
Automatic Code Generation for
Rocket Chip RoCC Accelerators

Fourth Workshop on Computer Architecture Research
with RISC-V (CARRV 2020)

Pengcheng Xu, Yun Liang
Peking University

Deep Learning is everywhere

Object tracking Image Segmentation Speech Recognition

Images are from web search. Copyright goes to their rightful owners.

Tensor programs are at
the heart of Deep Learning

Deep Learning at the edge

Coral Edge TPU

Seeed Studio MAix-1

NVIDIA Jetson Xavier NX

Huawei Kirin 990

Images are from web search. Copyright goes to their rightful owners.

These are no easy toys!

• Accelerators require efficient software to achieve potential
performance

• However, developing for them is hard
• Lack of mature SDK: write code in C, handle hardware details directly
• Cross compiling, lack of OS, etc. makes debugging cumbersome

• Deep Learning code optimizations are repetitive and empirical
• Loop transformations: split, reorder
• Need to run program to evaluate performance
• Insufficient design space exploration leads to suboptimal programs

Outline

• Glossary
• Automatic code generation for RoCC accelerators
• Performance evaluation platform design
• Case study of Gemmini

RoCC

• Rocket Chip Custom
Coprocessor Interface

• Specifies an interface between
CPU core and custom
coprocessors

• Coherent & incoherent memory
access

The RoCC Doc V2: An Introduction to the Rocket Custom Coprocessor Interface. Anuj Rao, Taylor’s Bespoke Silicon Group & UCSD.

Automatic code generation

• Separate definition of computation and optimization

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. Tianqi Chen, et, al., University of Washington.

Automatic code generation

• Automated optimization given schedule space and target device

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. Tianqi Chen, et, al., University of Washington.

Automatic code generation

• Bridges hardware with high-level deep learning frameworks

About Apache (incubating) TVM. The TVM authors.

Performance evaluation for SoCs

• Embedded SoCs are resource-constraint
• RPC-based solutions probably won’t work (lack of OS and network)
• Cross-compiling, downloading code, etc. are a mess

[RFC][μTVM] Bringing TVM to Bare-Metal Devices #2563. The TVM authors.

Outline

• Glossary
• Automatic code generation for RoCC accelerators
• Performance evaluation platform design
• Case study of Gemmini

The tensorize schedule

• Accelerators provide micro-kernels for specific type of computation
• Often with limit in input shape (corresponding to memory, computation

units, etc.)
• “Tensor intrinsics”
• E.g. GEMM, convolution, etc.

• Code generation framework uses such intrinsics to offload
computation to accelerator

• Marks loop layers in nested loop program to be replaced by intrinsic call

Example of generated kernel

Assuming “matmul” kernel that can handle
8x8x8 GEMM

Tensorize

Overall framework

• Accelerator developer provides tensor intrinsic implementation
• User defines network and schedule template
• Framework generates accelerated target program

Tensor intrinsic design

• An intrinsic should be of the “reset-update-finalize” pattern:
• Reset is called to initialize output region (in SoC memory)
• Update is called to combine partial results (in accelerator memory)
• Finalize is called to move output (back to SoC memory)

• Physical constraints of accelerator (memory, etc.) encoded in the
intrinsic declaration

• Focus on data movement
• Computation is getting fast
• Data movement takes up about the same time as computation does

Memory consistency

• Memory ordering in
heterogeneous SoCs are
complicated:

• Modern SoCs often feature multi-
level hierarchical memory

• Accelerators use asynchronous
DMA for high performance

• Enforcing ordering may be
necessary

• Fences
• TLB flush

Outline

• Glossary
• Automatic code generation for RoCC accelerators
• Performance evaluation platform design
• Case study of Gemmini

Code quality evaluation for SoCs

• Necessary for automatic code generation
• Forms the closed ring of automatic tuning

• Previous design is bounded by communication

[RFC][μTVM] Bringing TVM to Bare-Metal Devices #2563. The TVM authors.

Evaluation system design

• Based on shared-memory FPGA platforms: high bandwidth
• Zynq, FPGA over PCIe, etc.

• Simplified protocol implementation with UART and reset

Evaluation system workflow

Outline

• Glossary
• Automatic code generation for RoCC accelerators
• Performance evaluation platform design
• Case study of Gemmini

Gemmini the GEMM accelerator

• Systolic array design for GEMM using RoCC interface

Gemmini: An Agile Systolic Array Generator Enabling Systematic Evaluations of Deep-Learning Architectures. Hasan Genc, et, al., University of California, Berkeley.

Results

• Under 100 MHz clock, compared to hand-tuned results:
• Best-case 25.24 GIOPS, 3.6x speedup; same performance overall

• Tuning system shows over 50x speedup of tuning throughput
• Communication bandwidth is no longer the bottleneck

Takeaways

• Automatic code generation flow for RoCC accelerators
• Improves productivity for system and application developers

• Evaluation platform that make automatic tuning on SoC targets
realistic

• Enables automatic tuning for larger group of accelerators

• Case study of Gemmini under 100 MHz using proposed flow and
system

• Best case speedup in generated code of 3.6x, same performance overall
• Tuning system show speedup of 50x for tuning throughput

Future work

• The current implementation does not yet support full-network
generation due to a limitation in the code generation framework

• Shall be fixed soon

• Evaluation on a wider range of accelerator designs

Thank you!

	Automatic Code Generation for Rocket Chip RoCC Accelerators�Fourth Workshop on Computer Architecture Research�with RISC-V (CARRV 2020)
	Deep Learning is everywhere
	Deep Learning at the edge
	These are no easy toys!
	Outline
	RoCC
	Automatic code generation
	Automatic code generation
	Automatic code generation
	Performance evaluation for SoCs
	Outline
	The tensorize schedule
	Example of generated kernel
	Overall framework
	Tensor intrinsic design
	Memory consistency
	Outline
	Code quality evaluation for SoCs
	Evaluation system design
	Evaluation system workflow
	Outline
	Gemmini the GEMM accelerator
	Results
	Takeaways
	Future work
	Thank you!

