Automatic Code Generation for
Rocket Chip RoCC Accelerators

Fourth Workshop on Computer Architecture Research
with RISC-V (CARRYV 2020)

Pengcheng Xu, Yun Liang
Peking University

:; Je 7 . J’. Z P ImAT SR E ST

PEKING UNIVERSITY i

Deep Learning is everywhere

8000

Frequency (Hz)

3

Object tracking Image Seg

R 1
E Time (Sec)

-

mentation Speech Recognition

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

. ‘ Tensor programs are at
5 I the heart of Deep Learning
inputimage FooLIOMPS emturetops T Foaturo maps - hon
' Deer(0.94)
Lion(0.2)

Images are from web search. Copyright goes to their rightful owners.

Deep Learning at the edge

el
ou..

Coral Edge TPU

Huawei Kirin 990 Seeed Studio MAix-1

Images are from web search. Copyright goes to their rightful owners.

These are no easy toys!

* Accelerators require efficient software to achieve potential
performance

* However, developing for them is hard

* Lack of mature SDK: write code in C, handle hardware details directly
* Cross compiling, lack of OS, etc. makes debugging cumbersome

* Deep Learning code optimizations are repetitive and empirical
* Loop transformations: split, reorder
* Need to run program to evaluate performance
* |Insufficient design space exploration leads to suboptimal programs

Outline

* Glossary
* Automatic code generation for RoCC accelerators
* Performance evaluation platform design

e Case study of Gemmini

RoCC

* Rocket Chip Custom
Coprocessor Interface

e Specifies an interface between
CPU core and custom
COProcessors

e Coherent & incoherent memory
access

Rocket Tile

RISC-V Rocket core

Datapath

Interface
CC exception

RoCC

CC status

CC host id

CC busy

CC interrupt

Core cmd

9

Core resp

CSR req

CSR resp

A

L1 I-Cache

L1 D-Cache

g

Mem req

Mem resp

FPU

A

FPU req

FPU resp

Walker

Accelerator

PTW req

Page Table [

PTW req

aUTL

b

UTﬂ

L2 Bus (Tile Link)

Figure 1: Default (black) & extended (red) signals of the RoCC interface

The RoCC Doc V2: An Introduction to the Rocket Custom Coprocessor Interface. Anuj Rao, Taylor's Bespoke Silicon Group & UCSD.

Automatic code generation

e Separate definition of computation and optimization

.placeholder((1024, 1024))

.placeholder((1024, 1024))

.reduce_axis((@, 1024))

.compute((1024, 1024), lambda y, x:
t.sum(A[k, yl * B[k, x], axis=k))

t.create_schedule(C.op)

N x o>
I nn
+ + + +

wn
I

i for y in range(1024):

for x in range(1024):
()+ iyl =0
for k in range(1024):
Clyl[x] += A[kI [yl * B[k][x]

+ Loop Tiling
yo, xo, ko, yi, xi, ki = s[C].tile(y, x, k, 8, 8, 8)

for yo in range(128):
for xo in range(128):
Clyo*8:yo*8+8] [x0*8:x0%x8+8] = @
A for ko in range(128):
(::)——b- for yi in range(8):
for xi in range(8):
for ki in range(8):
Clyox8+yi] [xo*x8+xi] +=
Alko*8+ki] [yo*8+yi] * Blkox8+ki] [xo*8+x1i]

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. Tiangi Chen, et, al., University of Washington.

Automatic code generation

* Automated optimization given schedule space and target device

TensorOp
Specification

Schedule Space
Template

T~

log
Database < Schedule Explorer —Pee
get perf

quer}ﬁ

ML Cost Model

training lupdate

data

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. Tiangi Chen, et, al., University of Washington.

Device Cluster

Raspberry Pi

Mali GPU

Tracker

Nvidia GPU

FPGA Board

Automatic code generation

* Bridges hardware with high-level deep learning frameworks

* Ny y,— e .
O Q N l' ‘g’ @ Optimization
High-Level Differentiable IR

Tensor Expression and Optimization Search Space

AutoTVM

Edge Cloud

EPGA FPGA ASIC Device Fleet

About Apache (incubating) TVM. The TVM authors.

Performance evaluation for SoCs

* Embedded SoCs are resource-constraint
 RPC-based solutions probably won’t work (lack of OS and network)
* Cross-compiling, downloading code, etc. are a mess

HDevice JTAG
AP| & RS $°“.’Le;’j,'| OpenOCD [e
Module vice socket
T wr

riscv

IR >code gcc 1d linker |remap
Gener’ator' |nferc =P | infer.o | =P | infer

binary

[RFC][UTVM] Bringing TVM to Bare-Metal Devices #2563. The TVM authors.

Outline

* Glossary
» Automatic code generation for RoCC accelerators
* Performance evaluation platform design

e Case study of Gemmini

The tensorize schedule

* Accelerators provide micro-kernels for specific type of computation

e Often with limit in input shape (corresponding to memory, computation
units, etc.)

e “Tensor intrinsics”
* E.g. GEMM, convolution, etc.

* Code generation framework uses such intrinsics to offload
computation to accelerator

* Marks loop layers in nested loop program to be replaced by intrinsic call

Example of generated kernel

produce C { produce C {
for (i.o, 0, 8) { // attr pragma_epilogue = "do_fence”
for (j.o, @, 8) { for (i.o, @, 8) {
for (1.1, @, 8) { for (j.o, @, 8) {
for (3.1, 0, 8) { _ matmul_reset(access_ptr(C), 512)
C[i.o%8+i.11[j.0%8+j.i]1 = 03}} Tensorize for (k.o, 0, 8) {
for (k.o, @, 8) { — matmul_kernel(access_ptr(A), access_ptr(B),
for (i.1, 0, 8) { — access_ptr(C), 512, 512, 512)}
for (j.1, @, 8) { matmul_finalize(access_ptr(C), 512)11}}

for (k.i, @, 8) {
Cli.ox8+i.i][j.o*8+j.i] +=

— ALl.o*8+i.i][k.o*8+k.i] * Assuming “matmul” kernel that can handle
— BLk.ox8+k.i][j.o*8+]j.113}}3}}3 8x8x8 GEMM

Overall framework

* Accelerator developer provides tensor intrinsic implementation
* User defines network and schedule template
* Framework generates accelerated target program

rr':fn'?‘n’r (‘nde (1eneration Evaluation S}"Stel]]
NN Specification Schedule Template
. \ Target-specific
Operator Definition Concrete Schedule = SPe . N T
Tensor Intrinsic |/ ARM RISC-V
- ino P Heterogeneous
Wl Auto Tuning /' RPC' Server L e
Nested Loop Program <:j R
RISC-V RoCC Program

Tensor intrinsic design

* An intrinsic should be of the “reset-update-finalize” pattern:
* Reset is called to initialize output region (in SoC memory)
* Update is called to combine partial results (in accelerator memory)
* Finalize is called to move output (back to SoC memory)

* Physical constraints of accelerator (memory, etc.) encoded in the
Intrinsic declaration

* Focus on data movement
 Computation is getting fast
 Data movement takes up about the same time as computation does

Memory consistency

* Memory ordering in
heterogeneous SoCs are
complicated:

* Modern SoCs often feature multi-
level hierarchical memory

* Accelerators use asynchronous
DMA for high performance

* Enforcing ordering may be
necessary

* Fences
e TLB flush

Rocket Tile /‘W‘\
RISC-V Rocket core Interface Accelerator
CC exception

CC status

CC host id

CC busy

CC interrupt

Datapath Core cmd N
__ Core resp
CSR reg
) 4 a
L11-C L1 D-Cache [H——omred
— o Mem resp
N
> FPU re /\
\ I
FPU _ N fur| |ut
Page Table ’
Walker
> /
\
\ J

L2 Bus (Tile Link)

Figure 1: Default (black) & extended (red) signals of the RoCC interface

Outline

* Glossary

* Automatic code generation for RoCC accelerators
* Performance evaluation platform design

e Case study of Gemmini

Code quality evaluation for SoCs

* Necessary for automatic code generation
* Forms the closed ring of automatic tuning

* Previous design is bounded by communication

IES <> Fniiipged «—> [eillieleh) «—>
Module Svice socket

T
~ riscv

Code IR->code gcc 1d linker |remap
el | infer.cll === | infer.o| =—————fp | infer
Generator

binary

[RFC][UTVM] Bringing TVM to Bare-Metal Devices #2563. The TVM authors.

Evaluation system design

* Based on shared-memory FPGA platforms: high bandwidth
* Zynq, FPGA over PCle, etc.

e Simplified protocol implementation with UART and reset

Zynq Host Processor Rocket Chip SoC
AXI UART RoCC Accelerator
RPC Request 16550 Rocket L

___________ I ARM CPU CPU DMA Engine
Reset Processing
GPIO L Elements

L1 D% Scratchpad

l | SiFive UART L2 Inclusive Cache
DRAM

AXI4

Evaluation system workflow

Host Processor

Start RPC Server

Evaluation
Request

Load Monitor and

Shared Memory

RISC-V DUT

Setup Execution

Evaluation Code

Y

Reset Wire

UART

Environment

Run Evaluation
Code

e

Report Feedback to

Wait for DUT Finish

Host Processor

Outline

* Glossary

* Automatic code generation for RoCC accelerators
* Performance evaluation platform design

* Case study of Gemmini

Gemmini the GEMM accelerator

» Systolic array design for GEMM using RoCC interface

Systolic Array Tile PE
B/D Weight Partial Sum
g 4 4 | | | Preload (from PE above)
y _ \ _ y Y Y Y
LIog W pe - oE [» CwWeignt] ~ Forwarded
Tile [+ [Tile [+ [=+-+| Tile E Input > Input
. ! ¥ ¥ =
T — 1 — Activation X
] | e b pe [pE |- [PE - WS n

¥ _) -

. . . : : . Partial Sum
< Tile Tile ««+| Tile 0S *(m PE below)

e e : TLPEPE[[PEf Weigh

. . . . Accumulator

M - . . * * * -

“'.'PUF _ Preload
Tile = [Tile [*{ (=+++]| Tile Activation
=N Acc
Y / EVZ
C v
to accumulator or scratchpad Partial Sum

Gemmini: An Agile Systolic Array Generator Enabling Systematic Evaluations of Deep-Learning Architectures. Hasan Genc, et, al., University of California, Berkeley.

Giga IOPS

30

25

20

15

10

Results

 Under 100 MHz clock, compared to hand-tuned results:
» Best-case 25.24 GIOPS, 3.6x speedup; same performance overall

* Tuning system shows over 50x speedup of tuning throughput
« Communication bandwidth is no longer the bottleneck

400.0% 60

350.0%

vl
o

300.0%

S
=

250.0%

200.0%

150.0%

[\
o

100.0%

Tuning Throughput
w
o

—
o

50.0%

0.0%

o

16 32 64 128 256 512 1024
Workload Size

64 128

Workload Size
Baseline == AutoTVM Baseline (L2)
AutoTVM (L2) ====- Speedup Speedup (L2) OpenOCD Zynq Speedup

Takeaways

* Automatic code generation flow for RoCC accelerators
* Improves productivity for system and application developers

* Evaluation platform that make automatic tuning on SoC targets
realistic
* Enables automatic tuning for larger group of accelerators
e Case study of Gemmini under 100 MHz using proposed flow and
system

* Best case speedup in generated code of 3.6x, same performance overall
* Tuning system show speedup of 50x for tuning throughput

Future work

* The current implementation does not yet support full-network
generation due to a limitation in the code generation framework
* Shall be fixed soon

e Evaluation on a wider range of accelerator designs

Thank you!

	Automatic Code Generation for Rocket Chip RoCC Accelerators�Fourth Workshop on Computer Architecture Research�with RISC-V (CARRV 2020)
	Deep Learning is everywhere
	Deep Learning at the edge
	These are no easy toys!
	Outline
	RoCC
	Automatic code generation
	Automatic code generation
	Automatic code generation
	Performance evaluation for SoCs
	Outline
	The tensorize schedule
	Example of generated kernel
	Overall framework
	Tensor intrinsic design
	Memory consistency
	Outline
	Code quality evaluation for SoCs
	Evaluation system design
	Evaluation system workflow
	Outline
	Gemmini the GEMM accelerator
	Results
	Takeaways
	Future work
	Thank you!

