumb Register RISC-V Register Added Prefix
RO ~ R7 (000 ~ 111) R16 ~ R23 (10000 ~ 10111) 19
R8 ~ R12 (1000 ~ 1100) | R24 ~ R28 (11000 ~ 11100) 1
SP (1101) R29 (11101) 1
LR (1110) R30 (11110) 1
PC (1111) PC/R31 (11111) 1




Optimization 1: Condition flags

* ARM Thumb condition flags:

* Negative flag (N) ,
e Zero flag (Z) .
e Carry flag (C) 4
e Overflow flag (V) 5

e 7 RISC-V instructions are needed

to judge these flags .

10

11

;Judge and save N Flag
SLTI R1,Rd,0
:Judge and save Z Flag
SLTU R2,R0,Rd
XORI R2,R2,1
;Judge and save C flag
SLTU R3,Rd,Rn
;Judge and save V flag
SLTI R5,Rn,0
SLT R6,Rd,Rm
XOR R4 ,R5,R6




Optimization 1: Condition flags

* Optimization: supporting condition flags by hardware in RISC-V

Processor

 ALU
* Flags register

ARM Thumb instruction

RISC-V instruction

Without hardware flags

With hardware flags

e Control signal

ADDS Rd,Rn,Rm

ADD R15,Rn,Rm
SLTI R1,R15,0
SLTU R2,R0,R15
XORI R2,R2, 1
SLTU R3,R15,Rn
SLTI R5,Rn,@
SLT R6,R15,Rm
XOR R4,R5,R6
ADDI Rd,R15,0

ADD Rd,Rn,Rm




Optimization 2: Branch instruction

* Different condition flags implementations lead to different ways to

implement branch instructions.

* |n the worst case, 9 RISC-V instructions are needed
to achieve an ARM Thumb branch instruction

* Optimization ;,
* The role of RS1 field of RISC-V BEQ instruction is

modified to represent the condition code (named “

cond") of the ARM Thumb 10

* Hardware logic is added to judge the flags according to

the condition code in the execution stage 18

14

(%1 e e (=] =t

16

:Load flags to general register
CSRRCI R1,0x20c,0
:Get V flag

ANDI R2,R1,0001b
:Get N flag

SRLI R3,R1,3

7 :N==V ?R5=0:R5=1

SUB R5,R2,R3

SLTU R5,R0,R5

:Get Z flag

ANDI R4 ,R1,0100b
SRLI R4 ,R4,2

:(N==V and Z==0) ? R5=0 : R5!=0
ADD R5,R5,R4

If R5==0 branch take

BEQ R5,R0,imm




Optimization 3: Conditional execution

* ARM Thumb supports conditional execution
* There is an IT block after each IT instruction
* The instructions in the IT block are conditional execution
* An 8-bits register named EPSR.IT is used to support conditional execution

 Judging the execution conditions in the execution stage will cause a
large number of pipeline cycles to be wasted

e Optimization: Putting judgment logic of the execution condition into
the binary interpreter



An example for ARMv6-M

* This example is based on the open-source core of PULPino, called
Zero-riscy (lbex).

* ARMv6-M [SA

Register File

 Microarchitecture Decode }
Signals
Instruction
From ICache | BRR:TET RISC-V
" IDE » |DE Stage —

I
I
I
I
I
I
I
I
I
I
: - Interpreter ; Instruction| |F/
I
I
I
I
I
I
I
I
I
I
I



Benchmark

* Dhrystone and CoreMark

* Compiler

e ARMCC for ARM Thumb

e GNU GCC for RISC-V

Table 3: The number of instructions executed in the main loop of two benchmarks under different ISAs and optimizations.

Benchmarks
ISA or Implementation Dhrystone(100 loops) CoreMark(1 loop)
Instruction Counts | Conversion Ratio | Instruction Counts | Conversion Ratio

RISC-V Compiled by GCC 32711 ~ 306242 ~
ARMv6-M Compiled by ARMCC 28105 ~ 442604 ~
Only Binary Interpretation 128608 4.58 1963327 4.44
Optimize Flags 52005 1.85 654065 1.48
Optimize Flags and Branch 45605 1.62 492766 1.11




Performance

* Dhrystone
e RISC-V: 0.82 DMIPS/MHz
 ARMv6-M: 0.69 DMIPS/MHz

e CoreMark
e RISC-V: 1.67 CoreMark/MHz
 ARMv6-M: 1.22 CoreMark/MHz e 1.00
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FPGA resources

* LUT consumption increased by 454, 13.5% of Zero-riscy.
* FF consumption increased by 37, 1.8% of Zero-riscy
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Conclusion

» Software ecosystem challenge of RISC-V and the methods for salving
software compatibility

e Support ARM Thumb ISA based on binary translation
 |nstructions and registers mapping
e Condition flags
* Branch instruction
* Condition execution

* An Example based on Zero-riscy

* Dhrystone and CoreMark
* 0.69 DMIPS/MHz and 1.22 CoreMark/MHz
* FPGA resources increased by less than 13.5%



Thank You!

If you have any questions, please let us know!
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