
Efficient Multiple-ISA Embedded 
Processor Core Design Based on RISC-V

Yuanhu Cheng, Libo Huang, Yijun Cui, Sheng Ma, Yongwen Wang, Bincai Sui
National University of Defense Technology

Changsha, China



Contents

• Introduction
• Software compatibility
• Solve software compatibility

• Support ARM Thumb ISA based on binary translation
• Instructions and registers mapping
• Some optimizations to improve performance

• An Example for ARMv6-M
• Benchmarks
• Performance and area

• Conclusion



Software compatibility

• A lot of existing software is developed based on a specific ISA
• Software compatibility: Software based on one ISA cannot run 

directly on another ISA processor. 
• Before the software ecosystem is perfected, the software cost caused 

by software compatibility will seriously hinder the development of 
RISC-V

• Solve software compatibility ——Run other ISA programs using RISC-
V processor



How to solve software compatibility

• Software methods
• Software binary translation system

• Hardware methods (multiple-ISA processor)
• Hardware binary translation
• Multiple decoders for multiple ISAs
• Multi-core for multiple ISAs

Source ISA 
instruction

Target ISA 
instruction

Target ISA 
processor

Binary translation



Solve software compatibility for embedded

• Running environment and performance limit the use of existing 
software method.

• Hardware methods must meet the requirements of the embedded 
processor: Area and Power.

• Simplicity is essential —— we try to use hardware binary translation 
to achieve a multiple-ISA processor to solve the software 
compatibility problem that RISC-V faces in the embedded field



Supporting ARM Thumb with RISC-V

• Binary interpreter: Registers and instructions mapping
• Some optimizations to improve performance

• Optimization 1: Condition flags
• Optimization 2: Branch instruction
• Optimization 3: Conditional execution



Instruction and register mapping

• Instruction mapping is to convert the ARM Thumb instruction into the 
corresponding RISC-V instruction(s).

• Register mapping can be achieved by adding a prefix in front of the 
ARM Thumb register number



Optimization 1: Condition flags

• ARM Thumb condition flags:
• Negative flag (N)
• Zero flag (Z)
• Carry flag (C)
• Overflow flag (V)

• 7 RISC-V instructions are needed 
to judge these flags



Optimization 1: Condition flags

• Optimization: supporting condition flags by hardware in RISC-V 
processor

• ALU
• Flags register
• Control signal



Optimization 2: Branch instruction

• Different condition flags implementations lead to different ways to 
implement branch instructions. 

• In the worst case, 9 RISC-V instructions are needed
to achieve an ARM Thumb branch instruction

• Optimization
• The role of RS1 field of RISC-V BEQ instruction is 

modified to represent the condition code (named “
cond") of the ARM Thumb

• Hardware logic is added to judge the flags according to 
the condition code in the execution stage



Optimization 3: Conditional execution

• ARM Thumb supports conditional execution
• There is an IT block after each IT instruction
• The instructions in the IT block are conditional execution
• An 8-bits register named EPSR.IT is used to support conditional execution

• Judging the execution conditions in the execution stage will cause a 
large number of pipeline cycles to be wasted

• Optimization: Putting judgment logic of the execution condition into 
the binary interpreter



An example for ARMv6-M

• This example is based on the open-source core of PULPino, called 
Zero-riscy (Ibex).

• ARMv6-M ISA
• Microarchitecture



Benchmark

• Dhrystone and CoreMark
• Compiler

• ARMCC for ARM Thumb
• GNU GCC for RISC-V



Performance

• Dhrystone
• RISC-V: 0.82 DMIPS/MHz
• ARMv6-M: 0.69 DMIPS/MHz

• CoreMark
• RISC-V: 1.67 CoreMark/MHz
• ARMv6-M: 1.22 CoreMark/MHz



FPGA resources

• LUT consumption increased by 454, 13.5% of Zero-riscy.
• FF consumption increased by 37, 1.8% of Zero-riscy



Conclusion

• Software ecosystem challenge of RISC-V and the methods for salving 
software compatibility

• Support ARM Thumb ISA based on binary translation
• Instructions and registers mapping
• Condition flags
• Branch instruction
• Condition execution

• An Example based on Zero-riscy
• Dhrystone and CoreMark
• 0.69 DMIPS/MHz and 1.22 CoreMark/MHz
• FPGA resources increased by less than 13.5%



Thank You!
If you have any questions, please let us know!


	Efficient Multiple-ISA Embedded Processor Core Design Based on RISC-V
	Contents
	Software compatibility
	How to solve software compatibility
	Solve software compatibility for embedded
	Supporting ARM Thumb with RISC-V
	Instruction and register mapping
	Optimization 1: Condition flags
	Optimization 1: Condition flags
	Optimization 2: Branch instruction
	Optimization 3: Conditional execution
	An example for ARMv6-M
	Benchmark
	Performance
	FPGA resources
	Conclusion
	幻灯片编号 17

