
||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

HW/SW approaches for RISC-V code size reduction

CARRV Workshop
30 May 2020

Matteo Perotti
Pasquale Davide Schiavone

Giuseppe Tagliavini
Davide Rossi

Tariq Kurd
Mark Hill

Liu Yingying
Luca Benini

1

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Code size in embedded systems

$ +
-

Cost Area Power Energy

Code Size impacts

Performance

2

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

How to reduce the code size?

ARM Thumb2
RISC-V RVC

Compaction techniques

Mem Decompressor Compression techniques

Modify/Extend the ISA

Core

3

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Contributions of this work

▪ Evaluate RISC-V RVC code size on Benchmarks

▪ Effect of Xpulp extension on code size

▪ HCC: new RISC-V extension for code size reduction

▪ Implement 16-bit push/pop/popret on the open RISC-V core CV32E40P
▪ CV32E40P implements RV32IM[F]CXpulp

▪ Area and performance costs estimation

4

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Tuning the toolchain environment

Linker
ScriptLIBToolchain

● Compiled with the same
ISA used for the code

● Optimized for size
(Newlib-nano, picolibc,...)

● Collect all the frequently
accessed data sections
(sbss, sdata) near the
Global Pointer

● Updated toolchains can
produce smaller code

● Generic and ISA-specific
options for code size

5

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Experimental setup: compilers

ISA:
ARM Thumb

Compiler:
arm-none-eabi-gcc (7.2)

Compiler flags:
● -march=armv7-m
● -mcpu=cortex-m3
● -mthumb
● -Os
● -ffunction-sections
● -fdata-sections
● -gc-section

ISA:
RISC-V RVC

Compiler:
riscv32-unknown-elf-gcc (7.X)

Compiler flags:
● -march=rv32imc
● -Os
● -msave-restore
● -ffunction-sections
● -fdata-sections
● -gc-section

6

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Experimental setup: programs

Program:
IoT

ARM size:
~200 KiB

Note:
● Industry program

Benchmark suite:
Embench 0.5

ARM size:
from ~200 to ~1500 B

Note:
● Set of 19 programs
● Dummy libraries
● Geometric mean

7

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

RISC-V RVC comparison with ARM Thumb-2

RISC-V code >11% than ARM!

+11.41% +11.33%

8

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Xpulp extension - Designed for performance

Xpulp new instructions:
▪ Branch immediate
▪ MAC
▪ Additional ALU operations
▪ Bit manipulation
▪ SIMD operations
▪ HW loops
▪ Post increment mem ops
▪ Immediate offset mem ops

Performance, efficiency boost
+

lower code size!

-1.44%
-3.56%

9

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Xpulp - Originally designed for performance

Xpulp + RVC
coexistence can

be even improved!

10

Xpulp RISC-V extension can:

● boost DSP applications
performance up to 10x

● increase their efficiency

● improve the code size

PULP toolchain sub-optimal behaviour:
● Xpulp instructions steal RVC registers

to the surrounding other instructions
● 32-bit Xpulp instructions replace

equivalent 16-bit RVC instructions

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

HCC new instructions:
▪ 16-bit push/pop/popret
▪ 16-bit lbu/sb/lhu/sh
▪ 48-bit load-immediate
▪ Branch against immediate
▪ Muliadd (32-bit)
▪ Enjal16 (32-bit)
▪ Immediate shift
▪ Unsigned extend

byte/halfword
▪ Load/store multiple

HCC extension - Designed for low Code Size

-11.88% -8.61%

11

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

HCC - Single instructions
Code size reduction IoT Embench

HCC reference 0% 0%

push/pop/popret -5.11% -3.70%

lbu/sb -1.49% -0.76%

lhu/sh -0.74% -0.20%

48-bit load-Immediate -0.53% 0.66%

Branch Immediate -1.35% -0.41%

JAL16 0.00% 0.00%

MuliAdd -0.17% 0.00%

Imm. Shift -0.35% -3.04%

uxtb/uxth -0.40% -0.25%

ldm/stm 0.00% -0.56%

HCC extension -11.88% -8.61%

▪ HCC reference size
▪ IoT: 233804 B
▪ Embench: 1975 B

▪ Used either save/restore
routines or push/pop/popret

▪ 48-bit load-immediate increases
the code size due to compiler
issues

▪ JAL16 not used here. Useful with
scattered code or large programs

12

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

HCC - Single instructions
Code size reduction IoT Embench

HCC reference 0% 0%

push/pop/popret -5.11% -3.70%

lbu/sb -1.49% -0.76%

lhu/sh -0.74% -0.20%

48-bit load-Immediate -0.53% 0.66%

Branch Immediate -1.35% -0.41%

JAL16 0.00% 0.00%

MuliAdd -0.17% 0.00%

Imm. Shift -0.35% -3.04%

uxtb/uxth -0.40% -0.25%

ldm/stm 0.00% -0.56%

HCC extension -11.88% -8.61%

▪ Some instructions are highly
code dependant
(lbu/sb/lhu/sh, immshf, brimm)

▪ It’s common for functions to
manipulate the stack. 16-bit
push/pop/popret easily
return important size
reductions

▪ They lead also to
performance improvements
(less jumps, improved locality)

13

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

16-bit push/pop/popret

▪ Opcode: Reserved but free space in RVC

▪ opc: type of operation among push, pop, popret

▪ rcount: register sequence to push/pop

▪ sp16imm: additional stack space for automatic variables

14

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

16-bit push/pop/popret: implementation on CV32E40P

Added FSM to the controller to inject
memory operations, an addition and
possibly a jump

Modified decoder to recognize
push/pop/popret

Costs:
▪ Area: +2.5%
▪ Frequency: not modified

Benefit on rv32imc:
▪ Code size: from -3.7% to -5%

15

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Code size inflation over ARM

Code size inflation over ARM IoT Embench

ARM Thumb2 0% 0%

RV32IMC 11.41% 11.33%

RV32IMC Xpulp 9.81% 7.36%

RV32IMC HCC -1.75% 2.21%

RV32IMC push/pop/popret 5.80% 7.70%

16

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

Conclusion

Code size inflation over ARM IoT Embench

ARM Thumb2 0% 0%

RV32IMC 11.41% 11.33%

RV32IMC Xpulp push/pop/popret 5.37% 5.32%

● Code size <5.4%
● Same operating frequency
● Benefits of Xpulp (up to 10x performance)

● Area >2.5%

PULP
+

16-bit push/pop/popret

17

||Placeholder for organisational unit name / logo
(edit in slide master via “View” > “Slide Master”)

The End

Thanks for the attention!

18

