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Deep Learning is everywhere
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Deep Learning at the edge
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These are no easy toys!

* Accelerators require efficient software to achieve potential
performance

* However, developing for them is hard

* Lack of mature SDK: write code in C, handle hardware details directly
* Cross compiling, lack of OS, etc. makes debugging cumbersome

* Deep Learning code optimizations are repetitive and empirical
* Loop transformations: split, reorder
* Need to run program to evaluate performance
* |Insufficient design space exploration leads to suboptimal programs
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RoCC

* Rocket Chip Custom
Coprocessor Interface

e Specifies an interface between
CPU core and custom
COProcessors

e Coherent & incoherent memory
access
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Figure 1: Default (black) & extended (red) signals of the RoCC interface

The RoCC Doc V2: An Introduction to the Rocket Custom Coprocessor Interface. Anuj Rao, Taylor's Bespoke Silicon Group & UCSD.




Automatic code generation

e Separate definition of computation and optimization

.placeholder((1024, 1024))

.placeholder( (1024, 1024))

.reduce_axis((@, 1024))

.compute((1024, 1024), lambda y, x:
t.sum(A[k, yl * B[k, x], axis=k))

t.create_schedule(C.op)
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i for y in range(1024):

for x in range(1024):
()+ iyl =0
for k in range(1024):
Clyl[x] += A[kI [yl * B[k][x]

+ Loop Tiling
yo, xo, ko, yi, xi, ki = s[C].tile(y, x, k, 8, 8, 8)

for yo in range(128):
for xo in range(128):
Clyo*8:yo*8+8] [x0*8:x0%x8+8] = @
A for ko in range(128):
(::)——b- for yi in range(8):
for xi in range(8):
for ki in range(8):
Clyox8+yi] [xo*x8+xi] +=
Alko*8+ki] [yo*8+yi] * Blkox8+ki] [xo*8+x1i]

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. Tiangi Chen, et, al., University of Washington.



Automatic code generation

* Automated optimization given schedule space and target device

TensorOp
Specification

Schedule Space
Template

T~

log
Database < Schedule Explorer —Pee
get perf

quer}ﬁ

ML Cost Model

training lupdate

data

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. Tiangi Chen, et, al., University of Washington.
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Automatic code generation

* Bridges hardware with high-level deep learning frameworks
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About Apache (incubating) TVM. The TVM authors.



Performance evaluation for SoCs

* Embedded SoCs are resource-constraint
 RPC-based solutions probably won’t work (lack of OS and network)
* Cross-compiling, downloading code, etc. are a mess
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[RFC][UTVM] Bringing TVM to Bare-Metal Devices #2563. The TVM authors.
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The tensorize schedule

* Accelerators provide micro-kernels for specific type of computation

e Often with limit in input shape (corresponding to memory, computation
units, etc.)

e “Tensor intrinsics”
* E.g. GEMM, convolution, etc.

* Code generation framework uses such intrinsics to offload
computation to accelerator

* Marks loop layers in nested loop program to be replaced by intrinsic call



Example of generated kernel

produce C { produce C {
for (i.o, 0, 8) { // attr pragma_epilogue = "do_fence”
for (j.o, @, 8) { for (i.o, @, 8) {
for (1.1, @, 8) { for (j.o, @, 8) {
for (3.1, 0, 8) { _ matmul_reset(access_ptr(C), 512)
C[i.o%8+i.11[j.0%8+j.i]1 = 03}} Tensorize for (k.o, 0, 8) {
for (k.o, @, 8) { — matmul_kernel(access_ptr(A), access_ptr(B),
for (i.1, 0, 8) { — access_ptr(C), 512, 512, 512)}
for (j.1, @, 8) { matmul_finalize(access_ptr(C), 512)11}}

for (k.i, @, 8) {
Cli.ox8+i.i][j.o*8+j.i] +=

— ALl.o*8+i.i][k.o*8+k.i] * Assuming “matmul” kernel that can handle
— BLk.ox8+k.i][j.o*8+]j.113}}3}}3 8x8x8 GEMM



Overall framework

* Accelerator developer provides tensor intrinsic implementation
* User defines network and schedule template
* Framework generates accelerated target program
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Tensor intrinsic design

* An intrinsic should be of the “reset-update-finalize” pattern:
* Reset is called to initialize output region (in SoC memory)
* Update is called to combine partial results (in accelerator memory)
* Finalize is called to move output (back to SoC memory)

* Physical constraints of accelerator (memory, etc.) encoded in the
Intrinsic declaration

* Focus on data movement
 Computation is getting fast
 Data movement takes up about the same time as computation does



Memory consistency

* Memory ordering in
heterogeneous SoCs are
complicated:

* Modern SoCs often feature multi-
level hierarchical memory

* Accelerators use asynchronous
DMA for high performance

* Enforcing ordering may be
necessary

* Fences
e TLB flush
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Figure 1: Default (black) & extended (red) signals of the RoCC interface
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Code quality evaluation for SoCs

* Necessary for automatic code generation
* Forms the closed ring of automatic tuning

* Previous design is bounded by communication
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[RFC][UTVM] Bringing TVM to Bare-Metal Devices #2563. The TVM authors.



Evaluation system design

* Based on shared-memory FPGA platforms: high bandwidth
* Zynq, FPGA over PCle, etc.

e Simplified protocol implementation with UART and reset
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Evaluation system workflow
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Gemmini the GEMM accelerator

» Systolic array design for GEMM using RoCC interface
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Gemmini: An Agile Systolic Array Generator Enabling Systematic Evaluations of Deep-Learning Architectures. Hasan Genc, et, al., University of California, Berkeley.
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Results

 Under 100 MHz clock, compared to hand-tuned results:
» Best-case 25.24 GIOPS, 3.6x speedup; same performance overall

* Tuning system shows over 50x speedup of tuning throughput
« Communication bandwidth is no longer the bottleneck
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Takeaways

* Automatic code generation flow for RoCC accelerators
* Improves productivity for system and application developers

* Evaluation platform that make automatic tuning on SoC targets
realistic
* Enables automatic tuning for larger group of accelerators
e Case study of Gemmini under 100 MHz using proposed flow and
system

* Best case speedup in generated code of 3.6x, same performance overall
* Tuning system show speedup of 50x for tuning throughput



Future work

* The current implementation does not yet support full-network
generation due to a limitation in the code generation framework
* Shall be fixed soon

e Evaluation on a wider range of accelerator designs



Thank you!
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